April 7, 2025

VIA STEERS

To: Texas Commission on Environmental Quality

Re: MMGL TXPH, LLC

CN606186393 RN110661022 Permit # 155476 APD-CERT Submittal

Mathers Ranch 159-148 22H

Dear Air Permits Initial Review Team:

MMGL TXPH, LLC (MMGL) is submitting this APD-CERT for the Mathers Ranch 159-148 22H (Facility). This APD-CERT is being submitted to certify normal operation Facility emissions which have been updated to reflect current Facility operations. Maintenance, start-up, and shutdown emissions are being claimed under 30 TAC §106.359 and are not being certified with this submittal.

If you have any questions concerning the submittal or wish to discuss the information provided with this letter, please contact Ms. Liz Barksdale, Senior Environmental Analyst, at (972) 628-1480.

Sincerely,

MMGL TXPH, LLC

INTRODUCTION

MMGL TXPH, LLC (MMGL) owns and operates Mathers Ranch 159-148 22H (Facility), an oil and natural gas production facility located in Hemphill County, Texas. Oil production is expected to be 25 barrels per day (BPD) and water production is expected to be 50 BPD. Maintenance, start-up, and shutdown (MSS) emissions are being claimed under 30 TAC §106.359 and are not being certified with this submittal.

The following supporting documentation has been included in this submittal:

- 1. List of each source of air emissions at the site and summary of the certified emission rates.
- 2. Process description.

PROCESS DESCRIPTION

The Facility receives gas and liquids from the wellhead(s). The gas and liquids from the wellhead(s) are sent to the heater treater(s), where gas is sent to sales, oil is sent to the oil storage tank(s), and produced water is sent to the produced water storage tank(s). Vapors from the storage tanks are vented to the atmosphere. Emissions from MSS activities are also included in this application.

During normal operations, the produced water and oil are transported offsite via truck.

Breathing, working and flash losses from the storage tanks were estimated using ProMax.

One (1) Caterpillar G3306NA compressor engine(s) (ENG-1) is utilized as a gas lift to aid in production by reinjecting gas into the well or as sales to push gas into the pipeline.

The gas analysis used in the fugitive calculations is a representative sample and the liquid analysis used in the ProMax is from a representative Facility.

The Facility was constructed after September 18, 2015 and prior to December 6, 2022; therefore, the site is subject to the LDAR requirements of NSPS Subpart OOOOa. The tanks are not subject to NSPS Subpart Kb as they are located prior to custody transfer. The site is equipped with intermittent and/or low bleed pneumatic controllers, which are not subject to NSPS Subpart OOOOa. The storage tanks are potentially subject to NSPS Subpart OOOOa; however, tank emissions less than 6 tons per year of VOC per tank.

Texas Commission on Environmental Quality Form APD – CERT Certification of Emission Limits (Page 1)

I. Company and Site Information
A. Company Name: MMGL TXPH, LLC
B. Responsible Official Name: Sean Craven
Responsible Official's Title: Environmental Manager
Mailing Address: 13727 Noel Road, Suite 1200
City: Dallas
County: Dallas
State: TX
ZIP Code: 75240
Telephone: 972-628-1572
Fax: N/A
Email Address: sean.craven@meritenergy.com
C. Site Name: Mathers Ranch 159-148 22H
Street Address: (if different from above)
If "NO" street address describe the physical location with driving directions:
FROM CANADIAN, TAKE HWY 83 2 MI N AND TURN E ON LAKE MARVIN RD FM 2266. DRIVE FOR 9.9 MI & TUR
N ON LEASE ROAD. DRIVE 0.2 MI AND TURN W. DRIVE 0.3 MI TO LOCATION.
City or nearest city: Canadian
County: Hemphill
ZIP Code: 79014
D. TCEQ Account Identification Number (leave blank if unknown):
E. TCEQ Customer Reference Number (leave blank if unknown): CN606186393
TCEQ Regulated Entity Number (leave blank if unknown): RN110661022
F. Does the site have a Title V Permit? ☐ YES ☒ NC
G. Title V Permit Number:
H. Is this a small business? ☐ YES ☒ NC
II. Attach the Following Documentations
A. Copies of a previously completed Form PI-7 and all supporting documentation (if applicable).
B. A list of each source of air emissions at the site.
C. A summary of the certified emission rates.
D. A process description.

Texas Commission on Environmental Quality Form APD – CERT Certification of Emission Limits (Page 2)

III. Maintain Records On Site to Demonstrate Continuing Compliance and Make the Records Available on Request The emission rates listed on the certification shall reflect the certified emissions for the stationary sources at the site. The records demonstrating compliance with this certification must comply with applicable rules and must be maintained at the site or, for sites that normally operate unattended, at an office within Texas having day-to-day operational control of the site. Records must be kept for at least five years and must be made available upon request. For more information regarding records for permits by rule, see 30 TAC § 106.8, Recordkeeping. IV. Purpose of this Certification (choose and complete all that are appropriate) This certification is intended to establish emission rates below state and federal rule thresholds and triggers X 30 TAC § 106.4 for Permits by Rule Permit by Rule Number: 155476 HRVOC Emissions Cap and Trade Program Emissions Banking and Trading Program (other than HRVOC) 30 TAC Chapter 115 for Volatile Organic Compounds 30 TAC Chapter 117 for Nitrogen Oxides Ⅺ 40 CFR Part 60, Subpart: NSPS 0000a 40 CFR Part 61, Subpart: X 40 CFR Part 63, Subpart: NESHAP ZZZZ Title V Permit Major Source Applicability

Other:

Texas Commission on Environmental Quality Form APD – CERT Certification of Emission Limits (Page 3)

V. Certification by Responsible Official

All representations in this certification of emissions are conditions upon which the stationary source shall operate. This certification reflects the maximum emission rates for the operation of this facility. The facility will operate in compliance with all regulations of the Texas Commission on Environmental Quality and with Federal U.S. Environmental Protection Agency regulations governing air pollution. It shall be unlawful for any person to vary from such representation unless the certification is first revised. The signature below indicates that, based on information and belief formed after reasonable inquiry, the statements, and information contained in the attached documents are true, accurate, and complete.

Name: Sean Craven

Title: Environmental Manager

Original Signature Required: Signed electronically in STEERS

Date:

Reminder: The original of this certification must be sent to the TCEQ through ePermits. A copy must also be maintained on site or, for sites that normally operate unattended, at an office within Texas having day-to-day operational control of the site.

Texas Commission on Environmental Quality Form APD - CERT Certification of Emission Limits

			EMISSION RATE DATA						
			DATE OF THE PARTY			Permit or			n Certified on Rates
FIN	Facility Name	EPN	Point Name	Authorization Type	Authorization Date	Registration Number (if applicable)	Air Contaminant Name	lb/hr	T/yr
ENG-1	Caterpillar G3306NA Compressor Engine (145 Hp)	ENG-1	Caterpillar G3306NA Compressor Engine (145 Hp)	PBR	1/11/2023	155476	NOx	7.69	33.70
				PBR	1/11/2023	155476	СО	0.45	1.96
				PBR	1/11/2023	155476	VOC	0.05	0.55
				PBR	1/11/2023	155476	SO2	<0.01	<0.01
				PBR	1/11/2023	155476	PM10	0.02	0.09
HT-1	Heater Treater (0.75 MMBtu/hr)	HT-1	Heater Treater (0.75 MMBtu/hr)	PBR	1/11/2023	155476	NOx	0.05	0.24
				PBR	1/11/2023	155476	СО	0.05	0.20
				PBR	1/11/2023	155476	VOC	<0.01	0.01
				PBR	1/11/2023	155476	SO2	<0.01	<0.01
				PBR	1/11/2023	155476	PM10	<0.01	0.02
T-1	Oil Storage Tank (300-bbl)	T-1	Oil Storage Tank (300-bbl)	PBR	1/11/2023	155476	voc	0.76	3.33
				PBR	1/11/2023	155476	H2S	<0.001	<0.001
T-2	Oil Storage Tank (300-bbl)	T-2	Oil Storage Tank (300-bbl)	PBR	1/11/2023	155476	VOC	0.76	3.33
				PBR	1/11/2023	155476	H2S	<0.001	<0.001
T-3	Produced Water Storage Tank (300-bbl)	T-3	Produced Water Storage Tank (300-bbl)	PBR	1/11/2023	155476	VOC	0.01	0.05
				PBR	1/11/2023	155476	H2S	<0.001	<0.001
T-4	Produced Water Storage Tank (300-bbl)	T-4	Produced Water Storage Tank (300-bbl)	PBR	1/11/2023	155476	voc	0.01	0.05
				PBR	1/11/2023	155476	H2S	<0.001	<0.001
LOAD	Loading Emissions	LOAD	Loading Emissions	PBR	1/11/2023	155476	VOC	36.82	0.65
				PBR	1/11/2023	155476	H2S	<0.01	<0.001
FUG	Site Fugitives	FUG	Site Fugitives	PBR	1/11/2023	155476	VOC	0.79	3.46
				PBR	1/11/2023	155476	H2S	<0.001	<0.001
MSS	Maintenance, Startup, Shutdown Emissions	MSS	Maintenance, Startup, Shutdown Emissions	PBR	1/11/2023	155476	VOC	41.68	0.37
						Emission Totals:	NOx	-	33.94
							со	-	2.16
							voc	-	11.82
							SO ₂	-	0.004
							PM ₁₀	-	0.11

SUMMARY TABLE

ESTIMATED EMISSIONS															
EPN/Emission Source	Specific VOC or	V	OC	N	O _x	C	О	PN	110	PM	1 2.5	Н	₂ S	S	O_2
	Other Pollutants	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy
ENG-1 / Caterpillar G3306NA Compressor Engine (145 Hp)		0.05	0.55	7.69	33.70	0.45	1.96	0.02	0.09	0.02	0.09			< 0.01	< 0.01
HT-1 / Heater Treater (0.75 MMBtu/hr)		< 0.01	0.01	0.05	0.24	0.05	0.20	< 0.01	0.02	< 0.01	0.02		-	< 0.01	< 0.01
T-1 / Oil Storage Tank (300-bbl)		0.76	3.33									< 0.001	< 0.001	-	
T-2 / Oil Storage Tank (300-bbl)		0.76	3.33	1	-							< 0.001	< 0.001	ı	
T-3 / Produced Water Storage Tank (300-bbl)		0.01	0.05	1	-							< 0.001	< 0.001	ı	
T-4 / Produced Water Storage Tank (300-bbl)		0.01	0.05	1	-							< 0.001	< 0.001	ı	
LOAD / Loading Emissions		36.82	0.65	1	-							< 0.01	< 0.001	ı	
FUG / Site Fugitives		0.79	3.46	1	-							< 0.001	< 0.001	ı	
MSS / Blowdown Emissions		33.49	0.10	1	-								ı	ı	
MSS / Tank Cleaning		8.13	0.02	1	-								ı	ı	
MSS / General MSS		0.06	0.25												
TOTAL	EMISSIONS (TPY):		11.82		33.94		2.16		0.11		0.11		< 0.001		0.004
MAXIMUM OPERA	TING SCHEDULE:		Hour	s/Day	24	Days/	Week	7	Week	s/Year	52			Hours	s/Year

POTENTIAL EMISSIONS SUMMARY MATHERS RANCH 159-148 22H MMGL TXPH, LLC HEMPHILL COUNTY, TEXAS

		N	NO _x		voc		0	PM ₁₀	PM _{2.5}	S	02	H₂S		TOTAL HAPs	
Emissions Source	EPN	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)
Caterpillar G3306NA Compressor Engine (145 Hp)	ENG-1	7.69	33.70	0.05	0.55	0.45	1.96	0.02	0.09	0.001	0.003			0.08	0.36
Heater Treater (0.75 MMBtu/hr)	HT-1	0.05	0.24	0.003	0.01	0.05	0.20	0.004	0.02	0.0003	0.001				
Oil Storage Tank (300-bbl)	T-1			0.76	3.33							<0.001	<0.001	0.03	0.12
Oil Storage Tank (300-bbl)	T-2			0.76	3.33							<0.001	<0.001	0.03	0.12
Produced Water Storage Tank (300-bbl)	T-3			0.01	0.05							<0.001	<0.001	0.0004	0.002
Produced Water Storage Tank (300-bbl)	T-4			0.01	0.05							<0.001	<0.001	0.0004	0.002
Loading Emissions	LOAD			36.82	0.65							0.003	<0.001	1.72	0.02
Site Fugitives	FUG			0.79	3.46							<0.001	<0.001	0.04	0.16
Blowdown Emissions	MSS			33.49	0.10									0.03	0.0001
Tank Cleaning	MSS			8.13	0.02										
General MSS	MSS			0.06	0.25										
	Facility Emissions lus Formaldehyde	7.75	33.94	80.88 0.07	11.82 0.32	0.49	2.16	0.03	0.11	0.001	0.004	0.003	<0.001	1.92	0.80
	Total			80.96	12.14										

Note: General MSS is based on default TCEQ MSS calculations.

TABLE 2

POTENTIAL EMISSIONS CATERPILLAR G3306NA COMPRESSOR ENGINE (ENG-1) MATHERS RANCH 159-148 22H MMGL TXPH, LLC HEMPHILL COUNTY, TEXAS

		Operating	Emission	n Factors	Potential Em	ission Rate ³
Pollutant	Horsepower	Hours	(grams/Hp-hr) ¹	(lb/MMBtu) ²	(lb/hr)	(T/yr)
NOx	145	8,760	24.09		7.69	33.70
VOC	145	8,760	0.16		0.05	0.22
СО	145	8,760	1.40		0.45	1.96
PM	145	8,760		0.019410	0.02	0.09
SO2	145	8,760		0.000588	0.001	0.003
Formaldehyde	145	8,760	0.23		0.07	0.32
Acetaldehyde	145	8,760		0.00279	0.003	0.01
Acrolein	145	8,760		0.00263	0.003	0.01
Benzene	145	8,760		0.00158	0.002	0.01
Toluene	145	8,760		0.000558	0.001	0.003
Ethylbenzene	145	8,760		0.0000248	0.00003	0.0001
Xylene	145	8,760		0.000195	0.0002	0.001

- 1. Emission factors for NOx, VOC, and CO are from manufacturer's data.
- 2. Emission factors for SO2, HAPs, and PM are based on AP-42, Table 3.2-3, 4-stroke rich-burn engines, 7/00. Formaldehyde based on manufacturer's data.
- 3. Potential emissions based on emission factors, maximum horsepower, max. fuel consumption rate, and 8,760 hours of operation per year. Engine only burns sweet gas as fuel.

POTENTIAL EMISSIONS HEATER TREATER (HT-1) MATHERS RANCH 159-148 22H MMGL TXPH, LLC HEMPHILL COUNTY, TEXAS

	Max Firing Rate	Gas Heating Value	Emission Factors	Potential Em	ission Rates ²
Pollutant	(MMBtu/hr)	(MMBtu/scf)	(lb/MMSCF) ¹	(lb/hr)	(T/yr)
NOx	0.75	1,381	100.00	0.05	0.24
VOC	0.75	1,381	5.50	0.003	0.01
CO	0.75	1,381	84.00	0.05	0.20
PM	0.75	1,381	7.60	0.004	0.02
SO2	0.75	1,381	0.60	0.0003	0.001

- 1. Emission factors obtained from AP-42 Table 1.4-1 through 1.4-3 for commercial boilers.
- 2. Potential emissions based on AP-42 emission factors, maximum firing rate, fuel heating value, and 8,760 hours per year of operation. Heater only burns sweet gas.

POTENTIAL EMISSIONS STORAGE TANKS MATHERS RANCH 159-148 22H MMGL TXPH, LLC HEMPHILL COUNTY, TEXAS

					Potential	VOC Emission	ns		Potent	tial H2S Emi	ssions	Potential HAP Emissions			
Source	EU-ID	Annual Throughput ¹	Tank Capacity	Annual Breathing Losses ²	Annual Working Losses ²	Annual Flash Losses ³	Total Emiss	VOC sions ⁴	H2S ⁵	H2S Emiss	Tank sions ⁶	HAP ⁵	HAP Emiss		
		(gallons/year)	(gallons)	(T/yr)	(T/yr)	(T/yr)	(lb/hr)	(T/yr)	(% of VOC)	(lb/hr)	(T/yr)	(% of VOC)	(lb/hr)	(T/yr)	
Oil Storage Tank (300-bbl)	T-1	191,625	12,600	0.98	0.66	1.69	0.76	3.33	0.01%	0.00005	0.0002	3.72%	0.03	0.12	
Oil Storage Tank (300-bbl)	T-2	191,625	12,600	0.98	0.66	1.69	0.76	3.33	0.01%	0.00005	0.0002	3.72%	0.03	0.12	
Produced Water Storage Tank (300-bbl)	T-3	383,250	12,600	0.01	0.01	0.03	0.01	0.05	0.04%	0.000004	0.00002	3.40%	0.0004	0.002	
Produced Water Storage Tank (300-bbl)	T-4	383,250	12,600	0.01	0.01	0.03	0.01	0.05	0.04%	0.000004	0.00002	3.40%	0.0004	0.002	

- 1. Based on maximum annual oil throughput value of 9,125-bbl/yr and maximum annual produced water throughput value of 18,250-bbl/yr.
- 2. Annual breathing and working losses were determined using ProMax simulation.
- 3. Annual flash emissions from the storage tanks were determined using ProMax simulation.
- 4. Total VOC Emissions = ((Breathing Losses (T/yr) + Working Losses (T/yr))) + Flash Emissions (T/yr)
- 5. HAP/H2S percent of VOC determined using ProMax simulation.
- 6. Total H2S or HAP Emissions = Total VOC Emissions x H2S or HAP (%).

POTENTIAL EMISSIONS TRUCK LOADING (LOAD) MATHERS RANCH 159-148 22H MMGL TXPH, LLC HEMPHILL COUNTY, TEXAS

Material Name	EU-ID	Saturation Factor ¹	True ' Pres: (F	sure ²	Molecular Weight of Vapors ² (M)	Loaded	Temp of Loaded Liquid ² Emission Factor ¹ (Ib VOC/10 ³ gal)		Annual Throughput ³	Estimated Hourly Throughput ³	Weight Percent of VOC in HC Vapors	Uncon	otal etrolled nissions		otal nissions	To HAP En	otal nissions	
		(S)	Max	Avg	(lb/lb-mole)	Max	Avg	Max	Avg	(gals)	(gal)	(%)	(lb/hr) 4	(T/yr) ⁵	(lb/hr) 4	(T/yr) ⁵	(lb/hr) 4	(T/yr) ⁵
Oil Produced Water	C LOAD PW LOAD	0.6 0.6	11.62 13.26	9.22 12.27	43 23	95 95	66.55 66.55	6.80 4.10	5.69 4.00	383,250 766,500	8,000 8,000	91.09% 100.00%	36.65 0.16	0.65 0.004	0.002 0.002	3.40E-05 0.00001	1.72 0.16	0.02 0.004
												Total	36.82	0.65	0.003	4.31E-05	1.89	0.03

Notes:

- 1. Per AP-42, 5th Edition (6/08), Section 5.2, Equation 1: Saturation Factor = 0.6 for submerged loading: dedicated normal service
- 2. True vapor pressure, weight of vapors and temp of loaded liquid obtained from Promax.
- 3. Throughput is the amount of oil/water loaded out from the storage tanks. It is estimated that one truck can load 8,000 gallons in one hour.
- 4. Uncontrolled Hourly VOC/HAP Emissions calculated from Promax.
- 5. Uncontrolled Annual VOC/HAP Emissions calculated using Promax.

MathersRanch159-148_22H_Calcs_012025.xlsx

POTENTIAL EMISSIONS SITEWIDE FUGITIVES (FUG) MATHERS RANCH 159-148 22H MMGL TXPH, LLC HEMPHILL COUNTY, TEXAS

Component	Type of	Estimated Equipment	Emission Factor	% VOC ³	% H2S	% HAP ³		OC sions	H2S Emissions		HAP Emissions	
Туре	Service	At Site 1	lb/hr/component ²				(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)
Flanges	Light Oil	44	0.000243	99.96%		8.11%	0.01	0.05			0.001	0.004
	Water/Oil	44	0.000006	99.96%		8.11%	0.0003	0.001			0.00002	0.0001
Valves	Gas	139	0.009920	35.72%	0.003%	1.20%	0.49	2.16	0.00005	0.0002	0.02	0.07
	Light Oil	24	0.005500	99.96%		8.11%	0.13	0.58			0.01	0.05
	Water/Oil	24	0.000216	99.96%		8.11%	0.01	0.02			0.0004	0.002
Connectors	Gas	372	0.000440	35.72%	0.003%	1.20%	0.06	0.26	0.000005	0.00002	0.002	0.01
	Light Oil	38	0.000463	99.96%		8.11%	0.02	0.08			0.001	0.01
	Water/Oil	38	0.000243	99.96%		8.11%	0.01	0.04			0.001	0.003
Open-Ended Lines	Gas	11	0.004410	35.72%	0.003%	1.20%	0.02	0.08	0.000002	0.00001	0.001	0.003
Other	Light Oil	1	0.016500	99.96%		8.11%	0.02	0.07			0.001	0.01
	Water/Oil	1	0.030900	99.96%		8.11%	0.03	0.14	-	-	0.003	0.01
Tota	I Component Count	736				Total	0.79	3.46	5.23E-05	2.29E-04	0.04	0.16

- 1. Number of each component and type of service estimated based on a similar site.
- 2. Emission factors based on EPA's oil and gas production operations factors for process piping fugitive emissions.
- 3. Percent VOC, H2S, and HAP based on a representative sample and ProMax (refer to Tables 9 & 10).

POTENTIAL EMISSIONS FROM BLOWDOWNS (MSS-BD) MATHERS RANCH 159-148 22H MMGL TXPH, LLC HEMPHILL COUNTY, TEXAS

(6 events per engine)

Input Parameters

Number of Blowdowns per Year

	•	(5 5 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 1 5 1
Number of Blowdowns per Hour	1	
Blowdown Volume per Event (scf/event)	1500	
Gas Stream Properties		
Gas Stream Temperature (°F)	60	
Gas Stream Pressure (psia)	14.7	
Gas Stream Molecular Weight (lb/lb-mol)	23.708	(from Gas Analysis)
Gas Vented Per Event (lb/event) 1	93.75	
Max VOC Percentage in Gas Stream (wt%)	35.72%	(from Gas Analysis)
Max Benzene Percentage in Gas Stream (wt%)	0.03%	(from Gas Analysis)

Pollutant	lb/hr ²	T/yr ³
Total VOC	33.49	0.10
Total Benzene	0.03	0.0001

- 1. Calculation for Gas Vented Per Event (lb/event):
 - Gas Vented Per Event (lb/event) = (Volume Vented, scf/event) * (Gas Stream Pressure, psia) * (Gas Stream Molecular Weight, lb/lb-mol) / (R, scf-psia/R-lbmol) / (Gas Stream Temperature, R)
- 2. Calculation for hourly emissions:
 - VOC (lb/hr) = (Gas Vented Per Event, lb/event) * (% VOC) * (Events per hour)
- 3. Calculation for annual emissions:
 - VOC (T/yr) = (Gas Vented Per Event, lb/event) * (% VOC) * (Events per year) / (2,000 lb/T)

POTENTIAL EMISSIONS FROM MSS ACTIVITIES (MSS) MATHERS RANCH 159-148 22H MMGL TXPH, LLC HEMPHILL COUNTY, TEXAS

Summary of MSS Activities											
Activity	V	DC ¹	Р	M	Other	HAPs					
Activity	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)					
Engine, compressor, turbine and other combustion facilities maintenance			-	-	-	-					
Repair, adjustment, calibration, lubrication and cleaning of site process equipment			-	-	-	-					
Replacement of piping components, pneumatic controllers, boiler refractories, wet and dry seals, meters, instruments, analyzers, screens and filters	0.06	0.25	-	-	-	-					
Turbine or engine component swaps			-	-	-	-					
Piping used to bypass a facility during maintenance			-	-	-	-					
Pigging and purging of piping	112.47	0.56	-	-	-	-					
Abrasive blasting, surface preparation and surface coating of facilities and structures used at the site	8.13	0.02	0.68	0.001	0.08	0.0002					
Total =	120.65	0.83	0.68	0.001	0.08	0.0002					

MSS - Pigging Operations

Description	Pigging
Number of Events per Year	10
Number of Events per hour	1
Volume per Event, scf	5000
Stream Specific Gravity	0.8241
Air MW, lb/mole	28.96
Fuel Stream Density, lb/scf	0.063
VOC Percentage in Gas Stream, wt%	35.72%
VOC Hourly Emission Rate (lb/hr):	112.47
VOC Annual Emission Rate (T/yr):	0.56

MSS - Sandblasting

Description	San	dblasting
Application Rate ¹	2,000	lb/hr
Operating Hours	4	hr/yr
PM10 Emission Factor ¹	0.00034	lb/lb usage
PM2.5 Emission Factor ¹	0.00005	lb/lb usage
PM10 Emissions	0.68	lb/hr
PM10 Emissions	0.001	T/yr
PM2.5 Emissions	0.10	lb/hr
PM2.5 Emissions	<0.01	T/yr

MSS - Solvent Cleaning

Description	Solvent	Cleaning
Annual Usage	5	gal/yr
Maximum Hourly Usage	1	gal/hr
Density	6.5	lb/gal
VOC Wt%	100%	-
Dipropylene Glycol Methyl Ether Wt%	1%	-
HAP Emissions	0.08	lb/hr
HAP Emissions	0.0002	T/yr
VOC Emissions	8.13	lb/hr
VOC Emissions	0.02	T/yr
N	•	

Notes:

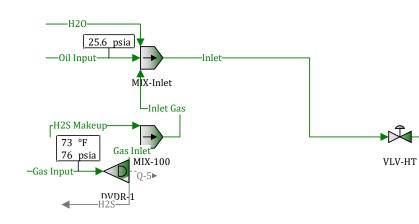
1. Defaults from TCEQ emissions spreadsheet.

TABLE 9

GAS ANALYSIS MATHERS RANCH 159-148 22H MMGL TXPH, LLC HEMPHILL COUNTY, TEXAS

Component	Molecular Weight	Mole % ¹	lb/100 mole	Wt % Total	Wt % Hydrocarbon	Wt % VOC ²
Hydrogen Sulfide	34.08	0.0023%	0.001	0.003%		
Water	18.01	1.10%	0.20	0.83%		
Nitrogen	28.01	1.05%	0.29	1.23%		
Carbon Dioxide	44.01	0.77%	0.34	1.42%		
Methane	16.04	70.52%	11.31	47.40%	47.40%	
Ethane	30.07	11.62%	3.49	14.64%	14.64%	
Propane	44.10	8.09%	3.57	14.96%	14.96%	15.50%
i-Butane	58.12	1.19%	0.69	2.90%	2.90%	3.00%
n-Butane	58.12	2.74%	1.59	6.67%	6.67%	6.91%
i-Pentane	72.15	0.85%	0.61	2.56%	2.56%	2.65%
n-Pentane	72.15	0.81%	0.58	2.44%	2.44%	2.53%
Other Hexanes	86.17	0.52%	0.45	1.88%	1.88%	1.95%
Heptanes	100.20	0.28%	0.28	1.18%	1.18%	1.23%
Octanes+	114.23	0.15%	0.18	0.74%	0.74%	0.76%
Benzene	78.11	0.01%	0.01	0.03%	0.03%	0.03%
Toluene	92.14	0.04%	0.03	0.14%	0.14%	0.14%
Ethylbenzene	106.17	0.002%	0.002	0.01%	0.009%	0.009%
Xylenes	106.17	0.02%	0.02	0.07%	0.07%	0.07%
n-Hexane	86.17	0.25%	0.22	0.91%	0.91%	0.94%
Total		100.00%	23.86	100.00%	96.52%	35.72%

- 1. Representative gas analysis and extended HAPs based on a sample taken 08/15/2024. H2S is represented as 23 ppm to allow for changes in gas quality.
- 2. Wt % VOC is the VOC % in the hydrocarbon portion of the gas.


TABLE 10

LIQUID ANALYSIS MATHERS RANCH 159-148 22H MMGL TXPH, LLC HEMPHILL COUNTY, TEXAS

Component	Molecular Weight	Mole % ¹	lb/100 mole	Wt % Total	Wt % Hydrocarbon	Wt % VOC ²
Water	18.01	0.07%	0.01	0.01%		
Nitrogen	28.01	0.00005%	0.00001	0.00001%		
Methane	16.04	0.01%	0.00	0.001%	0.001%	
Ethane	30.07	0.15%	0.04	0.04%	0.04%	
Propane	44.10	1.67%	0.74	0.72%	0.72%	0.72%
i-Butane	58.12	1.00%	0.58	0.57%	0.57%	0.57%
n-Butane	58.12	3.54%	2.05	2.00%	2.00%	2.00%
i-Pentane	72.15	3.03%	2.19	2.13%	2.13%	2.13%
n-Pentane	72.15	3.94%	2.84	2.77%	2.77%	2.77%
Other Hexanes	86.17	4.22%	3.64	3.54%	3.54%	3.54%
Heptanes	100.20	11.64%	11.67	11.36%	11.36%	11.36%
Octanes+	114.23	61.81%	70.60	68.75%	68.75%	68.75%
Benzene	78.11	0.11%	0.09	0.08%	0.08%	0.08%
Toluene	92.14	1.56%	1.44	1.40%	1.40%	1.40%
Ethylbenzene	106.17	0.29%	0.31	0.30%	0.30%	0.30%
Xylenes	106.17	2.48%	2.63	2.56%	2.56%	2.56%
n-Hexane	86.17	4.49%	3.87	3.77%	3.77%	3.77%
Total		100.00%	102.70	100.00%	99.99%	99.96%

- 1. Liquid analysis based on ProMax.
- 2. Wt % VOC is the VOC % in the hydrocarbon portion of the gas.

MMGL TXPH, LLC

EMISSION FACTORS

Oil Tank VOC Flash Factor** = 0.74 lb/bbl oil
Water Tank Flash Factor** = 0.00562 lb/bbl water

Heater Treater Flash Factor** = 86.7 lb/bbl oil

Oil Tank Total Volume Factor*** = 12.42 SCF/bbl oil Water Tank Volume Factor*** = 0.3324 SCF/bbl water

Heater Treater Volume Factor*** = 4,000 SCF/bbl oil

API Gravity Molecular Weight Reid Vapor Press	·	50 bbl/d
HC FLASH HAPS	LOADING HAPS	LOADING PARAMETERS
Benzene = 0.094 wt% of VOC Toluene = 0.441 wt% of VOC Ethylbenzene = 0.03 wt% of VOC Xylenes = 0.23 wt% of VOC n-Hexane = 2.91 wt% of VOC	Benzene = 0.1 wt% of VOC Toluene = 0.43 wt% of VOC Ethylbenzene = 0.03 wt% of VOC Xylenes = 0.21 wt% of VOC n-Hexane = 2.9 wt% of VOC	Bulk Liquid Temp = 66.5 °F True Vapor Pressure = 9.22 psia Vapor Molecular Weight (Oil) = 43.4 lb/lbmol Vapor Molecular Weight (Water) = 22.946 lb/lbmol Liquid Density = 6.57 lb/gal

22.997 ppm

0.1 MMSCFD

VLVE-104

Water Tank Flash

Water Tank Working

Water Tank Breathing

Gas Mix—Produced Gas

74.1 °F

25.6 psig

1256.2 Btu/ft^3

MIX-Oil

MIX-Gas

НТ

HT Oil-

HT Flash

HT Water

MIX-Water

FACILITY: Mathers Ranch 159-148 22H

77.415 °F

-Oil Tank Flash-

w .

AP-42

API Gravity

Molecular Weight

Reid Vapor Pressure

Coil Tank Working-

Oil Tank Breathing-

Qil Loading—

25 bbl/d

77.415 °F

0.529 psig

1173.5 Btu/ft^3

46

164.25 lb/lbmol

6.2 psi

0.529 psig

1835.3 Btu/ft^3 35.413 lb/lbmol

SAMPLE: MATHERS RANCH 18H

^{*}GOR is the total flash volume from all vessels per barrel of stock tank oil.

^{**}Flash Factors are the pounds of VOC emissions per barrel of stock tank oil/stock tank water.

^{***}Volume Factors are the total flash volume per barrel of stock tank oil/stock tank water.

Number: 1030-24080790-001A

Houston Laboratories 8820 Interchange Drive Houston, TX 77054 Phone 713-660-0901

Liz Morgan Merit Energy Company 13727 Noel Road, Suite 1200 Dallas, TX 75240

Station Name: Mathers Ranch 18H

Cylinder No: 1111-000345

Instrument 1: HGC 19A + 19B, Front TCD #19A Instrument 2: HGC 7A, HP6890 Signal 1

Instrument 3: 1030_GC32, 850 MIB_1 - Front TCD

Instrument 4: High Temp, HTSD

Analyzed: 09/04/2024 19:05:55 by WIM

Report Date: 09/10/2024

Sampled By:

Sample Of: Liquid Spot

Sample Date: 08/15/2024

Sample Conditions: 25.6 psig, @ 74.1 °F

Received Date: 08/23/2024 Login Date: 08/26/2024 Method: GPA 2103M

Analytical Data

Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %	
Nitrogen	0.016	28.013	0.003	0.8069	0.003	
Methane	0.567	16.043	0.062	0.3000	0.003	
Carbon Dioxide	0.030	44.010	0.002	0.8172	0.009	
Ethane	1.958	30.069	0.401	0.3563	0.870	
Propane	5.670	44.096	1.703	0.5072	2.597	
Iso-Butane	1.781	58.122	0.705	0.5628	0.969	
n-Butane	5.671	58.122	2.245	0.5842	2.972	
Iso-Pentane	3.824	72.149	1.879	0.6251	2.325	
n-Pentane	4.617	72.149	2.269	0.6307	2.782	
i-Hexanes	5.144	86.175	3.019	0.6641	3.516	
n-Hexane	4.408	86.175	2.587	0.6641	3.013	
2,2,4-Trimethylpentane	0.046	114.229	0.036	0.6964	0.040	
Benzene	0.122	78.112	0.065	0.8844	0.057	
Heptanes	10.324	100.202	7.046	0.6882	7.918	
Toluene	1.468	92.138	0.921	0.8719	0.817	
Octanes	15.818	114.229	12.306	0.7066	13.470	
Ethylbenzene	0.246	106.165	0.178	0.8716	0.158	
Xylenes	2.128	106.165	1.539	0.8732	1.363	
Nonanes	5.972	128.255	5.217	0.7222	5.587	
Decanes Plus	30.190	281.166	57.810	0.8703	51.374	
	100.000		100.000		100.000	
Calculated Physical Prope	erties		Γotal	C10+		
Specific Gravity at 60°F		0.	7734	0.8703		
API Gravity at 60°F		51	.459	31.093		
Molecular Weight		146	6.825	281.166		
Pounds per Gallon (in Vacu	um)		6.448	7.256		
Pounds per Gallon (in Air)			6.441	7.248		
Cu. Ft. Vapor per Gallon @	14.696 psia	16	6.666	9.793		

Andy Hartman, Laboratory Director

Quality Assurance: The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated. The test results apply to the sample as received.

Number: 1030-24080790-001A

Houston Laboratories 8820 Interchange Drive Houston, TX 77054 Phone 713-660-0901

Liz Morgan Merit Energy Company 13727 Noel Road, Suite 1200 Dallas, TX 75240

Station Name: Mathers Ranch 18H Method: GPA 2103M

Cylinder No: 1111-000345

Instrument 1: HGC 19A + 19B, Front TCD #19A

Instrument 2: High Temp, HTSD

Analyzed: 09/03/2024 09:06:23 by SMS

Report Date: 09/10/2024

Sampled By:

Sample Of: Liquid Spot

Sample Date: 08/15/2024

Sample Conditions: 25.6 psig, @ 74.1 °F

Received Date: 08/23/2024 Login Date: 08/26/2024

Analytical Data

			triary troc
Components	Mol. %	Wt. %	L.V. %
•			
Nitrogen	0.016	0.003	0.003
Methane	0.567	0.062	0.160
	0.030	0.002	
Carbon Dioxide Ethane	1.958	0.009	0.009 0.870
Propane	5.670	1.703	2.597
Iso-Butane	1.781	0.705	0.969
n-Butane	5.671	2.245	2.972
Iso-Pentane	3.824	1.879	2.325
n-Pentane	4.617	2.269	2.782
i-Hexanes	5.144	3.019	3.516
n-Hexane	4.408	2.587	3.013
2,2,4-Trimethylpentane	0.046	0.036	0.040
Benzene	0.122	0.065	0.057
Heptanes	10.324	7.046	7.918
Toluene	1.468	0.921	0.817
Octanes	15.818	12.306	13.470
Ethylbenzene	0.246	0.178	0.158
Xylenes	2.128	1.539	1.363
Nonanes	5.972	5.217	5.587
C10	4.713	5.200	5.031
C11	3.579	4.360	4.153
C12	2.691	3.593	3.377
C13 C14	2.426	3.525	3.275
	2.240	3.519	3.236
C15	1.781	3.008	2.741
C16	1.371	2.500	2.256
C17	1.232	2.397	2.143
C18	1.116	2.300	2.044
C19	0.949	2.050	1.811
C20	0.770	1.738	1.527
C21	0.753	1.800	1.572
C22	0.600	1.477	1.283
C23	0.602	1.541	1.331
C24	0.507	1.348	1.159
C25	0.456	1.263	1.082
C26	0.407	1.165	0.994
C27	0.382	1.130	0.959
C28	0.328	1.003	0.849
C29	0.299	0.939	0.792
C30 Plus	2.988	11.954	9.759
0001100			
	100.000	100.000	100.000

Number: 1030-24080790-001A

Houston Laboratories 8820 Interchange Drive Houston, TX 77054 Phone 713-660-0901

Liz Morgan Merit Energy Company 13727 Noel Road, Suite 1200 Dallas, TX 75240

Station Name: Mathers Ranch 18H

Method: GPA 2103M Cylinder No: 1111-000345

Instrument 1: HGC 19A + 19B, Front TCD #19A

Instrument 2: High Temp, HTSD

Analyzed: 09/03/2024 09:06:23 by SMS

Report Date: 09/10/2024

Sampled By:

Sample Of: Liquid Spot

Sample Date: 08/15/2024

Sample Conditions: 25.6 psig, @ 74.1 °F

Received Date: 08/23/2024 Login Date: 08/26/2024

Calculated Physical Properties	Total	C30+	
Specific Gravity at 60°F	0.7734	0.9318	
API Gravity at 60°F	51.459	20.364	
Molecular Weight	146.825	487.186	
Pounds per Gallon (in Vacuum)	6.448	7.768	
Pounds per Gallon (in Air)	6.441	7.760	
Cu. Ft. Vapor per Gallon @ 14.696 psia	16.666	6.051	

Endy Hartman

Andy Hartman, Laboratory Director

Number: 9050-24080051-001A

Meno Laboratory 104 East US Highway 60 Meno, OK 73760

Sean Craven Merit Energy 1510 East Thomas Rd Kalkaska, MI 49646

Aug. 21, 2024

Spot

Station Name: MATHERS RANCH 1515-157 CL WX 18H

Method: GPA 2286 Cylinder No: 2500-00139

08/20/2024 12:26:35 by DL Analyzed:

Sampled By: Tim Lebsack

Sample Of: **Natural Gas** Sample Date: 08/15/2024

Sample Conditions: 76.0 psia, @ 73.0 °F

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.696 psia			
Nitrogen	1.084	1.332		GPM TOTAL C2+	7.085	
Carbon Dioxide	0.803	1.550				
Methane	73.312	51.584				
Ethane	11.848	15.626	3.174			
Propane	7.683	14.860	2.120			
Iso-Butane	1.071	2.730	0.351			
n-Butane	2.353	5.999	0.743			
Iso-Pentane	0.637	2.016	0.233			
n-Pentane	0.589	1.864	0.214			
i-Hexanes	0.227	0.851	0.092			
n-Hexane	0.135	0.525	0.057			
Benzene	0.004	0.015	0.001			
Cyclohexane	0.053	0.200	0.018			
i-Ĥeptanes	0.101	0.395	0.040			
n-Heptane	0.012	0.053	0.006			
Toluene	0.005	0.021	0.002			
i-Octanes	0.047	0.193	0.019			
n-Octane	0.006	0.030	0.003			
Ethylbenzene	0.001	0.004	0.000			
Xylenes	0.005	0.024	0.002			
i-Nonanes	0.012	0.057	0.004			
n-Nonane	0.002	0.013	0.001			
Decane Plus	0.010	0.058	0.005			
	100.000	100.000	7.085			

Calculated Physical Properties	Total	C10+
Calculated Molecular Weight	22.80	144.65
GPA 2172 Calculation:		
Calculated Gross BTU per ft ³ @ 14.6	96 psia & 60°F	
Real Gas Dry BTU	1340.0	7800.9
Water Sat. Gas Base BTU	1316.6	7632.4
Relative Density Real Gas	0.7903	4.9945
Compressibility Factor	0.9958	

Comments: H2S Field Content 0.0003 %

Hydrocarbon Laboratory Manager

Quality Assurance: The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality

assurance, unless otherwise stated.

Number: 9050-24080051-001A

Meno Laboratory 104 East US Highway 60 Meno, OK 73760

Sean Craven Aug. 21, 2024

Merit Energy 1510 East Thomas Rd Kalkaska, MI 49646

Station Name: MATHERS RANCH 1515-157 CL WX 18H

Method: **GPA 2286** Cylinder No: 2500-00139

Analyzed: 08/20/2024 12:26:35 by DL Sampled By: Tim Lebsack

Sample Of: Natural Gas Spot

Sample Date: 08/15/2024 Sample Conditions: 76.0 psia, @ 73.0 °F

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.696 psia			
Nitrogen	1.084	1.332		GPM TOTAL C2+	7.085	
Carbon Dioxide	0.803	1.550		GPM TOTAL C3+	3.911	
Methane	73.312	51.584		GPM TOTAL iC5+	0.697	
Ethane	11.848	15.626	3.174			
Propane	7.683	14.860	2.120			
Iso-Butane	1.071	2.730	0.351			
n-Butane	2.353	5.999	0.743			
Iso-Pentane	0.637	2.016	0.233			
n-Pentane	0.589	1.864	0.214			
Hexanes	0.362	1.376	0.149			
Heptanes Plus	0.258	1.063	0.101			
	100.000	100.000	7.085			

Calculated Physical Properties Total Relative Density Real Gas 0.7903 Calculated Molecular Weight 22.80 Compressibility Factor 0.9958

GPA 2172 Calculation:

Calculated Gross BTU per ft3 @ 14.696 psia & 60°F Real Gas Dry BTU 1340 Water Sat. Gas Base BTU 1317

Comments: H2S Field Content 0.0003 %

Hydrocarbon Laboratory Manager

Quality Assurance: The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality

assurance, unless otherwise stated.

Number: 9050-24080051-001A

Meno Laboratory 104 East US Highway 60 Meno, OK 73760

Aug. 21, 2024

Sean Craven Merit Energy 1510 East Thomas Rd Kalkaska, MI 49646

Station Name: MATHERS RANCH 1515-157 CL WX 18H

Method: GPA 2286 Cylinder No: 2500-00139

Analyzed: 08/20/2024 12:26:35 by DL

Sampled By: Tim Lebsack

Sample Of: Natural Gas Spot

Sample Date: 08/15/2024

Sample Conditions: 76.0 psia, @ 73.0 °F

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.696 psia			
Nitrogen	1.084	1.332		GPM TOTAL C2+	7.085	
Carbon Dioxide	0.803	1.550		GPM TOTAL C3+	3.911	
Methane	73.312	51.584		GPM TOTAL iC5+	0.697	
Ethane 11.848		15.626	3.174			
Propane	7.683	14.860	2.120			
Iso-butane	1.071	2.730	0.351			
n-Butane	2.353	5.999	0.743			
Iso-pentane	0.637	2.016	0.233			
n-Pentane	0.589	1.864	0.214			
Hexanes Plus	0.620	2.439	0.250			
	100.000	100.000	7.085			
Calculated Physica	al Properties		Total	C6+		
Relative Density Rea			0.7903	3.0980		
Calculated Molecula	ır Weight		22.80	89.73		
Compressibility Fact	tor		0.9958			
GPA 2172 Calculat	ion:					
Calculated Gross E	BTU per ft ³ @	14.696 ps	ia & 60°F			
Real Gas Dry BTU	•	-	1340.00	4872.23		
Water Sat. Gas Bas	e BTU		1316.60	4787.23		
Comments: H2S F	ield Content	0.0003 %				

Clio Salvy

Hydrocarbon Laboratory Manager

Quality Assurance: The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

GAS ENGINE TECHNICAL DATA

ENGINE SPEED (rpm): COMPRESSION RATIO: JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: IGNITION SYSTEM:

210 NA JW+OC MAG WC

1800

10.5:1

FUEL: FUEL SYSTEM: FUEL PRESSURE RANGE(psig): FUEL METHANE NUMBER: FUEL LHV (Btu/scf):

ALTITUDE CAPABILITY AT 77°F INLET AIR TEMP. (ft):

LPG IMPCO 1.5-5.0 Gas Compression

Nat Gas

80

905

500

EXHAUST MANIFOLD: COMBUSTION: EXHAUST OXYGEN (% O2):

Standard Setting

RATING	NOTES	LOAD	100%	75%	50%
ENGINE POWER (WITHO	OUT FAN) (1)	bhp	145	109	73
ENGINE EFFICIENCY (ISC	O 3046/1) (2)	%	33.7	31.5	27.9
ENGINE EFFICIENCY (N	IOMINAL) (2)	%	33.7	31.5	27.9

APPLICATION:

ENGINE DATA						
FUEL CONSUMPTION	(ISO 3046/1)	(3)	Btu/bhp-hr	7547	8069	9136
FUEL CONSUMPTION	(NOMINAL)	(3)	Btu/bhp-hr	7547	8069	9136
AIR FLOW (77°F, 14.7 psia)	(WET)	(4) (5)	scfm	224	181	138
AIR FLOW	(WET)	(4) (5)	lb/hr	995	804	610
INLET MAN. PRESSURE		(6)	in Hg(abs)	26.4	22.3	17.8
INLET MAN. TEMPERATURE	(MEASURED IN PLENUM)	(7)	°F	88	88	88
TIMING		(8)	°BTDC	30	30	30
EXHAUST TEMPERATURE - ENGINE OUTLET		(9)	°F	1040	993	943
EXHAUST GAS FLOW (@engine outlet temp, 14.5 psia)	(WET)	(10) (5)	ft3/min	696	544	399
EXHAUST GAS MASS FLOW	(WET)	(10) (5)	lb/hr	1050	848	644

EMISSIONS DATA - ENGINE OUT					
NOx (as NO2)	(11)(12)	g/bhp-hr	24.09	21.09	22.10
CO	(11)(13)	g/bhp-hr	1.40	1.50	1.50
THC (mol. wt. of 15.84)	(11)(13)	g/bhp-hr	1.60	1.46	1.91
NMHC (mol. wt. of 15.84)	(11)(13)	g/bhp-hr	0.24	0.22	0.29
NMNEHC (VOCs) (mol. wt. of 15.84)	(11)(13)(14)	g/bhp-hr	0.16	0.15	0.19
HCHO (Formaldehyde)	(11)(13)	g/bhp-hr	0.23	0.24	0.28
CO2	(11)(13)	g/bhp-hr	492	526	596
EXHAUST OXYGEN	(11)(15)	% DRY	2.0	2.4	2.6
LAMBDA	(11)(15)		1.13	1.14	1.14

ENERGY BALANCE DATA					
LHV INPUT	(16)	Btu/min	18217	14608	11039
HEAT REJECTION TO JACKET WATER (JW)	(17)(21)	Btu/min	5652	4965	4215
HEAT REJECTION TO ATMOSPHERE	(18)	Btu/min	729	584	442
HEAT REJECTION TO LUBE OIL (OC)	(19)(21)	Btu/min	925	812	689
HEAT REJECTION TO EXHAUST (LHV TO 77°F)	(20)	Btu/min	4769	3640	2619
HEAT REJECTION TO EXHAUST (LHV TO 350°F)	(20)	Btu/min	3361	2522	1759

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1. (Standard reference conditions of 77°F, 29.60 in Hg barometric pressure, 500 ft. altitude.) No overload permitted at rating shown. Consult the altitude deration factor chart for applications that exceed the rated altitude or temperature.

Emission levels are at engine exhaust flange prior to any after treatment. Values are based on engine operating at steady state conditions. Tolerances specified are dependent upon fuel quality. Fuel methane number cannot vary more than ± 3. Part load data may require engine adjustment.

For notes information consult page three.

FUEL USAGE GUIDE													
CAT METHANE NUMBER	25	30	35	40	45	50	55	60	65	70	75	80	100
SET POINT TIMING	-	14	16	17	19	20	22	24	25	27	28	30	30
DERATION FACTOR	0	1	1	1	1	1	1	1	1	1	1	1	1

	130	0.93	0.89	0.86	0.83	0.80	0.77	0.74	0.71	0.68	0.65	0.63	0.60	0.58
	120	0.94	0.91	0.88	0.84	0.81	0.78	0.75	0.72	0.69	0.66	0.64	0.61	0.59
INLET	110	0.96	0.92	0.89	0.86	0.82	0.79	0.76	0.73	0.70	0.68	0.65	0.62	0.60
AIR TEMP	100	0.98	0.94	0.91	0.87	0.84	0.81	0.78	0.75	0.72	0.69	0.66	0.63	0.61
°F	90	0.99	0.96	0.92	0.89	0.85	0.82	0.79	0.76	0.73	0.70	0.67	0.65	0.62
-	80	1	0.98	0.94	0.90	0.87	0.84	0.80	0.77	0.74	0.71	0.69	0.66	0.63
	70	1	0.99	0.96	0.92	0.89	0.85	0.82	0.79	0.76	0.73	0.70	0.67	0.64
	60	1	1	0.98	0.94	0.90	0.87	0.84	0.80	0.77	0.74	0.71	0.68	0.66
	50	1	1	0.99	0.96	0.92	0.89	0.85	0.82	0.79	0.76	0.73	0.70	0.67
		0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000
ļ														

MININ	MUM SF	PEED CAI	PABILITY	AT THE R (RPM)	ATED SP	EED'S SIT	E TORQI	JE						
	130	1000	1010	1050	1090	1140	1180	1230	1280	1330	1380	1440	1500	1560
	120	1000	1000	1030	1070	1120	1160	1210	1250	1310	1360	1420	1470	1540
INLET	110	1000	1000	1020	1060	1100	1140	1180	1230	1280	1330	1390	1450	1510
AIR TEMP	100	1000	1000	1000	1040	1080	1120	1160	1210	1260	1310	1370	1420	1480
°F	90	1000	1000	1000	1020	1060	1100	1140	1190	1240	1290	1340	1400	1460
'	80	1000	1000	1000	1000	1040	1080	1120	1170	1220	1270	1320	1370	1430
	70	1000	1000	1000	1000	1020	1060	1100	1150	1190	1240	1290	1350	1400
	60	1000	1000	1000	1000	1000	1040	1080	1130	1170	1220	1270	1320	1380
	50	1000	1000	1000	1000	1000	1020	1060	1100	1150	1200	1240	1300	1350
		0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000
	ALTITUDE (FEET ABOVE SEA LEVEL)													

GAS ENGINE TECHNICAL DATA

FUEL USAGE GUIDE:

This table shows the derate factor required for a given fuel. Note that deration occurs as the methane number decreases. Methane number is a scale to measure detonation characteristics of various fuels. The methane number of a fuel is determined by using the Caterpillar Methane Number Calculation program.

ALTITUDE DERATION FACTORS:

This table shows the deration required for various air inlet temperatures and altitudes. Use this information along with the fuel usage guide chart to help determine actual engine power for

ACTUAL ENGINE RATING:

To determine the actual rating of the engine at site conditions, one must consider separately, limitations due to fuel characteristics and air system limitations. The Fuel Usage Guide deration establishes fuel limitations. The Altitude/Temperature deration factor and RPC (reference the Caterpillar Methane Program) are added together to establish air system limitations. To determine the actual power available, take the lowest rating between 1) and 2).

- 1) Fuel Usage Guide Deration
- 2) 1-((1-Altitude/Temperature Deration) + (1-RPC))

MINIMUM SPEED CAPABILITY AT THE RATED SPEED'S SITE TORQUE (RPM):

This table shows the minimum allowable engine turndown speed where the engine will maintain the Rated Speed's Torque for the given ambient conditions.

- 1. Engine rating is with one engine driven jacket water pump. Tolerance is ± 3% of full load.
- 2. ISO 3046/1 engine efficiency tolerance is (+)0, (-)5% of full load % efficiency value. Nominal engine efficiency tolerance is ± 5.0% of full load % efficiency value.
- 3. ISO 3046/1 fuel consumption tolerance is (+)5, (-)0% of full load data. Nominal fuel consumption tolerance is ± 5.0% of full load data.
- Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of \pm 5 %.
- 5. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 6. Inlet manifold pressure is a nominal value with a tolerance of ± 5 %.
- 7. Inlet manifold temperature is a nominal value with a tolerance of ± 9°F.
- 8. Timing indicated is for use with the minimum fuel methane number specified. Consult the appropriate fuel usage guide for timing at other methane numbers.
- 9. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 10. Exhaust flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 6 %.
- 11. Emissions data is at engine exhaust flange prior to any after treatment.
- 12. NOx values are "Not to Exceed"
- 13. CO, CO2, THC, NMHC, MMEHC, and HCHO values are "Not to Exceed" levels. THC, NMHC, and NMNEHC do not include aldehydes.

 14. VOCs Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ
- 15. Exhaust Oxygen tolerance is ± 0.5.
- 16. LHV rate tolerance is ± 5.0%.
- 17. Heat rejection to jacket water value displayed includes heat to jacket water alone. Value is based on treated water. Tolerance is ± 10% of full load data.
- 18. Heat rejection to atmosphere based on treated water. Tolerance is ± 50% of full load data.

 19. Lube oil heat rate based on treated water. Tolerance is ± 20% of full load data.

 20. Exhaust heat rate based on treated water. Tolerance is ± 10% of full load data.

- 21. Total Jacket Water Circuit heat rejection is calculated as: (JW x 1.1) + (OC x 1.2). Heat exchanger sizing criterion is maximum circuit heat rejection at site conditions, with applied tolerances. A cooling system safety factor may be multiplied by the total circuit heat rejection to provide additional margin.

G3306

GAS ENGINE TECHNICAL DATA

ENGINE POWER (bhp): 145 COOLING SYSTEM: JW+OC ENGINE SPEED (rpm): 1800

EXHAUST MANIFOLD: WC JACKET WATER OUTLET (°F): 210

Free Field Mechanical and Exhaust Noise

	SOUND PRESSU										
			Octave Ba	ency (OB	CF)						
100% Load Data dB(A) 63 Hz 125						250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz
Mechanical	Distance from	3.3	91.7	72.4	82.4	83.4	84.9	86.9	86.4	81.9	77.9
Sound	the Engine (ft)	23.0	81.7	65.6	76.1	74.1	72.6	78.1	76.1	70.6	65.6
		49.2	75.7	59.6	70.1	68.1	66.6	72.1	70.1	64.6	59.6
Exhaust Sound	Distance from	4.9	110.4	109	111	109	101	104	104.5	102	99
	the Engine (ft)	23.0	97	95.5	98	91	86.5	89	90.5	91.5	87.5
		49.2	90.4	90.2	93.2	87.7	80.7	82.7	83.2	84.7	79.7

Sound Data

Data Variability Statement:

Sound data presented by Caterpillar has been measured in accordance with ISO 6798 in a Grade 3 test environment. Measurements made in accordance with ISO 6798 will result in some amount of uncertainty. The uncertainties depend not only on the accuracies with which sound pressure levels and measurement surface areas are determined, but also on the 'near-field error' which increases for smaller measurement distances and lower frequencies. The uncertainty for a Grade 3 test environment, that has a source that produces sounds that are uniformly distributed in frequency over the frequency range of interest, is equal to 4 dB (A-weighted). This uncertainty is expressed as the largest value of the standard deviation.