

OIL & GAS NON RULE STANDARD PERMIT APPLICATION

TEXLAND PETROLEUM, LP LIF-LUBHEIRS LUBBOCK, LUBBOCK COUNTY, TEXAS

SEPTEMBER 2024

www.commengineering.com Phone: (337) 237-4373 Fax: (337) 234-1805

Non Rule Standard Permit Application for Approval of Emissions

Texland Petroleum, LP Lif-Lubheirs

APPLICATION Section 1 Core Data Form

Section 1	Core Data Form
Section 2	Form PI-1S CERT Registration
Section 3	Application Summary and Proposed Actions
Section 4	Facility Process Description
Section 5	Process Flow Diagram
Section 6	Facility Map & Driving Directions
Section 7	Emissions Summary Table
Section 8	Regulation Tables

APPENDIX

Section 1	Emissions Calculations
Section 2	Major Source Determination
Section 3	Impact Review, Scope & Pollutant Specific Summaries
Section 4	Facility Compositional Analyses

TCEQ Core Data Form

For detailed instructions on completing this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

1. Reason for Submission (If other is checked please describe in space provided.)							
New Permit, Registration or Authorization (Core Data I	Form should be submitted with	he program application.)					
Renewal (Core Data Form should be submitted with the	e renewal form)	Other					
2. Customer Reference Number (if issued)	Follow this link to search	3. Regulated Entity Reference Number (if issued)					
	for CN or RN numbers in						
CN 602816852 Central Registry** RN 102597648							
	J						

SECTION II: Customer Information

4. General Customer Information	neral Customer Information 5. Effective Date for Customer Information Updates (mm/dd/yyyy) 5/1/2024						5/1/2024	
New Customer Update to Customer Information Change in Regulated Entity Ownership Change in Legal Name (Verifiable with the Texas Secretary of State or Texas Comptroller of Public Accounts)								
The Customer Name submitted here may be updated automatically based on what is current and active with the Texas Secretary of State (SOS) or Texas Comptroller of Public Accounts (CPA).								
6. Customer Legal Name (If an individual, pri	nt last name first: eg: Doe,	John)		<u>If new</u>	v Customer, e	enter pre	evious Custom	er below:
Texland Petroleum, LP								
7. TX SOS/CPA Filing Number	8. TX State Tax ID (11 o 17514045636				9. Federal Tax ID (9 digits) 751404563		10. DUNS applicable)	Number (if
11. Type of Customer:	tion		🗌 Individ	lual		Partne	rship: 🗌 Gen	eral 🛛 Limited
Government: 🗌 City 🗌 County 🗋 Federal 🗌	Local 🔲 State 🗌 Other		Sole P	roprieto	rship	🗌 Otł	ner:	
12. Number of Employees				13. lr	ndependen	tly Ow	ned and Ope	erated?
0-20 🛛 21-100 🗌 101-250 🗌 251-	500 501 and higher			🛛 Yes 🗌 No				
14. Customer Role (Proposed or Actual) – as i	t relates to the Regulated E	ntity liste	ed on this form.	Please c	heck one of	the follo	wing	
Owner Operator Occupational Licensee Responsible Pa	⊠ Owner & Oper rty ☐ VCP/BSA Ap				Other:			
777 Main Street 15. Mailing								
Suite 3200								
City Fort Worth State TX ZI					2		ZIP + 4	5344
16. Country Mailing Information (if outside	USA)		17. E-Mail A	ddress	(if applicable	e)		
smcneal@				smcneal@texpetro.com				
18. Telephone Number	19. Extensi	on or Co	ode		20. Fax N	umber	(if applicable)	

SECTION III: Regulated Entity Information

21. General Regulated Entity Information (If 'New Regulated Entity" is selected, a new permit application is also required.)								
New Regulated Entity	Update to I	Regulated Entity Name	e 🛛 Update t	o Regulated	Entity Inform	ation		
The Regulated Entity Name submitted may be updated, in order to meet TCEQ Core Data Standards (removal of organizational endings such as Inc, LP, or LLC).								
22. Regulated Entity Nan	1e (Enter name	e of the site where the	regulated action	is taking pla	ce.)			
Lif-Lubheirs								
23. Street Address of	777 Main Sti	reet						
the Regulated Entity:	Suite 3200						_	
<u>(No PO Boxes)</u>	City	Fort Worth	State	тх	ZIP	76102	ZIP + 4	5344
24. County	Lubbock							

If no Street Address is provided, fields 25-28 are required.

25. Description to Physical Location: From Intersection of TX 289 Loop Frontage Rd and N Guava St: Travel north on N Guava St for 0.14 mile. Facility located on the left.								
26. Nearest City						State	N	earest ZIP Code
Lubbock	Lubbock TX 79382							
Latitude/Longitude are re used to supply coordinate	•		•		ata Standa	rds. (Geocodir	ng of the Physic	al Address may be
27. Latitude (N) In Decim	al:	33.61129		28. Lo	ongitude (W	/) In Decimal:	101.80	115
Degrees	Minutes		Seconds	Degre	es	Minute	25	Seconds
33		36	40.6		101		48	4.14
29. Primary SIC Code (4 digits)	30. Secondary SIC Code 31. Primary NAICS Code 32. Secondary NAICS Code (4 digits) (5 or 6 digits) (5 or 6 digits)							
1311				211120		21	11130	
33. What is the Primary E	Business of t	his entity? (Do	o not repeat the SIC o	r NAICS descr	iption.)	·		
Natural Gas & Crude Oil Proc	luction							
	777 Main	Street						
34. Mailing Address:	Suite 3200)						
Address.	City	Fort Worth	State	тх	ZIP	76102	ZIP + 4	5344
35. E-Mail Address:	smc	neal@texpetro.co	om	·			·	·
36. Telephone Number37. Extension or Code38. Fax Number (if applicable)								
(817) 336-2751					()	-		

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form. See the Core Data Form instructions for additional guidance.

Dam Safety	Districts	Edwards Aquifer	Emissions Inventory Air	Industrial Hazardous Waste
Municipal Solid Waste	New Source Review Air	OSSF	Petroleum Storage Tank	D PWS
Sludge	Storm Water	Title V Air	Tires	Used Oil
Voluntary Cleanup	UWastewater	Wastewater Agriculture	Water Rights	Other:

SECTION IV: Preparer Information

40. Name:	Ethan McMaho	วท		41. Title:	Environmental Manager	
42. Telephone	Number	43. Ext./Code	44. Fax Number	45. E-Mail Address		
(337)237-4373			() -	ermcmahon(@commengineering.com	

SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 6 and/or as required for the updates to the ID numbers identified in field 39.

Company:	Texland Petroleum, LP Job Title: Regulator			y Analyst	
Name (In Print):	Shana McNeal			Phone:	(817) 336- 2751
Signature:				Date:	

Texas Commission on Environmental Quality Form PI-1S Registrations for Air Standard Permit (Page 1)

I. Registrant Information						
A. Company or Other Legal Customer Name:						
Texland Petroleum, LP						
B. Company Official Contact Info	ormation (🗌 Mr	. 🗌 Mrs. 🗙 Ms. 🗌 Ot	her:)			
Name: Shana McNeal						
Title: Regulatory Analyst						
Mailing Address: 777 Main Street, Su	uite 3200					
City: Fort Worth	State: TX		ZIP Code: 76102			
Phone: (817) 336-2751	1	Fax:				
Email Address: smcneal@texpetro.c	om					
All permit correspondence will be s	ent via email.					
C. Technical Contact Information	n (🗌 Mr. 🗌 Mrs	s. 🔀 Ms. 🗌 Other:)				
Name: Shana McNeal						
Title: Regulatory Analyst						
Company Name: Texland Petroleu	m, LP					
Mailing Address: 777 Main Street, S	uite 3200					
City: Fort Worth	State: TX		ZIP Code: 76102			
Phone: (817) 336-2751		Fax:				
Email Address: smcneal@texpetro.c	om					
II. Facility and Site Information						
A. Name and Type of Facility						
Facility Name: Lif-Lubheirs						
Type of Facility:						
For portable units, please provide t	he serial numbe	er of the equipment bei	ng authorized below.			
Serial No:		Serial No:				

Texas Commission on Environmental Quality Form PI-1S Registrations for Air Standard Permit (Page 2)

II. Facility and Site Informatio	n (continued)				
B. Facility Location Information					
Street Address:					
If there is no street address, provide written driving directions to the site and provide the closest city or town, county, and ZIP code for the site (attach description if additional space is needed).					
From Intersection of TX 289 Loop From	tage Rd and N Gu	ava St: Travel north on	N Guava St for 0.1	4 mile. Facility locat	
City: Lubbock	County: Lubboc	k	ZIP Cod	e: 79382	
Latitude (nearest second): 33.6112	9	Longitude (neares	st second): 101.80	115	
C. Core Data Form (required for	Standard Permit	ts 6006, 6007, and 60)13).		
Is the Core Data Form (TCEQ Form	10400) attached	1?	🛛 Yes	🗌 No	
If "No," provide customer reference i	number (CN) and	d regulated entity nun	nber (RN) below.		
Customer Reference Number (CN):	CN602816852				
Regulated Entity Number (RN): RN	102597648				
D. TCEQ Account Identification N	lumber (if known):			
E. Type of Action:					
🔀 Initial Application 🛛 🗌 Change	e to Registration	Renewal	Renewal	Certification	
For Change to Registration, Renewa	al, or Renewal C	ertification actions pro	ovide the following	g:	
Registration Number:		Expiration Date:			
F. Standard Permit Claimed:					
G. Previous Standard Exemption	or PBR Registra	tion Number:			
Is this authorization for a change to a standard exemption or PBR?	an existing facilit	y previously authorize	ed under a	🗌 Yes 🔀 No	
If "Yes," enter previous standard exemption number(s) and PBR registration number(s) and associated effective date in the spaces provided below.					
Standard Exemption and PBR Registration Number(s) Effective Date					

Texas Commission on Environmental Quality Form PI-1S Registrations for Air Standard Permit (Page 3)

II. Facility and Site Information <i>(continued)</i>						
H. Other Facilities at this Site Authorized by Standard Exemption, PBR, or Standard	rd Permit					
Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit?	🗌 Yes 🔀 No					
If "Yes," enter standard exemption number(s), PBR registration number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.						
Standard Exemption, PBR Registration, and Standard Permit Registration Number(s)	Effective Date					
I. Other Air Preconstruction Permits						
Are there any other air preconstruction permits at this site?	🗌 Yes 🔀 No					
If "Yes," enter permit number(s) in the spaces provided below.						
J. Affected Air Preconstruction Permits						
Does the standard permit directly affect any permitted facility?	🗌 Yes 🔀 No					
If "Yes," enter permit number(s) in the spaces provided below.						

Texas Commission on Environmental Quality Form PI-1S Registrations for Air Standard Permit (Page 4)

II. Facility and Site Informatio	n (continued)		
K. Federal Operating Permit (FOF	P) Requirements		
Is this facility located at a site that is pursuant to 30 TAC Chapter 122?	required to obtain a FOP	Yes [🗙 No 🗌 To Be Determined
If the site currently has an existing F	OP, enter the permit numbe	r:	
Check the requirements of 30 TAC C (<i>check all that apply</i>).	Chapter 122 that will be trigg	ered if this	s standard permit is approved
Initial Application for a FOP	Significant Revision for	a SOP	☐ Minor Revision for a SOP
Operational Flexibility/Off Permit	Notification for a SOP		Revision for a GOP
To be Determined			X None
Identify the type(s) of FOP issued an (check all that apply)	d/or FOP application(s) sub	mitted/per	nding for the site.
SOP GOP	GOP application/revisi	on (submit	tted or under APD review)
🔀 N/A 📃 SOP application	on/revision (submitted or un	der APD r	eview)
III. Fee Information (go to www	v.tceq.texas.gov/epay to p	ay online)
A. Fee Amount: \$475			
B. Voucher number from ePay:			
IV. Public Notice (if applicable)			
A. Responsible Person (Mr.] Mrs. 🗡 Ms. 🗌 Other:)		
Name: Shana McNeal			
Title: Regulatory Analyst			
Company: Texland Petroleum, LP			
Mailing Address: 777 Main Street, Sui	ite 3200		
City: Fort Worth	State: TX		ZIP Code: 76102
Phone: (817) 336-2751	Fax No.:		
Email Address: smcneal@texpetro.co	om		

Texas Commission on Environmental Quality Form PI-1S Registrations for Air Standard Permit (Page 5)

IV.	Public Notice (continued) (if applicable)			
В.	Technical Contact (Mr. N	Mrs. 🖄 Ms. 🗌 Othe	er):		
Nam	e: Shana McNeal				
Title:	Regulatory Analyst				
Com	pany: Texland Petroleum, LP				
Maili	ng Address: 777 Main Street, Su	ite 3200			
City:	Fort Worth	State: TX		ZIP Code: 76102	
Phor	ne No.: (817) 336-2751		Fax No.:		
Ema	il Address: smcneal@texpetro.co	om			
C.	Bilingual Notice				
ls a b	pilingual program required by th	e Texas Education	Code in the Schoo	ol District?	🗌 Yes 🔀 No
	he children who attend either th facility eligible to be enrolled in				🗌 Yes 🔀 No
lf "Ye	es," list which language(s) are re	equired by the biling	gual program?		
D.	Small Business Classification a	and Alternate Public	c Notice		
	this company (including paren 100 employees or less than \$6			es) have fewer	🗙 Yes 🗌 No
Is the	e site a major source under 30 T	FAC Chapter 122, F	ederal Operating	Permit Program?	🗌 Yes 🔀 No
Are t 50 tp	he site emissions of any individ y?	ual regulated air co	ntaminant equal to	or greater than	🗌 Yes 🔀 No
Are t 75 tp	he site emissions of all regulate y?	ed air contaminant c	ombined equal to	or greater than	Yes 🗙 No
V .	Renewal Certification Option	on			
А.	Does the permitted facility emi- and is the permitted facility loc			int Watch List,	🗌 Yes 🗌 No
В.	For facilities participating in the trade program for highly reactive speciated on the maximum allo	ve VOCs (HRVOCs	s), do the HRVOÒs	need to be	🗌 Yes 🗌 No
C.	Does the company and/or site	have an unsatisfac	tory compliance hi	story?	🗌 Yes 🗌 No
D.	Are there any applications curr registration?	ently under review	for this standard p	ermit	🗌 Yes 🗌 No

Texas Commission on Environmental Quality Form PI-1S Registrations for Air Standard Permit (Page 6)

V.	Renewal Certification Option (continued)	
E.	Are scheduled maintenance, startup, or shutdown emissions required to be included in the standard permit registration at this time?	🗌 Yes 🗌 No
F.	Are any of the following actions being requested at the time of renewal:	🗌 Yes 🗌 No
1.	Are there any facilities that have been permanently shutdown that are proposed to be removed from the standard permit registration?	🗌 Yes 🗌 No
2.	Do changes need to be made to the standard permit registration in order to remain in compliance?	🗌 Yes 🗌 No
3.	Are sources or facilities that have always been present and represented, but never identified in the standard permit registration, proposed to be included with this renewal?	🗌 Yes 🗌 No
4.	Are there any changes to the current emission rates table being proposed?	🗌 Yes 🗌 No
certit	e: If answers to all of the questions in Section V. Renewal Certification Option are "No," fication option and skip to Section VII. of this form. If the answers to any of the questior ewal Certification Option are "Yes," the certification option cannot be used.	
	otice is applicable and comments are received in response to the public notice, the app ify for the renewal certification option.	lication does not
VI.	Technical Information Including State and Federal Regulatory Requirements	
Plac	e a check next to the appropriate box to indicate what you have included in your	submittal.
the s	e: Any technical or essential information needed to confirm that facilities are meeting the standard permit must be provided. Not providing key information could result in an auto voiding of the project.	
A.	Standard Permit requirements (Checklists are optional; however, your review will go fa provide applicable checklists.)	aster if you
	you demonstrate that the general requirements in 30 TAC Sections 116.610 and 615 are met?	🗙 Yes 🗌 No
Did y are r	you demonstrate that emission limitations in 30 TAC Sections 106.261 and 106.262 net?	🗌 Yes 🔀 No
Did y met?	you demonstrate that the individual requirements of the specific standard permit are	🗙 Yes 🗌 No
В.	Confidential Information (All pages properly marked "CONFIDENTIAL")	🗌 Yes 🔀 No
C.	Process Flow Diagram	🔀 Yes 🗌 No

Texas Commission on Environmental Quality Form PI-1S Registrations for Air Standard Permit (Page 7)

VI. Technical Information Including State and Federal Regulatory Requirements (continued)

Place a check next to the appropriate box to indicate what you have included in your submittal.

Note: Any technical or essential information needed to confirm that facilities are meeting the requirements of the standard permit must be provided. Not providing key information could result in an automatic deficiency and voiding of the project.

D.	Process Description	🔀 Yes 🗌 No
E.	Maximum Emissions Data and Calculations	🛛 Yes 🗌 No
F.	Plot Plan	🔀 Yes 🗌 No
G.	Projected Start Of Construction Date, Start Of Operation Date, and Length of Time at Site:	🛛 Yes 🗌 No
Proj	ected Start of Construction (provide date):	
Proj	ected Start of Operation (provide date):	
Leng	gth of Time at the Site: Permanent	
VII.	Delinquent Fees and Penalties	
the A Prot	form will not be processed until all delinquent fees and/or penalties owed to the TCE Attorney General on behalf of the TCEQ are paid in accordance with the Delinquent Fe ocol. For more information regarding Delinquent Fees and Penalties, go to the TCEQ v v.tceq.texas.gov/agency/financial/fees/delin/index.html.	e and Penalty
VIII.	Signature Requirements	
facts know Texa Act (gove sign dete sign	signature below confirms that I have knowledge of the facts included in this application are true and correct to the best of my knowledge and belief. I further state that to the wledge and belief, the project for which application is made will not in any way violate a as Water Code (TWC), Chapter 7; the Texas Health and Safety Code, Chapter 382, the (TCAA) the air quality rules of the Texas Commission on Environmental Quality; or any ernmental ordinance or resolution enacted pursuant to the TCAA. I further state that I us ature indicates that this application meets all applicable nonattainment, prevention of s rioration, or major source of hazardous air pollutant permitting requirements. The signa- ifies awareness that intentionally or knowingly making or causing to be made false mate esentations in the application is a criminal offense subject to criminal penalties.	best of my ny provision of the e Texas Clean Air local nderstand my ignificant ature further
Nam	ne (printed): Shana McNeal	

Signature (original signature required):

Date:

IX. Copies of the Registration

The PI-1S application must be submitted through ePermits. No additional copies need to be sent to the Regional Office or local Air Pollution Control Program(s). The link to ePermits can be found here: www3.tceq.texas.gov/steers/.

Reset Form

Texland Petroleum, LP Lif-Lubheirs

Non Rule Standard Permit

The Lif-Lubheirs is a sour natural gas and condensate/crude oil production facility located in Lubbock County, Texas. This Form PI-1S CERT is being submitted to establish enforceable emission rates.

Emission calculations are based on the potential to emit. Total emissions of NO_X and CO from all sources in the facility are each less than 250 tpy. The facility emissions are not considered major source.

The NESHAP for Oil and Natural Gas Production Facilities (40 CFR Part 63, Subpart HH) defines a major source as one which emits or has the potential to emit 10 tpy or more of any single HAP, or 25 tpy or more of any combination of HAPs. This facility emits less than 25 tpy; therefore, it is not subject to this regulation.

The NSPS for Oil and Natural Gas Production Facilities (40 CFR Part 60, Subpart OOOO and OOOOa and OOOOb) is not applicable. The facility was constructed before August 23, 2011.

Criteria Pollutant	Tons/Year
Total VOC	18.95
Benzene	0.18
Formaldehyde	0.00
SO ₂	0.41
NO _X	0.69
СО	0.58
PM ₁₀	0.05
PM _{2.5}	0.04
H ₂ S	0.03

Emission Totals

Proposed Actions

This application is being submitted for coverage of an existing facility located in Lubbock County, Texas. Texland Petroleum, LP is requesting federally enforceable emissions limits and will comply with all recordkeeping and reporting requirements. The facility is not currently permitted.

Texland Petroleum, LP Lif-Lubheirs

Non Rule Standard Permit

The Lif-Lubheirs is a sour natural gas and crude oil production facility in Lubbock County, Texas, which handles sour natural gas (greater than 24 ppm H_2S) and condensate/crude oil. The facility handles all stages of production. The facility annually processes approximately:

- 365 million standard cubic feet of natural gas,
- 37,230 barrels of condensate/crude oil, and
- 797,525 barrels of produced water.

Separation

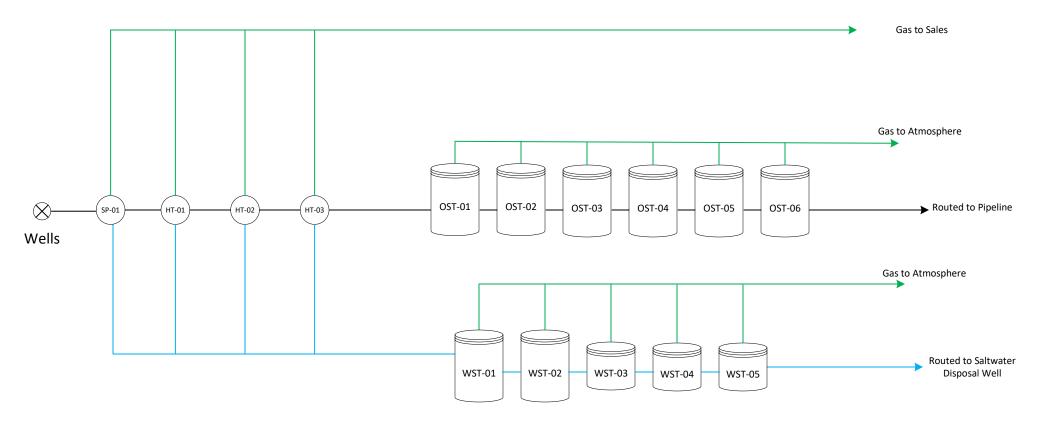
Production from the nearby wells flow to a separator and three (3) Heater Treaters, rated at 1.0 MMBTU/hr and two at 0.5 MMBTU/hr (EPNs: HT-01, HT-02, HT-03). The natural gas from the separator and heater treaters is sent to a sales pipeline. Condensate/crude oil flows to the Oil Storage Tanks and produced water flows to the Water Storage Tanks.

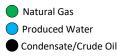
Condensate/Crude Oil Storage and Load Out

Condensate/crude oil is stored in four (4) 210 bbl and two (2) 500 bbl Oil Storage Tanks (EPNs: OST-01 thru OST-06). Flash, standing, and working losses are routed to the atmosphere. The stored condensate/crude oil is then shipped via pipeline to sales. The facility handles condensate/crude oil prior to lease custody transfer.

Produced Water Storage and Disposal

Produced water is stored in two (2) 500 bbl and three (3) 200 bbl Water Storage Tanks (EPNs: WST-01 thru WST-05). Flash, standing, and working losses are routed to the atmosphere. The stored produced water is then shipped via pipeline to disposal.


Miscellaneous Sources


Fugitive natural gas and light liquid emissions (EPN: FE-01) occur from potential leaks from flanges, valves, and piping connections. Fugitive emissions are calculated using typical Texland Petroleum, LP facility component counts and emission factors in EPA 4531, R-95-017 and TCEQ's "Air Permit Technical Guidance for Chemical Source Equipment Leak Fugitives".

Maintenance, Start-Up, and Shutdown (MSS) emissions (EPN: MSS-01) are included in the emission calculations. The site will abide by the emission limitations, best management practices, and recordkeeping requirements required to show compliance with this authorization. This registration includes emissions from routine oil and gas production MSS activities on a facility and equipment basis.

A representative oil analysis and gas analysis were utilized for the application. The representative analysis is from a nearby Texland Petroleum, LP facility and was chosen due to the area, reservoir conditions, API gravity and operating conditions of the facility. A site-specific H_2S reading of 349.6 ppm_v was obtained using the Tutwiler method.

Texland Petroleum, LP Lif-Lubheirs 33.61129° N, 101.80115° W

Texland Petroleum, LP - Lif-Lubheirs

From Intersection of TX 289 Loop Frontage Rd and N Guava St: Travel north on N Guava St for 0.14 mile. Facility located on the left.

Google Earth

Image © 2024 Airbus

 \bowtie

N

N Guava Ave

Lif-Lubheirs

Texland Petroleum, LP Lif-Lubheirs

Emissions Summary

The table below is a summary of all emission points for this registration. It is separated into *Project Emissions* and *Other Site Wide Emissions*.

The table has separate totals for *Project Total Emission Rates* and *Site Wide Total Emission Rates*.

On the table, for each emission source, there is a space for three emission rates on a pound per hour (lb//hr) basis and one emission rate on a ton per year (tpy) basis. Periodic emissions are authorized to exceed the steady state limits of the rule (150, 300, and 600 hours per year for PBR Level 1, PBR Level 2, and the Standard Permit, respectively), in which case the periodic emission limits must be met. Note that periodically emitting activities, such as loading and MSS activities, are not limited to occurring less than these time limits. It is only for that amount of time that the emissions can exceed the normal steady state limits.

Any formaldehyde emissions must be included as part of VOC emissions.

Before pressing the *Update* button, make sure you have selected the correct VOC Type and Emission Type from the pull down menus in each emission calculation tab.

Emissions Summary

Project Emissions (This needs to include all emission points being added for the first time to the registration or emission points with emissions that are changing from previously registered emissions. It does NOT include emission points for which the emissions have not changed and have previously been registered (unless the emission point emissions are chosen to be re-calculated as part of this project); those emissions will be entered below in the Other Registration Emissions section of this table.)

				Emissic	on Rates	
Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr	TPY (4)
		Total VOC	2.9191			12.7858
		Total Crude Oil or Condensate VOC	2.9191			12.7858
		Total Natural Gas VOC	0.0000			0.0000
FE-01	Fugitive Emissions	Benzene	0.0293			0.1282
		Formaldehyde	0.0000			0.0000
		H_2S	0.0008			0.0033
		SO ₂	0.0000			0.0000
		NO _X	0.0000			0.0000
		СО	0.0000			0.0000
		PM ₁₀	0.0000			0.0000
		PM _{2.5}	0.0000			0.0000
		Total VOC	0.0043			0.0188
		Total Crude Oil or Condensate VOC	0.0000			0.0000
		Total Natural Gas VOC	0.0000			0.0000
HT-01	Heater Treater	Benzene	0.0000			0.0000
		Formaldehyde	0.0000			0.0000
		H ₂ S	0.0000			0.0000
		SO ₂	0.0463			0.2026
		NO _X	0.0782			0.3425
		СО	0.0657			0.2877
		PM ₁₀	0.0059			0.0260
		PM _{2.5}	0.0045			0.0195

		Total VOC	0.0022		0.0094
		Total VOC	0.0022		0.0094
		Oil or			
		Condensate			
		VOC	0.0000		0.0000
		Total Natural			
		Gas VOC	0.0000		0.0000
HT-02	Heater Treater	Benzene	0.0000		0.0000
		Formaldehyde	0.0000		0.0000
		H ₂ S	0.0000		0.0000
		SO ₂	0.0231		0.1013
		NO _X	0.0391		0.1713
		CO	0.0328		0.1439 0.0130
		PM ₁₀ PM _{2.5}	0.0030		0.0130
		Total VOC	0.0022		0.0094
		Total Crude	0.0022		0.0071
		Oil or			
		Condensate	0.000		0.000
		VOC	0.0000		0.0000
		Total Natural			
	·	Gas VOC	0.0000		0.0000
HT-03	Heater Treater	Benzene Eermeldebyde	0.0000		0.0000
		Formaldehyde	0.0000		0.0000
		H ₂ S SO ₂	0.0000		0.1013
		NO _X	0.0291		0.1013
		$\frac{100}{CO}$	0.0328		0.1439
		PM ₁₀	0.0030		0.0130
		PM _{2.5}	0.0022		0.0098
		Total VOC	0.0529		0.2317
		Total Crude	0.0529		0.2317
		Total Crude Oil or	0.0529		0.2317
		Total Crude Oil or Condensate			
		Total Crude Oil or Condensate VOC	0.0529		0.2317
		Total Crude Oil or Condensate	0.0529		0.2317
OST-01	Oil Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural			
OST-01	Oil Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC	0.0529		0.2317
OST-01	Oil Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene	0.0529 0.0000 0.0005		0.2317 0.0000 0.0021
OST-01	Oil Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0001 0.0000
OST-01	Oil Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0001 0.0000 0.0000
OST-01	Oil Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0001 0.0000 0.0000 0.0000
OST-01	Oil Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
OST-01	Oil Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5}	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
OST-01	Oil Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
OST-01	Oil Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5}	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
OST-01	Oil Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0529		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2317
OST-01	Oil Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
OST-01	Oil Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0529 0.0529		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2317 0.2317
		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0529 0.0529 0.0529		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.2317 0.2317 0.2317
OST-01 OST-02	Oil Storage Tank - Flash Oil Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0529 0.0529 0.0529		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.2317 0.2317 0.2317
		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0529 0.0529 0.0529 0.0000 0.0005 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2317 0.2317 0.2317 0.0000 0.0000
		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0529 0.0529 0.0529 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.2317 0.2317 0.2317 0.0000 0.0000 0.0001
		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0529 0.0529 0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2317 0.2317 0.2317 0.0000 0.0021 0.0000 0.0001 0.0000
		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0529 0.0529 0.0529 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.2317 0.2317 0.2317 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0529 0.0529 0.0529 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.2317 0.2317 0.2317 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0529 0.0529 0.0529 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.2317 0.2317 0.2317 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

		Total VOC	0.0529		0.2317
		Total Crude	0.052)		0.2317
		Oil or			
		Condensate			
		VOC	0.0529		0.2317
		Total Natural			
		Gas VOC	0.0000		0.0000
OST-03	Oil Storage Tank - Flash	Benzene	0.0005		0.0021
		Formaldehyde	0.0000		0.0000
		H ₂ S	0.0000		0.0001
		SO ₂	0.0000		0.0000
		NO _X	0.0000		0.0000
		СО	0.0000		0.0000
		PM ₁₀	0.0000 0.0000		0.0000 0.0000
		PM _{2.5}			
		Total VOC	0.0529		0.2317
		Total Crude Oil or			
		Condensate			
		VOC	0.0529		0.2317
		Total Natural			
		Gas VOC	0.0000		0.0000
OST-04	Oil Storage Tank - Flash	Benzene	0.0005		0.0021
		Formaldehyde	0.0000		0.0000
		H_2S	0.0000		0.0001
		SO ₂	0.0000		0.0000
		NO _X	0.0000		0.0000
		СО	0.0000		0.0000
		PM ₁₀	0.0000		0.0000
		PM _{2.5}	0.0000		0.0000
		1	0.0500		0.0015
		Total VOC	0.0529		0.2317
		Total VOC Total Crude	0.0529		0.2317
		Total VOC Total Crude Oil or	0.0529		0.2317
		Total VOC Total Crude	0.0529		0.2317
		Total VOC Total Crude Oil or Condensate VOC			
		Total VOC Total Crude Oil or Condensate			
OST-05	Oil Storage Tank - Flash	Total VOC Total Crude Oil or Condensate VOC Total Natural	0.0529		0.2317
OST-05	Oil Storage Tank - Flash	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC	0.0529		0.2317
OST-05	Oil Storage Tank - Flash	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S	0.0529 0.0000 0.0005 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0001
OST-05	Oil Storage Tank - Flash	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0001 0.0000
OST-05	Oil Storage Tank - Flash	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0001 0.0000 0.0000
OST-05	Oil Storage Tank - Flash	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0001 0.0000 0.0000 0.0000
OST-05	Oil Storage Tank - Flash	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
OST-05	Oil Storage Tank - Flash	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5}	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
OST-05	Oil Storage Tank - Flash	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
OST-05	Oil Storage Tank - Flash	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
OST-05	Oil Storage Tank - Flash	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
OST-05	Oil Storage Tank - Flash	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
OST-05	Oil Storage Tank - Flash	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2317
OST-05	Oil Storage Tank - Flash	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2317
OST-05 OST-06	Oil Storage Tank - Flash Oil Storage Tank - Flash	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0529 0.0529 0.0529		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.2317 0.2317 0.2317
		Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0529 0.0529 0.0529 0.0000 0.0005 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2317 0.2317 0.2317 0.0000 0.0001 0.0000
		Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0529 0.0529 0.0529 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.2317 0.2317 0.2317 0.0000 0.0000 0.0001
		Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0529 0.0529 0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2317 0.2317 0.2317 0.0000 0.0021 0.0000 0.0001 0.0000
		Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0529 0.0529 0.0529 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.2317 0.2317 0.2317 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000
		Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0529 0.0529 0.0529 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.2317 0.2317 0.2317 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
		Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.0529 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0529 0.0529 0.0529 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.2317 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000 0.2317 0.2317 0.2317 0.2317 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

		Total VOC	0.1207		0.5288
		Total Crude	0.1207		0.3200
		Oil or			
		Condensate			
		VOC	0.1207		0.5288
		Total Natural			
		Gas VOC	0.0000		0.0000
OST-01	Oil Storage Tank -	Benzene	0.0011		0.0047
	Breathing & Working	Formaldehyde	0.0000		0.0000
		H ₂ S	0.0001		0.0003
		SO ₂	0.0000		0.0000
		NO _X	0.0000		0.0000
		СО	0.0000		0.0000
		PM ₁₀	0.0000		0.0000
		PM _{2.5}	0.0000		0.0000
		Total VOC	0.1207		0.5288
		Total Crude Oil or			
		Condensate			
		VOC	0.1207		0.5288
		Total Natural			
		Gas VOC	0.0000		0.0000
OST-02	Oil Storage Tank -	Benzene	0.0011		0.0047
	Breathing & Working	Formaldehyde	0.0000		0.0000
		H ₂ S	0.0001		0.0003
		SO ₂	0.0000		0.0000
		NO _X	0.0000		0.0000
		СО	0.0000		0.0000
		PM ₁₀	0.0000		0.0000
		PM _{2.5}	0.0000		0.0000
		Total VOC	0.1207		1 5788
			0.1207		0.5288
		Total Crude	0.1207		0.3288
			0.1207		0.5288
		Total Crude Oil or	0.1207		0.5288
		Total Crude Oil or Condensate			
		Total Crude Oil or Condensate VOC			
OST-03	Oil Storage Tank -	Total Crude Oil or Condensate VOC Total Natural	0.1207 0.0000 0.0011		0.5288
OST-03	Oil Storage Tank - Breathing & Working	Total Crude Oil or Condensate VOC Total Natural Gas VOC	0.1207 0.0000 0.0011 0.0000		0.5288 0.0000 0.0047 0.0000
OST-03		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S	0.1207 0.0000 0.0011 0.0000 0.0001		0.5288 0.0000 0.0047 0.0000 0.0003
OST-03		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂	0.1207 0.0000 0.0011 0.0000 0.0001 0.0000		0.5288 0.0000 0.0047 0.0000 0.0003 0.0000
OST-03		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.1207 0.0000 0.0011 0.0000 0.0001 0.0000 0.0000		0.5288 0.0000 0.0047 0.0000 0.0003 0.0000 0.0000
OST-03		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO	0.1207 0.0000 0.0011 0.0000 0.0001 0.0000 0.0000 0.0000		0.5288 0.0000 0.0047 0.0000 0.0003 0.0000 0.0000 0.0000
OST-03		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀	0.1207 0.0000 0.0011 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000		0.5288 0.0000 0.0047 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000
OST-03	-	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5}	0.1207 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.5288 0.0000 0.0047 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
OST-03	-	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC	0.1207 0.0000 0.0011 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000		0.5288 0.0000 0.0047 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000
OST-03	-	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5}	0.1207 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.5288 0.0000 0.0047 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
OST-03	-	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate	0.1207 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1207		0.5288 0.0000 0.0047 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.5288
OST-03	-	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or	0.1207 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.5288 0.0000 0.0047 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
OST-03	-	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate	0.1207 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1207		0.5288 0.0000 0.0047 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.5288
OST-03	Breathing & Working	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC	0.1207 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.1207 0.1207 0.1207		0.5288 0.0000 0.0047 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5288 0.5288 0.0000
OST-03 OST-04	Breathing & Working Oil Storage Tank -	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene	0.1207 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.1207 0.1207 0.1207		0.5288 0.0000 0.0047 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.5288 0.5288 0.5288
	Breathing & Working	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde	0.1207 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1207 0.1207 0.1207 0.0000 0.0000 0.0011 0.0000		0.5288 0.0000 0.0047 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.5288 0.5288 0.5288 0.0000 0.0000
	Breathing & Working Oil Storage Tank -	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S	0.1207 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.1207 0.1207 0.1207 0.0000 0.0000 0.0011 0.0000 0.0001		0.5288 0.0000 0.0047 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5288 0.5288 0.5288 0.0000 0.0000 0.0047 0.0000 0.0003
	Breathing & Working Oil Storage Tank -	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂	0.1207 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.1207 0.1207 0.1207 0.0000 0.0001 0.0000 0.0001 0.0000		0.5288 0.0000 0.0047 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.5288 0.5288 0.5288 0.0000 0.0047 0.0000 0.0003 0.0000
	Breathing & Working Oil Storage Tank -	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.1207 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.1207 0.1207 0.1207 0.0000 0.0000 0.0011 0.0000 0.0001 0.0000 0.0000		0.5288 0.0000 0.0047 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5288 0.5288 0.5288 0.0000 0.0000 0.0047 0.0000 0.0003 0.0000 0.0000
	Breathing & Working Oil Storage Tank -	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO	0.1207 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.1207 0.1207 0.1207 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000		0.5288 0.0000 0.0047 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.5288 0.5288 0.5288 0.0000 0.0007 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000
	Breathing & Working Oil Storage Tank -	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.1207 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.1207 0.1207 0.1207 0.0000 0.0000 0.0011 0.0000 0.0001 0.0000 0.0000		0.5288 0.0000 0.0047 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5288 0.5288 0.5288 0.0000 0.0000 0.0047 0.0000 0.0003 0.0000 0.0000

		Total VOC	0.2119		0.9282
		Total Crude	0.2119		0.9282
		Oil or			
		Condensate			
		VOC	0.2119		0.9282
		Total Natural			
		Gas VOC	0.0000		0.0000
OST-05	Oil Storage Tank -	Benzene	0.0019		0.0083
0.51 00	Breathing & Working	Formaldehyde	0.0000		0.0000
		H ₂ S	0.0001		0.0006
		SO ₂	0.0000		0.0000
		NO _X	0.0000		0.0000
		СО	0.0000		0.0000
		PM ₁₀	0.0000		0.0000
		PM _{2.5}	0.0000		0.0000
		Total VOC	0.2119		0.9282
		Total Crude			
		Oil or Condensate			
		VOC	0.2119		0.9282
			5.2117		5.7202
		Total Natural Gas VOC	0.0000		0.0000
OST-06	Oil Storage Tank -	Benzene	0.0000		0.0083
051-00	Breathing & Working	Formaldehyde	0.0000		0.0000
		H ₂ S	0.0001		0.0006
		SO ₂	0.0000		0.0000
		NO _X	0.0000		0.0000
		CO	0.0000		0.0000
		PM ₁₀	0.0000		0.0000
		PM _{2.5}	0.0000		0.0000
			0.0126		0.0506
		Total VOC	0.0136		0.0596
		Total Crude	0.0136		0.0596
		Total Crude Oil or	0.0136		0.0596
		Total Crude Oil or Condensate			
		Total Crude Oil or Condensate VOC	0.0136		0.0596
		Total Crude Oil or Condensate VOC Total Natural	0.0136		0.0596
WST 01	Water Store on Taula - Elach	Total Crude Oil or Condensate VOC Total Natural Gas VOC	0.0136		0.0596
WST-01	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene	0.0136 0.0000 0.0001		0.0596 0.0000 0.0005
WST-01	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde	0.0136 0.0000 0.0001 0.0000		0.0596 0.0000 0.0005 0.0000
WST-01	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S	0.0136 0.0000 0.0001		0.0596 0.0000 0.0005
WST-01	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂	0.0136 0.0000 0.0001 0.0000 0.0009		0.0596 0.0000 0.0005 0.0000 0.0038
WST-01	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S	0.0136 0.0000 0.0001 0.0000 0.0009 0.0000		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000
WST-01	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.0136 0.0000 0.0001 0.0000 0.0009 0.0000 0.0000 0.0000 0.0000		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000
WST-01	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO	0.0136 0.0000 0.0001 0.0000 0.0009 0.0000 0.0000 0.0000		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000
WST-01	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀	0.0136 0.0000 0.0001 0.0000 0.0009 0.0000 0.0000 0.0000 0.0000		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000
WST-01	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000 0.0000
WST-01	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000 0.0000
WST-01	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0136		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0596
WST-01	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000 0.0000
WST-01	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0136		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0596
		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0136 0.0136		0.0596 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0596 0.0596 0.0000
WST-01 WST-02	Water Storage Tank - Flash Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0136 0.0136 0.0136		0.0596 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0596 0.0596 0.0000 0.0000
		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde	0.0136 0.0000 0.0001 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0136 0.0136 0.0136		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000 0.0596 0.0596 0.0000 0.0005 0.0000
		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0136 0.0136 0.0136		0.0596 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0596 0.0596 0.0596 0.0000 0.0005 0.0000 0.00038
		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0136 0.0136 0.0136 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000 0.0596 0.0596 0.0000 0.0005 0.0000 0.0005 0.0000 0.0038 0.0000
		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0136 0.0136 0.0136		0.0596 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0596 0.0596 0.0596 0.0000 0.0005 0.0000 0.00038
		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0136 0.0136 0.0136 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0596 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0596 0.0596 0.0000 0.0000 0.0005 0.0000 0.00038 0.0000 0.0000
		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0136 0.0136 0.0136 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000 0.0596 0.0596 0.0000 0.0005 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000

		Total VOC	0.0136		0.0596
		Total Crude			0.0090
		Oil or			
		Condensate			
		VOC	0.0136		0.0596
		Total Natural	0.000		0.000
		Gas VOC	0.0000		0.0000
WST-03	Water Storage Tank - Flash	Benzene Formaldehyde	0.0001		0.0005
		H ₂ S	0.0009		0.0000 0.0038
		SO ₂	0.0000		0.0000
		NO _X	0.0000		0.0000
		CO	0.0000		0.0000
		PM ₁₀	0.0000		0.0000
		PM _{2.5}	0.0000		0.0000
		Total VOC	0.0136		0.0596
		Total Crude			
		Oil or Condensate			
		VOC	0.0136		0.0596
		Total Natural			
		Gas VOC	0.0000		0.0000
WST-04	Water Storage Tank - Flash	Benzene	0.0001		0.0005
		Formaldehyde	0.0000		0.0000
		H ₂ S	0.0009		0.0038
		SO ₂	0.0000		0.0000
		NO _X	0.0000		0.0000
		CO	0.0000		0.0000
		PM ₁₀ PM _{2.5}	0.0000		0.0000
		Total VOC	0.0136		0.0596
		Total VOC Total Crude	0.0136		0.0596
		Total Crude Oil or	0.0136		0.0596
		Total Crude Oil or Condensate			
		Total Crude Oil or Condensate VOC	0.0136		0.0596
		Total Crude Oil or Condensate VOC Total Natural	0.0136		0.0596
WCT of	Wator Stars as Taula Flat	Total Crude Oil or Condensate VOC Total Natural Gas VOC	0.0136		0.0596
WST-05	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene	0.0136 0.0000 0.0001		0.0596 0.0000 0.0005
WST-05	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde	0.0136 0.0000 0.0001 0.0000		0.0596 0.0000 0.0005 0.0000
WST-05	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene	0.0136 0.0000 0.0001		0.0596 0.0000 0.0005
WST-05	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S	0.0136 0.0000 0.0001 0.0000 0.0009		0.0596 0.0000 0.0005 0.0000 0.0038
WST-05	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO	0.0136 0.0000 0.0001 0.0000 0.0009 0.0000 0.0000 0.0000		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000
WST-05	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀	0.0136 0.0000 0.0001 0.0000 0.0009 0.0000 0.0000 0.0000 0.0000		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000
WST-05	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5}	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000 0.0000
WST-05	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC	0.0136 0.0000 0.0001 0.0000 0.0009 0.0000 0.0000 0.0000 0.0000		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000
WST-05	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000 0.0000
WST-05	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000 0.0000
WST-05	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000 0.0000
WST-05	Water Storage Tank - Flash	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00216
WST-05		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0049 0.0049 0.0049		0.0596 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0216 0.0216
WST-05 WST-01	Water Storage Tank -	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0049 0.0049 0.0049		0.0596 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0216 0.0216 0.0216
		Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde	0.0136 0.0000 0.0001 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0049 0.0049 0.0049 0.0000 0.0000 0.0000		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000 0.0216 0.0216 0.0216 0.0000 0.0000 0.0000 0.0000
	Water Storage Tank -	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0049 0.0049 0.0049 0.0049 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0596 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0216 0.0216 0.0216 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
	Water Storage Tank -	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0049 0.0049 0.0049 0.0049 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000 0.0216 0.0216 0.0216 0.0000 0.0000 0.0002 0.0000 0.00014 0.0000
	Water Storage Tank -	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0049 0.0049 0.0049 0.0049 0.0049 0.0000		0.0596 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0216 0.0216 0.0216 0.0000
	Water Storage Tank -	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0049 0.0049 0.0049 0.0049 0.0000		0.0596 0.0000 0.0005 0.0000 0.0038 0.0000 0.0000 0.0000 0.0000 0.0216 0.0216 0.0216 0.0216 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
	Water Storage Tank -	Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.0136 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0049 0.0049 0.0049 0.0049 0.0049 0.0000		0.0596 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0216 0.0216 0.0216 0.0000

		Total VOC	0.0056		0.0243
		Total Crude	0.0050		0.0245
WST-02		Oil or			
		Condensate			
		VOC	0.0056		0.0243
		Total Natural			
		Gas VOC	0.0000		0.0000
	Water Storage Tank -	Benzene	0.0000		0.0002
	Breathing & Working	Formaldehyde	0.0000		0.0000
		H_2S	0.0004		0.0016
		SO ₂	0.0000		0.0000
		NO _X	0.0000		0.0000
		СО	0.0000		0.0000
		PM ₁₀	0.0000		0.0000
		PM _{2.5}	0.0000		0.0000
		Total VOC	0.0040		0.0176
		Total Crude Oil or			
		Condensate			
		VOC	0.0040		0.0176
		Total Natural			
		Gas VOC	0.0000		0.0000
WST-03	Water Storage Tank -	Benzene	0.0000		0.0002
	Breathing & Working	Formaldehyde	0.0000		0.0000
		H ₂ S	0.0003		0.0011
		SO ₂	0.0000		0.0000
		NO _X	0.0000		0.0000
		СО	0.0000		0.0000
		PM ₁₀	0.0000		0.0000
		PM _{2.5}	0.0000		0.0000
			0.00.10		0.0176
		Total VOC	0.0040		0.0176
		Total VOC Total Crude	0.0040		0.0176
		Total VOC	0.0040		0.0176
		Total VOC Total Crude Oil or	0.0040		0.0176
		Total VOC Total Crude Oil or Condensate			
		Total VOC Total Crude Oil or Condensate VOC			
WST-04	Water Storage Tank -	Total VOC Total Crude Oil or Condensate VOC Total Natural	0.0040		0.0176
WST-04	Water Storage Tank - Breathing & Working	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC	0.0040		0.0176
WST-04	-	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S	0.0040 0.0000 0.0000 0.0000 0.0003		0.0176 0.0000 0.0002
WST-04	-	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂	0.0040 0.0000 0.0000 0.0000 0.0003 0.0000		0.0176 0.0000 0.0002 0.0000 0.0011 0.0000
WST-04	-	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.0040 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000		0.0176 0.0000 0.0002 0.0000 0.0011 0.0000 0.0000
WST-04	-	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO	0.0040 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000		0.0176 0.0000 0.0002 0.0000 0.0011 0.0000 0.0000 0.0000
WST-04	-	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀	0.0040 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000		0.0176 0.0000 0.0002 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000
WST-04	-	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5}	0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0176 0.0000 0.0002 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000
WST-04	-	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC	0.0040 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000		0.0176 0.0000 0.0002 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000
WST-04	-	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude	0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0176 0.0000 0.0002 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000
WST-04	-	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC	0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0176 0.0000 0.0002 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000
WST-04	-	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or	0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0176 0.0000 0.0002 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000
WST-04	-	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate	0.0040 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0176 0.0000 0.0002 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0176
WST-04	Breathing & Working	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC	0.0040 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0176 0.0000 0.0002 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0176
WST-04 WST-05	Breathing & Working Water Storage Tank -	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene	0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0040 0.0040 0.0040 0.0000 0.0000 0.0000		0.0176 0.0000 0.0002 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0176 0.0176 0.0176
	Breathing & Working	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC	0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0040 0.0040 0.0040 0.0000 0.0000 0.0000 0.0000		0.0176 0.0000 0.0002 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0176 0.0176 0.0176
	Breathing & Working Water Storage Tank -	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S	0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0040 0.0040 0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0176 0.0000 0.0002 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0176 0.0176 0.0176 0.0000
	Breathing & Working Water Storage Tank -	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂	0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0040 0.0040 0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0176 0.0000 0.0002 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0176 0.0176 0.0176 0.0000 0.0000 0.0002 0.0000 0.00011 0.0000
	Breathing & Working Water Storage Tank -	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂	0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0040 0.0040 0.0040 0.0040 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000		0.0176 0.0000 0.0002 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0176 0.0176 0.0176 0.0000
	Breathing & Working Water Storage Tank -	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO	0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0040 0.0040 0.0040 0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0176 0.0000 0.0002 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0176 0.0176 0.0176 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
	Breathing & Working Water Storage Tank -	Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂	0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0040 0.0040 0.0040 0.0040 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000		0.0176 0.0000 0.0002 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0176 0.0176 0.0176 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.0000000 0.00000000

		Total VOC	0.0837	0.3662
		Total Crude		
		Oil or		
		Condensate		0.0000
		VOC	0.0000	0.0000
		Total Natural		
		Gas VOC	0.0837	0.3662
MSS-01	Routine MSS	Benzene	0.0012	0.0053
		Formaldehyde	0.0000	0.0000
		H_2S	0.0001	0.0005
		SO ₂	0.0000	0.0000
		NO _X	0.0000	0.0000
		CO	0.0000	0.0000
		PM ₁₀	0.0000	0.0000
		PM _{2.5}	0.0000	0.0000

		Emission Rates					
Project Total Emission Rates (Note that these periodic totals are NOT simply the sum of the periodic emission rates from	Air Contaminant Name (3)	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr	TPY (4)		
each emission point. The periodic	Total VOC	4.24	4.33	4.33	18.95		
emission limits in the rule need to be compared to the sum of steady state and periodic emissions, that is the worst case combination of continuously and	Total Crude Oil or Condensate VOC	4.23	4.23	4.23	18.54		
occur in any one hour. The periodic emission rates shown here are the sum of		0.00	0.08	0.08	0.37		
all steady state and periodic emissions in	Benzene	0.04	0.04	0.04	0.18		
the project. If the worst case combination of continuously and periodically emitting	Formaldehyde	0.00	0.00	0.00	0.00		
sources is less than this, then please input	H ₂ S	0.01	0.01	0.01	0.03		
the values in this table to the right.	SO ₂	0.09	0.09	0.09	0.41		
Please explain below which emission	NO _X	0.16	0.16	0.16	0.69		
points are included in this worst case	CO	0.13	0.13	0.13	0.58		
combination.)	PM ₁₀	0.01	0.01	0.01	0.05		
	PM _{2.5}	0.01	0.01	0.01	0.04		
If the automated formulas for the project emission totals (which assume that it is possible for all steady state and periodic emissions in the project to occur in the same hour) have been overwritten, explain any changes made and list the project emission points that occur in the realistic worst case hour. (Leave this blank or put NA if none of the formulas have been overwritten.)							
Other Site Wide Emissions (This needs to include any other emission points not included in the Project Emissions Summary but are associated with the site. This should be all the operationally dependent units that are within 1/4 mile of each other and are also owned/operated by the same company and located on contiguous or adjacent property. It is possible that nothing needs to be entered here.)							
There are no other site wide emission points other than project emission points.							

Site Wide Total Emission Rates (Note that these periodic totals are NOT simply the sum of the periodic emission rates	Air Contaminant Name (3)	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr	TPY (4)
from each emission point. The periodic	Total VOC	4.24	4.33	4.33	18.95
emission limits in the rule need to be compared to the sum of steady state and periodic emissions, that is the worst case	Total Crude Oil or Condensate VOC	4.23	4.23	4.23	18.54
combination of continuously and periodically emitting sources that could occur in any one hour. The periodic emission rates shown here are the sum of	Total Natural Gas VOC	0.00	0.08	0.08	0.37
all steady state and periodic emissions in	Denzene	0.04	0.04	0.04	0.18
the registration. If the worst case	Formaldehyde	0.00	0.00	0.00	0.00
combination of continuously and	H ₂ S	0.01	0.01	0.01	0.03
periodically emitting sources is less than	SO ₂	0.09	0.09	0.09	0.41
this, then please input the values in this	NO _X	0.16	0.16	0.16	0.69
which emission points are included in	СО	0.13	0.13	0.13	0.58
	PM ₁₀	0.01	0.01	0.01	0.05
	PM _{2.5}	0.01	0.01	0.01	0.04
If the automated formulas for the registration emission totals (which assume that it is possible for all steady state and periodic emissions in the registration to occur in the same hour) have been overwritten, explain any changes made and list the registration emission points that occur in the realistic worst case hour. (Leave this blank or put NA if none of the formulas have been overwritten.)					
Based on the Site Wide Total Emission	on Rates, this a	uthorization fa	alls under:	PBR L	evel 2

Enter any notes here:	
notes here:	

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
- (3) VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
 H₂S hydrogen sulfide
 - SO₂ sulfur dioxide
 - NO_X total oxides of nitrogen
 - CO carbon monoxide
 - PM₁₀ total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}
 - PM_{2.5} particulate matter equal to or less than 2.5 microns in diameter
- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) If emissions from a source are:

(A) uncontrolled, then the uncontrolled emissions are reported in this table as being emitted from the source.

(B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU), then the controlled emissions are reported on this table as being emitted from the control device.

(C) controlled by another type of control device, then the controlled emissions are reported on this table for the source (even though emissions are actually being emitted at the control device).

- (6) For controlled tank, glycol/amine flash tank and regenerator, and MSS emissions, it is assumed that all vapors make it to the control device (100% collection efficiency). For controlled loading emissions, a 100% collection efficiency is <u>not</u> assumed.
- (7) A VRU itself is not actually considered an emission point; however, this table associates unrecovered (uncontrolled) emissions from sources controlled by a VRU at the VRU.

Texland Petroleum, LP Lif-Lubheirs Non Rule Standard Permit Applicaton Table 6 Engine and Turbines Emission and Operational Standards

Engine Tune	Engine Size	Manufacture Date	NOr(a/hr)hr)	CO(a/hp hr)	VOC(a/hr hr)	Applicability			
Engine Type			NOx (g/hp-hr)	CO (g/hp-hr)	VOC (g/hp-hr)	Yes	No	N/A	
Rich burn, Non- emergency, Spark- ignitred	less than 100 hp	All dates	No Standard	No Standard	No Standard			X	
	greater than or equal to 100 hp	Before January 1, 2011	2	3	No Standard			X	
	to 100 hp	After January 1, 2011	1	3	1			X	
	2018, regardless of a authorizations is issue exceed 0.5 g/bhp-hr,	manufacture date, no rich burn engine gr ed for a spark ignited rich burn engine unde except that the standard permit holder shall	urn engine greater than or equal to 240 hp au eater than or equal to 100 hp authorized b er this standard permit after the applicable dat have a one year grace period from the date o ate the upgrade requirement if EPA promulga	y this permit shall emit NOx in exc e of January 1, 2015 or January 1, 201 f the initial authorization under this sta	ess of 0.5 g/bhp-hr. If an authorization or 8, NOx emissions from that engine shall not	5		х	
Lean Burn, 2SLB Non-emergency, Spark-ignited	less than 500 hp	All dates	No Standard	No Standard	No Standard			x	
spark-ignited	greater than or equal	Before September 23, 1982	8	3	No Standard			X	
	to 500 hp	Before June 18, 1992 and rated less than 825 hp	8	3	No Standard			X	
		After September 23, 1982, but prior to June 18, 1992 and rated 825 hp or greater	5	3	No Standard			X	
		After June 18, 1992 but prior to July 1, 2010	2.0 except under reduced speed, 80- 100% of full torque conditions may be 5.0	3	No Standard			X	
		On or after July 1, 2010	1	3	1		<u> </u>	X	
Lean Burn, 4SLB,	less than 500 hp	Before July 1, 2008	No Standard	No Standard	No Standard			X	
Non-emergency,	1	On or after July 1, 2008	2	3	1			X	
Spark-ignited, and Dual-fuel	greater than or equal to 500 hp	Before September 23, 1982	5.0 except under reduced speed, 80- 100% of full torque conditions may be	3	No Standard			X	
	1	Before June 18, 1992 and rated less than 825 hp	5.0 except under reduced speed, 80- 100% of full torque conditions may be 8.0	3	No Standard			X	
		After September 23, 1982, but prior to June 18, 1992 and rated 825 hp or greater	5	3	No Standard			X	
		After June 18, 1992 but prior to July 1, 2010	2.0 except under reduced speed, 80- 100% of full torque conditions, may be 5.0		No Standard			X	
		On or after July 1, 2010	1	3	1			X	
	and gas standard pern g/bhp-hr after January authorization under t	mit authorization or authorizations are is iss y 1, 2015. However, if the date of the initial	e authorized by this standard permit that exists sued for a spark ignited 4-stroke lean burn er authorization is after January 1, 2015, the sta with the limit of 2.0 g/bhp-hr for NOx. Th	ngine after January 1, 2012, NOx emis ndard permit holder shall have a three	ssions from that engine shall not exceed 2.0 year grace period from the date of the initial			x	
		5 5					└───	<u> </u>	
ırbines	Turbines shall not em	it greater than 25 ppmvd @ 15% O2 for NO	OX and 50 ppmvd @ 15% O2 for CO.						

Texland Petroleum, LP Lif-Lubheirs Non Rule Standard Permit Applicaton Table 7 Sampling and Demonstrations of Compliance

Category	Description	Specifications and Expectations			
		Specifications and Expectations	Yes	No	N/A
Exclusions	Control Systems	Control device monitoring and records are required only where the device is necessary for the site to meet emission rate limits	Х		
Sampling General	When Applicable Ports & Platforms, Methods, Notifications and Timing	 (A)If necessary, sampling ports and platforms shall be incorporated into the design of all exhaust stacks according to the specifications set forth in "Chapter 2, Stack Sampling Facilities." Engines and other facilities which are physically incapable of having platforms are excluded from this requirement. For control devices with effectiveness requirements only, appropriate sampling ports shall also be installed upstream of the inlet to control devices or controlled recovery systems with control efficiency requirements. Alternate sampling facility designs may be submitted for written approval by the Texas Commission on Environmental Quality (TCEQ) Regional Director or his designee. (B) Where stack testing is required, Sampling shall be conducted within 180 days of the change that required the registration, in accordance with the appropriate procedures of the TCEQ Sampling Procedures Manual and in accordance with the appropriate EPA Reference Methods. Unless otherwise specified, each performance test shall consist of three separate runs using the applicable test method. Each run shall be conducted for the time and under the conditions specified in the applicable standard. Where appropriate, sampling shall occur as three one-hour test runs and then averaged to demonstrate compliance with the limits of this authorization. Any deviations from those procedures must be approved in writing by the TCEQ Regional Director or his designee prior to sampling. (D) The heigenal Office that has jurisdiction over the site shall be contacted as soon as any testing is scheduled, but not less than 30 days prior to sampling. The region shall have discretion to amend the 30 day prior notification. Except for engine testing and liquid/gas analysis sampling, all other sampling shall include an opportunity for the appropriate regional office to schedule a pretest meeting. The notice shall licude or pretest meeting, if required; (ii)Date sampling will occur; (iii) Name of firm conducting sampling; (iv)Type of	X		
Fugitive monitoring and LDAR	Analyzers	An approved gas analyzer or other approved detection monitoring device used for the volatile organic compound lugitive inspection and repair requirement is a device that conforms to the requirements listed in Title 40 CFR '60.485(a) and (b), or is otherwise approved by the Environmental Protection Agency as a device to monitor for VOC fugitive emission leaks. Approved gas analyzers shall conform to requirements listed in Method 21 of 40 CFR Part 60, Appendix A. The gas analyzer shall be calibrated with methane. In addition, the response factor of the instrument for a specific VOC of interest shall be determined and meet the requirements of Standard permit 8 of Method 21. If a mixture of VOCs is being monitored, the response factor shall be calculated for the average composition of the process fluid. If a response factor less than 10 cannot be achieved using methane, then the instrument may be calibrated with one of the VOC to be measured or any other VOC so long as the instrument has a response factor of less than 10 for each of the VOC to be measured. In lieu of using a hydrocarbon gas analyzer and EPA Method 21, the owner or operator may use the Alternative Work Practice in 40 CFR Part 60, §60.18(g) - (i). The optical gas imaging instrument must meet all requirements specified in 40 CFR §60.18(g) - (i), except the annual Test Method 21 requirement in 40 CFR §60.18(h)(7) and the reporting requirement in 40 CFR §60.18(i)(5) do not apply.			x
Verify composition of materials	All site-specific gas or liquid analysis	Reports necessary to verify composition (including hydrogen sulfide (H2S) at any point in the process. All analyses shall be site specific or a representative sample may be used to estimate emissions if all of the parameters in the gas and liquid analysis protocol provided by the commission are met. A site-specific or define representative analysis shall be performed within 90 days of initial start of operation or implementation of a change which requires registration. When new streams are added to the site and the character or composition of the streams change and cause an increase in authorized emissions, or upon request of the appropriate Regional office or local air pollution control program with jurisdiction, a new analysis will need to be performed. Analysis techniques may include, but are not limited to, Gas Chromatography (GC), Tutweiler, stain tube analysis, and sales oil/condensate reports. These records will document the following: (A) H2S content; (B) flow rate; (C) heat content; or (D) other characteristic including, but not limited to: (i) American Petroleum Institute gravity and Reid vapor pressure (RVP);(ii) sales oil throughput; or (iii) condensate throughput. Laboratory extended VOC GC analysis at a minimum to C10+ and H2S analysis for gas and liquids for the following shall be performed and used for emission compliance demonstrations:(A) Separator at the inlet; (B) Dehydration Unit / Glycol Contactor prior to dehydrator;(C) Amine Unit prior to sweetening unit; (D) Separator dumping to gunbarrel or storage tank; (E) Tanks for liquids and vapors; or (F) P	x		

Texland Petroleum, LP Lif-Lubheirs Non Rule Standard Permit Applicaton Table 7 Sampling and Demonstrations of Compliance

Category	Description Specifications and Expectations		App		
	-	renorm stack sampling and other testing as required to establish the actual quantities of an contaminants being entited into the atmosphere (including out not	Yes	No	N/A
Engines & Turbines	Initial Sampling of (i) Any engine greater than 500 horsepower; (ii) Any turbine	In original states sampling and each each gas required to estatish the detail quantities of an econtamination origin end to the anticoprior (including out not firing rate shall be identified in the sampling report. Sampling shall be tested at a minimum of 50% of the design maximum firing rate of the facility. Each tested firing rate shall be identified in the sampling report. Sampling shall occur within 180 days after initial start-up of each unit. Additional sampling shall occur as requested by the TCEQ Regional Director. If there are multiple engines at an oil and gas sites (OGS) of identical model, year, and control system, sampling may be performed on 50% of the units and used for compliance demonstration of all identical units at the OGS. The remaining 50% of the units not initially tested must be tested during the next biennial testing period. This sampling is not required upon initial installation at any location if the engine or turbine was previously installed and tested at any location in the United States and the test conformed with EPA Reference Methods. Regardless of engine location, records of performance testing, or relied upon sampling reports, must remain with each specific engine for a minimum of five years unless records are unavailable and the permit holder performs the initial sampling on-site. No one may claim records are unavailable for the time period in which an engine is at the site which is authorized by this standard permit. This testing is not required for emergency engines unless requested by the TCEQ Regional Director. Idle engines do not need to be re-started only for the purpose of completing required testing. If biennial testing is required for an engine that is re-started for production purposes, the biennial testing is required within 30 days after re-starting the engine.			Х
Engines	Periodic Evaluation	The following is applicable to sites with federal operating permits only: (A) For any engine with a NOx standard under Table 6, conduct evaluations of each engine performance quarterly after initial compliance testing by measuring the NOx and CO content of the exhaust. Tests shall occur more than 30 days apart. Individual engines shall be subject to the quarterly performance evaluation if they were in operation for 1000 hours or more during the quarter period. If an engine is not operating, the permit holder may delay the test until such time as the engine is expected to run for more than fourteen days. Idled engines do not need to be restarted only for the purpose of completing required testing. (B) The use of portable analyzers specifically designed for measuring the concentration of each contaminant in parts per million by volume is acceptable for these evaluations. The portable analyzer shall be operated at minimum in accordance with the manufacturer's instructions. The operator may modify the procedure if it does not negatively alter the accuracy of the analyzer. Also, colorimetric testing (stain tubes) maybe used in these periodic evaluations. The NOx and CO emissions then shall be converted into units of grams per horsepower-hour and pounds per hour. (C) Emissions shall be measured and recorded in the as-found operating condition, except no compliance determination shall be established during start-up, shutdown, or under breakdown conditions. (D) In lieu of the above mentioned periodic monitoring for engines and biennial testing, the holder of this permit may install, calibrate, maintain, and operate a continuous emission monitoring system (CEMS) to measure and record the concentrations of NOx and CO from any engine, turbine, or other external combustion facility. Diluents to be measured include O2 or CO2. Except for system breakdowns, repairs, calibration checks, zero and span adjustments, and other quality assurance tests, the Continuous Emission Monitoring Systems (CEMS) shall be in continuous operate			x
Engines & Turbines	Any engine greater	Every two years starting from the completion date of the Initial Compliance Testing, any engine greater than 500 horsepower or any turbine shall be retested according to the procedures of the Initial Compliance Testing. Retesting shall occur within 90 days of the two year anniversary date. If a facility has been operated for less than 2000 hours during the two year period, it may skip the retesting requirement for that period. After biennial testing, any engine retested under the above requirements shall resume periodic evaluations within the next 6 calendar months (January to June or July to December). If biennial testing is required for an engine that is re-started for production purposes, the biennial testing shall be performed within 45 days after re-starting the engine.			Х

Texland Petroleum, LP Lif-Lubheirs Non Rule Standard Permit Applicaton Table 7 Sampling and Demonstrations of Compliance

Catagomy	Description	Specifications and Expectations	Ар	plicabil	ity
Category Description		Specifications and Expectations	Yes	No	N/A
Oxidation or	Initial Sampling and				1
Combustion Control	Monitoring for	Stack testing, when a company wants to establish efficiencies of 99% or greater, must be coordinated and approved. Sampling is required for VOC, benzene and			1
Device	performance for	H ₂ S at Region's discretion. The thermal oxidizer (TO) must have proper monitoring and sampling ports installed in the vent stream and the exit to the combustion			1
	VOC, Benzene, and	chamber, to monitor and test the unit simultaneously.			1
	H_2S	The temperature and oxygen measurement devices shall reduce the temperature and oxygen concentration readings to an averaging period of 6 minutes or less and			1
		record it at that frequency. The temperature measurement device shall be installed, calibrated, and maintained according to accepted practice and the manufacturer's			1
		specifications. The device shall have an accuracy of the greater of $\pm 0.75\%$ of the temperature being measured expressed in degrees Celsius or ± 2.5 °C.			1
		The oxygen or carbon monoxide analyzer shall be zeroed and spanned daily and corrective action taken when the 24-hour span drift exceeds two times the amounts			1
		specified Performance Specification No. 3 or 4A, 40 CFR Part 60, Appendix B. Zero and span is not required on weekends and plant holidays if instrument			I
		technicians are not normally scheduled on those days.			Х
		The oxygen or carbon monoxide analyzer shall be quality-assured at least semiannually using cylinder gas audits (CGAs) in accordance with 40 CFR Part 60,			
		Appendix F, Procedure 1, §5.1.2, with the following exception: a relative accuracy test audit is not required once every four quarters (i.e., two successive			I
		semiannual CGAs may be conducted). An equivalent quality-assurance method approved by the TCEQ may also be used. Successive semiannual audits shall occur			I
		no closer than four months. Necessary corrective action shall be taken for all CGA exceedances of ±15 percent accuracy and any continuous emissions monitoring			I
		system downtime in excess of 5% of the incinerator operating time.			I
		These occurrences and corrective actions shall be reported to the appropriate TCEQ Regional Director on a quarterly basis. Supplemental stack concentration			I
		measurements may be required at the discretion of the appropriate TCEQ Regional Director. Quality assured or valid data of oxygen or carbon monoxide analyzer			I
		must be generated when the TO is operating except during the performance of a daily zero and span check. Loss of valid data due to periods of monitor break down,			I
		inaccurate data, repair, maintenance, or calibration may be exempted provided it does not exceed 5% of the time (in minutes) that the oxidizer operated over the			I
		previous rolling 12 month period. The measurements missed shall be estimated using engineering judgment and the methods used recorded.			I

Catagory	Decerintian	Specifications and Expectations	Ар		lity
Category	Description	Specifications and Expectations	Yes	No	N/2
Site Production or	natural gas, oil,	Site inlet and outlet gas volume and sulfur concentration, daily gas/liquid production and load-out from tanks	Х		
Collection	condensate, and				
	water production				
	records				
Equipment and	Current process	Accurate and detailed plot plan with property line, off-site receptors, and all equipment on-site or drawings with sufficient detail to confirm all authorized facilities	Х		
facility summary	description	to confirm emission estimates, impact review, and registration scope			
Equipment	Process units, tanks,	A copy of the registration and emission calculations including the fixed equipment sizes or capacities and manufacturer's specifications and programs to maintain	Х		
Specifications	vapor recovery	performance, with the plan and records for routine inspection, cleaning, repair and replacement.			
	systems; flares;				
	thermal oxidizers;				
	and reboiler control				
	devices				
Physical Inspection		A record of the component count shall be maintained. A record of the date each quarterly inspection was made and the date components found leaking were	Х		
	Check	repaired or the date of the planned shutdown.			
Voluntary LDAR	Details of fugitive	The following records are required where a company uses an LDAR program to reduce the potential fugitive emissions from the site to meet emission limitations or			Σ
Program	component	certify fugitive emissions.			
		(A) A monitoring program plan must be maintained that contains, at a minimum, the following information:			
	LDAR results,	(i) an accounting of all the fugitive components by type and service at the site with the total uncontrolled fugitive potential to emit estimate;			
	including QA, QC	(ii) identification of the components at the site that are required to be monitored with an instrument or are exempt with the justification, note the following can be			
		used for this purpose: (a) piping and instrumentation diagram (PID); or (b) a written or electronic database.; (iii) the monitoring schedule for each component at the			
		site with difficult-to-monitor and unsafe-to-monitor valves, as defined by Title 30 Texas Administrative Code Chapter 115 (30 TAC Chapter 115), identified and			
		justified, note if an unsafe-to-monitor component is not considered safe to monitor within a calendar year, then it shall be monitored as soon as possible during safe-			
		to-monitor times and a record of the plan to monitor shall be maintained; and (iv) the monitoring method that will be used (audio, visual, or olfactory (AVO) means;			
		Method 21; the Alternative Work Practice in 40 CFR §60.18(g) - (i)); (v) for components where instrument monitoring is used, information clarifying the adequacy			
		of the instrument response; (vi) the plan for hydraulic or pressure testing or instrument monitoring new and reworked components.			
		(B) Records must be maintained of all monitoring instrument calibrations.			
		(C) Records must be maintained for all monitoring and inspection data collected for each component required to be monitored with a Method 21 portable analyzer			
		that include the type of component and the monitoring results in ppmv regardless if the screening value is above or below the leak definition.			
		(D) Leaking components must be tagged and a leaking-components monitoring log must be maintained for all leaks greater than the applicable leak definition			
		(i.e.10,000 ppmv, 2000 ppmv, or 500 ppmv) of VOC detected using Method 21, all leaks detected by AVO inspection, and all leaks found using Alternative Work			
		Practice specified in 40 CFR §60.18(g)-(i). The log must contain, at a minimum, the following:			
		(i) the method used to monitor the leaking component (audio, visual, or olfactory inspection; Method 21; or the Alternative Work Practice in 40 CFR §60.18(g) -			
		(i)); (ii) the name of the process unit or other appropriate identifier where the component is located; (iii) the type (e.g., valve or seal) and tag identification of			
		component; (iv) the results of the monitoring (in ppmv if a Method 21 portable analyzer was used); (v) the date the leaking component was discovered; (vi) the date			
		that a first attempt at repair was made to a leaking component; (vii) the date that a leaking component is repaired; (viii) the date and instrument reading of the			
		recheck procedure after a leaking component is repaired; and (ix) the leaks that cannot be repaired until turnaround and the date that the leaking component is			
		placed on the shutdown list.			
		(E) If the owner or operator is using the Alternative Work Practice specified in 40 CFR §60.18(g) - (i), the records required by 40 CFR §60.18(i)(4).			
		(F) A record of the monitored value any open-ended line or valve for which is a repair or replacement is not completed within 72 hours and monitoring in lieu of			
		covering is chosen.			
		(G) Any open-ended line or valve caused by a repair or replacement not completed within 72 hours shall be monitored as specified in table 10 and the checks and			1
		any corrective actions taken shall be recorded.			
		(H) Weekly audio, visual and olfactory inspections shall be noted in a log			
		(1) A check of the reading for any pressure-sensing device to verify runture disc integrity shall be performed weekly and noted in a log.			
Minor Changes	Additions, changes	Records showing all replacements and additions, including summary of emission type and quantities, for a rolling 6-month period of time.	Х		1
0	or replacement				

Category	Description	Specifications and Expectations	Applica		
			Yes	No	N/A
Equipment Replacement	Like-Kind replacements	Records on equipment specifications and operations, including summary of emissions type and quantity.	Х		
Process Units	Glycol Dehydration Units	For emission estimates, the worst-case combination of parameters resulting in the greatest emission rates must be used. If worst-case parameters are not used, then glycol dehydrator unit monitoring records include dry gas flow rate, absorber pressure and temperature, glycol type, and circulation rate recorded weekly. If worst-case parameters are not used, then in addition to weekly unit monitoring, where control of flash tank or reboiler emissions are required to meet the emission limitations of the section and emissions are certified, the following control monitoring requirements apply weekly: flash tank temperature and pressure, any reboiler stripping gas flow rate, and condenser outlet temperature. VRU, flare, or thermal oxidizer control or reboiler fire box used for control must comply with the monitoring and recordkeeping for those devices. Where all emissions from the flash tank and the reboiler or reboiler condenser vent are directed to a VRU, flare, or thermal oxidizer designed to be on-line at all times the glycol dehydrator is in operation, the control system monitoring for the glycol dehydrator is not required.			X
	Amine Units	Amine units may simply retain site production or inlet gas records if all sulfur compounds in the inlet are assumed to be emitted. Where only partial removal of the inlet sulfur is assumed, for emission estimates, the worst-case combination of parameters resulting in the greatest emission rates must be used. If worst-case parameters are not used, then records of the amine solution, contactor pressure, temperature and pump rate shall be maintained. Where the waste gas is vented to combustion control, the requirements of the control device utilized should be noted.			Х
Boilers, Reboilers, Heater-Treaters, and and Process Heaters	Combustion	Records of Operational Monitoring and Testing Records Records of the hours of operation of every combustion device of any size by the use of a process monitor such as a run time meter, fuel flow meter, or other process variable that indicates a unit is running unless, in the registration for the facility, the emissions from the facility were calculated using full year operation at maximum design capacity in which case no hours of operation records must be kept.			Х
Internal Combustion Engines	Combustion	Records of Appropriate Operational Monitoring and Testing Records Records of the hours of operation of every combustion device and engine of any size by the use of a process monitor such as a run time meter, fuel flow meter, or other process variable that indicates a unit is running. The owner or operator may test and retest at the most frequent intervals identified in Table 7 in lieu of installing a process monitor and recording the hours of operation. If an engine has no testing requirements in Table 7, no records of the hours of operation must be kept.			Х
Gas Fired Turbines	Combustion	Records of Appropriate Operational Monitoring and Testing Records Records of the hours of operation of every turbine greater than 500 hp by the use of a process monitor such as a run time meter, fuel flow meter, or other process variable that indicates a unit is running unless the permit holder determined emissions from the facility assuming full year operation at maximum design capacity in which case no hours of operation records must be kept.			X
Fuel Records	VOC and Sulfur Content	A fuel flow meter is not required if emissions are based on maximum fuel usage for 8,760 hr/yr. There are no specific requirements for allowable VOC content of fuel. If field gas contains more than 1.5 grains (24 ppmv) of H2S or 30 grains total sulfur compounds per 100 dry standard cubic feet, the operator shall maintain records, including at least quarterly measurements of fuel H_2S and total sulfur content, which demonstrate that the annual SO_2 emissions do not exceed limitations	Х		
Tanks/Vessels	Color/Exterior	Records demonstrating design, inspection, and maintenance of paint color and vessel integrity	Х		
Tanks/Vessels	Emission and emission potential	Maintain a record of the material stored in each tank/vessel that vents to the atmosphere and the maximum vapor pressure used to establish the maximum potential short-term emission rate. Where pressurized liquids can flash in the tank/vessel monitor and record weekly the maximum fluid pressure that can enter the tank / vessel. Records that tank / vessel hatches and relief valves are properly sealed when tank/vessel is directed to control and after loading events (as needed).	Х		
Truck Loading	All Types	Records indicating type of material loaded, amount transferred, method of transfer, condition of tank truck before loading.	Х		
	Vacuum Trucks	Note loading with an air mover or vacuum. No additional record is needed where a vacuum truck uses only an on-board or portable pump to push material into the truck.			Х
	Controlled Loading	Where control is required note the control that is utilized.			Х

Catagory	Description	Constituent and Emperated and	Applicab		oility	
Category	Description	Specifications and Expectations	Yes	No	N/A	
Category Control Devices	Vapor Capture and Recovery	Specifications Records of hours of use are required for all units and on-line time must be considered when emission estimates and actual emissions inventories are calculated. mVRU Basic Design Function Record: Record demonstrating the unit captures vapor and includes a sensing device set to capture this vapor at peak intervals. Additional Design Parameter Record: Record demonstrating additional design parameters are utilized such as additional sensing equipment, a properly designed bypass system, an appropriate gas blanket, an adequate compressor selection, and the ability to vary the drive speed for units utilizing electric driven compressors mVRUs that are used at oil and gas sites to control emissions may claim up to 100% control efficiency provided records of basic and additional design functions are parameters of a VRU along with appropriate records listed in Table 8 are satisfied. mVRUs may claim up to 99% control efficiency for units where records of basic and additional design functions are satisfied and parameters listed in Table 8 are not satisfied. nVRU The record of proper design must be kept to demonstrate how the unit was designed and for what capacity. The record of liquid replacement must be kept, along with the calculations for demonstrating that the VOC to liquid ratio has been maintained. Additionally, the system must be tested to demonstrate the efficiency. This testing needs to be performed and results recorded to receive 95% control efficiency no longer than: vacuum truck emissions: after 20 loads have been pulled through the IVRU, for tanks: Produced Water – Monthly, Crude – Bi-Monthly, Condensate – Weekly. This testing needs to be performed and results recorded to receive 95% control efficiency no longer than: vacuum truck e		No	N/A X	
Cooling Tower	Design data Particulate Monitoring, Maintenance and Repair	Records shall be kept of maximum cooling water circulation rate and basis, maximum total dissolved solids allowed as maintained through blowdown, and towers design drift rate. These records are only required if the cooling system is used to cool process VOC streams or control from drift eliminators or minimizing solids content is needed to meet particulate matter emission limits. Inspect and record integrity of drift eliminators annually, repairing as necessary. If a maximum solids content must be maintained through blowdowns to meet particulate emission rate limits, cooling water shall be sampled for total dissolved solids (TDS) once a month at prior to any periodic blow downs and maintain records of the monitoring results and all corrective actions.			X X	
Planned Maintenance, Start- up, and Shutdown (MSS)	Alternate Operational Scenaris and Redirection of Vent Streams	Cooling water VOC concentrations above 0.08 parts per million by volume (ppmv) indicate faulty equipment. Equipment shall be maintained so as to minimize VOC emissions into the cooling water. Faulty equipment shall be repaired at the earliest opportunity but no later than the next scheduled shutdown of the process unit in which the leak occurs. Records must be maintained of all monitoring data and equipment repairs. Records of redirection of vent streams during primary operational unit or control downtime, including associated alternate controls, releases and compliance with emission limitations.	X		X	
Planned Maintenance, Start- up, and Shutdown (MSS)	Pigging, Purging, and Blowdowns	Pigging records, including catcher design, date, emission estimate to atmosphere and to control, and when controlled, the control device. Note where a control device is necessary to meet emission limitations the device is subject to the requirements of standard permit (e) and record requirements of this table. Purging and blowdown records, including the volume and pressure and a description of the piping and equipment involved, the date, emission estimate to atmosphere and to control, and when controlled, the control device. Where purging to control to meet a lower concentration before purging to atmosphere is conducted the concentrations of VOC, BTEX or H ₂ S as appropriate must be measured and recorded prior to purging to atmosphere. Note where a control device is necessary to meet emission limitations the device is subject to the requirements of standard permit (e) and record requirements of this table.	X			

Cata	Deservert	Description Specifications and Expectations	Applicab		bility	
Category	Description	Specifications and Expectations	Yes	No	N/A	
Planned Maintenance, Start- up, and Shutdown (MSS)	Temporary Facilities for Bypass, and Degassing and Purghing	Temporary facility records, including a description and estimate of potential fugitive emissions from temporary piping, size and design of facilities (eg. tanks or pan volume, fill method, and throughput; engine horse power, fuel and usage time, flare tip area, ignition method, and heating value assurance method; etc.) and the date and emission estimate to atmosphere and to control for their use			X	
Planned Maintenance, Start- up, and Shutdown (MSS)	Management of Sludge from Pits, Ponds, Sumps and Water Conveyances	Records including the source identification, removal plan, emission estimate direct to atmosphere and through control. Note where a control device is necessary to meet emission limitations the device is subject to the requirements of standard permit (e) and record requirements of this table.			X	
Planned Maintenance, Start- up, and Shutdown (MSS)	Degassing of Purging of Tanks, Vessels, or Other Facilities	Records including: a) the EPN and description of vessels and equipment degassed or purged; b) the material, volume and pressure (if applicable); c) the volume of purge gas used; d) a description of the piping and equipment involved; e) clarifying estimates for a coated surface or heel; f) the date; g) emission estimate to atmosphere and to control; h) when controlled, the control device; and i) where purging to a control device to reduce concentrations before purging to atmosphere, the concentrations of VOC, BTEX or H2S as appropriate must be	X			
Planned Maintenance, Start- up, and Shutdown (MSS)	Records	Records or copies of work orders, contracts, or billing by contractors for the following activities shall be kept at the site, or nearest manned site, and made available upon request: • Routine engine component maintenance including filter changes, oxygen sensor replacements, compression checks, overhauls, lubricant changes, spark plug changes, and emission control system maintenance; • Boiler refractory replacements and cleanings; • Heater and heat exchanger cleanings; • Turbine hot standard permit swaps;	Х			
Control Devices	Flare Monitoring	• Pressure relief value testing, calibration of analytical equipment: instrumentation/analyzer maintenance: replacement of analyzer filters and screens. Basic monitoring requires the flare and pilot flame to be continuously monitored by a thermocouple or an infrared monitor. Where an automatic ignition system is employed, the system shall ensure ignition when waste gas is present. The time, date, and duration of any loss of flare, pilot flame, or auto-ignition shall be recorded. Each monitoring device shall be accurate to, and shall be calibrated at a frequency in accordance with, the manufacturer's specifications. A temporary, portable or backup flare used less than 480 hours per year is not required to be monitored. Records of hours of use are required for all units and on-line time must be considered when emission estimates and actual emissions inventories are calculated.			X	
Control Devices	Thermal Oxidation and Vapor Combustion Performance Monitoring Basic	Control device monitoring and records are required only where the device is necessary for the site to meet emission rate limits. Basic monitoring is a thermocouple or infrared monitor that indicates the device is working. Records of hours of use are required for all units and on-line time must be considered when emission estimates and actual emissions inventories are calculated.			X	
	Intermediate	Intermediate monitoring and records include continuously monitoring and recording temperature to insure the control device is working when waste gas can be directed to the device and showing compliance with the 1400 degrees Fahrenheit if applicable.			Х	
	Enhanced	Enhanced monitoring requires continuous temperature and oxygen or carbon monoxide monitoring on the exhaust with six minute averages recorded to show compliance with the temperature requirement and the design oxygen range or a CO limit of 100 ppmv. Some indication of waste gas flow to the control device, like a differential pressure, flow monitoring or valve position indicator, must also be continuously recorded, if the flow to the control device can be intermittent.			X	
	Alternate Monitoring	Records of stack testing and the monitored parameters during the testing shall be maintained to allow alternate monitoring parameters and limits.			Х	

Catagory	Description	Specifications and Expectations	Ар	plicabil	lity
		Specifications and Expectations	Yes	No	N/A
Control Devices	Control process with	Basic monitoring is any continuous monitor that indicates when the flame in the device is on or off (other than partial operational use). The following are effective			Х
	combustion or	basic options: a fire box temperature monitor, rising or steady process temperature monitor, CO monitor, primary fuel flow monitor, fire box pressure monitor or			
	heating devices (e.g.	equivalent. Enhanced monitoring for 91 to 99% control, where waste gas is not introduced as the primary fuel, must include the following monitors: continuous fire			
	reboilers, heaters &	box or fire box exhaust temperature, and CO and O2 monitoring, with at least 6 minute averages recorded. Additionally, enhanced monitoring where the waste gas			
	furnaces)	may be flowing when the control device is not firing must show continuous disposition of the waste gas streams, including continuous monitoring of flow or valve			
		position through any potential by-pass to the control where more than 50% run time of control is claimed. [Basic monitoring is any continuous monitor that			
		indicates when the flame in the device is on or off (other than partial operational use). The following are effective basic options: a fire box temperature monitor,			
		rising or steady process temperature monitor, CO monitor, primary fuel flow monitor, fire box pressure monitor or equivalent. Enhanced monitoring for 91 to 99%			
		control, where waste gas is not the primary fuel, must include the following monitors: continuous fire box or fire box exhaust temperature monitoring; and CO and			
		O2 monitoring, with at least 6 minute averages recorded. Additionally, enhanced monitoring where the waste gas may be flowing when the control device is not			
		firing must show continuous disposition of the waste gas streams. This includes continuous monitoring of flow or valve position through any potential by-pass to the			
		control where more than 50% run time of the control is claimed.]			

Texland Petroleum, LP Lif-Lubheirs Non Rule Standard Permit Applicaton Table 9 Fugitive Component LDAR BACT Table Monitoring and Records Demonstrations

Exceptions	Additional Details	Ap	plicabi	lity
	Autional Details	Yes	No	N/A
Total uncontrolled potential to emit from all components ≤ 10 tpy		Х		
Minimum Design, Monitoring, Technique o	or Control for all fugitive components with uncontrolled potential to emit of ≥ 10 tpy VOC or ≥ 1 tpy H ₂ S			
		Ap	plicabi	lity
Requirements	Additional Details	Yes	No	N/A
Construction of new and reworked piping, valves, pump systems, and compressor systems shall conform to applicable American National Standards Institute (ANSI), American Petroleum Institute (API), American Society of Mechanical Engineers (ASME), or equivalent codes.	To the extent that good engineering practice will permit, new and reworked valves and piping connections shall be so located to be reasonably accessible for leak-checking during plant operation.			X
New and reworked underground process pipelines shall contain no buried valves such that fugitive emission monitoring is rendered impractical. New and reworked piping connections shall be welded or flanged. Screwed connections are permissible only on piping smaller than two-inch diameter. Gas or hydraulic testing of the new and reworked piping connections at no less than operating pressure shall be performed prior to returning the components to service or they shall be monitored for leaks using an approved gas analyzer within 15 days of the components being returned to service. Where technically feasible new and reworked components may be screened for leaks with a soap bubble test within 8 hours of being returned to service in lieu of instrument testing. Adjustments shall be made as necessary to obtain leak-free performance.				X
Each open-ended valve or line shall be equipped with an appropriately sized cap, blind flange, plug, or a second valve to seal the line so that no leakage occurs. Except during sampling, both valves shall be closed.	If the removal of a component for repair or replacement results in an open ended line or valve, it is exempt from the requirement to install a cap, blind flange, plug, or second valve for 72 hours. If the repair or replacement is not completed within 72 hours, the permit holder must complete either of the following actions within that time period: the line or valve must have a cap, blind flange, plug, or second valve installed; or the open-ended valve or line shall be monitored once for leaks above background for a plant or unit turnaround lasting up to 45 days with an approved gas analyzer and the results recorded. For all other situations, the open-ended valve or line shall be monitored once at the end of the 72 hour period following the creation of the open ended line and monthly thereafter with an approved gas analyzer and the results recorded. For turnarounds and all other situations, leaks are indicated by readings 20 ppmv above background and must be repaired within 24 hours or a cap, blind flange, plug, or second valve must be installed on the line or valve.			X
Components shall be inspected by visual, audible, and/or olfactory means at least weekly by operating personnel walk-through.				Х
Accessible valves shall be monitored by leak-checking for fugitive emissions quarterly using an approved gas analyzer. Sealless/leakless valves (including, but not limited to, welded bonnet bellows and diaphragm valves) and relief valves equipped with a rupture disc upstream or venting to a control device are not required to be monitored. If an unsafe-to-monitor valve is not considered safe to monitor within a calendar year, then it shall be monitored as soon as possible during safe-to-monitor times. A difficult-to-monitor component for which quarterly monitoring is specified may instead be monitored annually.	Sealless/leakless valves and relief valves equipped with rupture disc or venting to a control device and exempted from instrument monitoring are not counted in the fugitive emissions estimates. See Table 7 Sampling and Demonstrations of Compliance for Fugitive and LDAR Analyzer requirements. See Table 8, Monitoring and Records Demonstrations to identify Difficult-to-monitor and unsafe-to-monitor valves.			X
For valves equipped with rupture discs, a pressure-sensing device shall be installed between the relief valve and rupture disc to monitor disc integrity.	All leaking discs shall be replaced at the earliest opportunity but no later than the next process shutdown.			Х

Texland Petroleum, LP Lif-Lubheirs Non Rule Standard Permit Applicaton Table 9 Fugitive Component LDAR BACT Table Monitoring and Records Demonstrations

Examples	Additional Details	Ap	plicabil	lity
Exceptions	Additional Details	Yes	No	N/A
All pump, compressor and agitator seals shall be monitored quarterly with an approved gas analyzer or be equipped with a shaft sealing system that prevents or detects emissions of VOC from the seal. Seal systems designed and operated to prevent emissions or seals equipped with an automatic seal failure detection and alarm system need not be instrument monitored. Seal systems that prevent emissions may include (but are not limited to) dual pump seals with barrier fluid at higher pressure than process pressure or seals degassing to vent control systems kept in good working order. Submerged pumps or sealless pumps (including, but not limited to, diaphragm, canned, or magnetic-driven pumps) may be used to satisfy the requirements of this condition and need not be monitored.	Pumps compressor and agitator seals that prevent leaks or direct emissions from the seals to control and are exempt from instrument monitoring are not counted in the fugitive emissions estimates. Equipment equipped with alarms would still be counted. See Table 7 Sampling and Demonstrations of Compliance for Fugitive and LDAR Analyzer requirements.			X
For a site where the total uncontrolled potential to emit from all components is < 25 tpy; Components found to be emitting VOC in excess of 10,000 parts per million by volume (ppmv) using EPA Method 21, found by visual inspection to be leaking (e.g. whistling, dripping or blowing process fluids or emitting hydrocarbon or H ₂ S odors) or found leaking using the Alternative Work Practice in 40 CFR §60.18(g) - (i) shall be considered to be leaking and shall be repaired, replaced, or tagged as specified. A first attempt to repair the leak must be made within 5 days. A leaking component shall be repaired as soon as practicable, but no later than 15 days after the leak is found. If the repair of a component would require a unit shutdown, the repair may be delayed until the next scheduled shutdown. All leaking components which cannot be repaired until a scheduled shutdown shall be identified for such repair by tagging.	Components subject to routine instrument monitoring with an approved gas analyzer under this leak definition my claim a 75% emission reduction credit when evaluating controlled fugitive emission estimates. This reduction credit does not apply when evaluating uncontrolled emission or to any component not measured with an instrument quarterly, but is allowed for all components monitored by the Alternative Work Practice. See Table 7 Sampling and Demonstrations of Compliance for Fugitive and LDAR Analyzer requirements			X
Components not subject to an instrument monitoring program but found to be emitting VOC in excess of 10,000 ppmv using EPA Method 21, found by audio, visual or olfactory inspection to be leaking (e.g. whistling, dripping or blowing process fluids or emitting hydrocarbon or H ₂ S odors) shall be considered to be leaking and shall be repaired, replaced, or tagged as specified. All components are subject to monitoring when using the Alternative Work Practice in 40 CFR $\frac{\delta(0) + (i)}{10}$	At the discretion of the TCEQ Executive Director or designated representative, early unit shutdown or other appropriate action may be required based on the number and severity of tagged leaks awaiting shutdown.			Х

Minimum Design, Monitoring, Technique or Control for all fugitive components with uncontrolled potential to emit of \geq 25 tpy VOC or \geq 5 tpy H₂S

Requirements	Additional Details	Ар	plicabil	lity
Requirements	Additional Details	Yes	No	N/A
For a site where the total uncontrolled potential to emit from all components is \geq	Components subject to routine instrument monitoring under this leak definition my claim a 97% emission reduction credit			Х
25 tpy; All the requirements for < 25 tpy VOC above apply, except valves found to	for valves and an 85% emission reduction credit for pump, compressor and agitator seals when evaluating controlled			
be emitting VOC in excess of 500 ppmv using EPA Method 21, found by audio,	fugitive emission estimates. This reduction credit does not apply when evaluating uncontrolled emission or to any			
visual or olfactory inspection to be leaking (e.g. whistling, dripping or blowing	component not measured with an instrument quarterly. See Table 7 Sampling and Demonstrations of Compliance for			
process fluids or emitting hydrocarbon or H ₂ S odors) or found leaking using the	Fugitive and LDAR Analyzer requirements.			
Alternative Work Practice in 40 CFR §60.18(g) - (i) shall be considered to be				
leaking and shall be repaired, replaced, or tagged as specified and Pump,				
compressor, and agitator seals found to be emitting VOC in excess of 2,000 ppmv				
using EPA Method 21, found by audio, visual or olfactory inspection to be leaking				
(e.g. whistling, dripping or blowing process fluids or emitting hydrocarbon or H2S				
odors) or found leaking using the Alternative Work Practice in 40 CFR §60.18(g) -				1
(i) shall be considered to be leaking and shall be repaired, replaced, or tagged as				1
if1				

Texland Petroleum, LP Lif-Lubheirs Non Rule Standard Permit Applicaton Table 9 Fugitive Component LDAR BACT Table Monitoring and Records Demonstrations

Exceptions	Additional Details		plicabi	lity
Exceptions	Additional Details	Yes	No	N/A
	LDAR Monitoring Options			
Any site may reduce the controlled fugitive emission estimates by including components not required to be monitored in the quarterly instrument monitoring program or applying the lower leak definition of the more stringent program as appropriate.	Quarterly monitoring at a leak definition of 10,000 ppmv would equate to a 75% emission reduction credit when evaluating controlled fugitive emission estimates for the component. Quarterly monitoring at a leak definition of 500 ppmv would equate to a 97% emission reduction credit for valves, flanges and connectors, a 93% emission reduction credit for pumps, and a 95% emission reduction credit for compressor, agitator seals and other component groups when evaluating controlled fugitive emission estimates. This reduction credit does not apply when evaluating uncontrolled emission or to any component not measured with an instrument quarterly. See Table 7 Sampling and Demonstrations of Compliance for Eucitive and LDAR Analyzer requirements.			X
After completion of the required quarterly inspections for a period of at least two years, the operator of the OGS facility may change the monitoring schedule as follows:(i)After two consecutive quarterly leak detection periods with the percent of valves leaking equal to or less than 2.0%, an owner or operator may begin to skip one of the quarterly leak detection periods for the valves in gas/vapor and light liquid service.(ii)After five consecutive quarterly leak detection periods with the percent of valves leaking equal to or less than 2.0%, an owner or operator may begin to skip three of the quarterly leak detection periods for the valves in gas/vapor and light liquid service. If the owner or operator is using the Alternative Work Practice in 40 CFR §60.18(g) - (i), the alternative frequencies specified in this standard permit are not allowed.				X
Shutdown prior to Maintenance of Fugitive Components	Start-up after Maintenance of components			
All components shall be kept in good repair. During repair or replacement, emission releases from the emptying of associated piping, equipment, and vessels must meet the emission limits and control requirements listed under pipeline or compressor blowdowns.	When returning associated equipment and piping to service after repair or replacement of fugitive components, appropriate leak detection shall occur and correction, maintenance or repair shall be immediately performed if fugitive components are not in good working order.	Х		

Source or Facility	Air Containment	Minimum Accountable Design Control or Technique Control Efficiencies and Other Details during Production Operations	Applicability		
		Minimum Acceptable Design, Control or Technique, Control Efficiencies, and Other Details during Production Operations	Yes		N/A
Combined Control Requirements	<25 tpy VOC	No add on control is required if the continuous and periodic vents from all units, vessels and equipment (including normal operation process blow downs) is less than 25 tons of VOC per year.	Х		
-	≥ 25 tpy VOC	All continuous and periodic vents on process vessels and equipment with potential emissions containing $\geq 1\%$ VOC at any time must be captured and directed to a control device listed in the Control Device BACT Table with a minimum design control efficiency of at least 95%, if the sum of the uncontrolled PTE of the vents at the site will equal or exceed 25 tons of VOC per year. A site total potential to emit of 1 tpy of VOC from vent gas streams may be exempted from this control requirement.			X
Glycol Dehydration Unit	Uncontrolled PTE <10 tpy VOC	No control is required. Condensers included in the equipment constructed must be maintained and operated as specified by the manufacturer or design engineering.			X
	VOC, BTEX, H ₂ S				
	Uncontrolled PTE ≥ 10 tpy and < 50 tpy VOC	All non-combustion VOC emissions shall be routed to a vapor recovery unit (VRU), the unit reboiler, or to an appropriate control device listed in the Control Device BACT Table. This includes the emissions from the condenser vent. Liquid waste or product material captured by a condenser must be enclosed and transferred to a unit compliant with the requirements of this table and the condenser must meet the requirements listed in the Control Device BACT Table. For condensers, greater efficiencies may be claimed where enhanced monitoring and testing are applied following			X
	VOC, BTEX, H ₂ S	Table 7. If the unit reboiler is used to control the VOC emissions from the dehydrator (e.g. to control the condenser vent and the flash tank if one is present) the unit must be designed to efficiently combust those vented VOCs at least 50% of the time the unit is operated			
	Uncontrolled PTE ≥ 50 tpy VOC	All non-combustion VOC emissions shall be captured and directed to an appropriate control device listed in the Control Device BACT Table with a minimum design control efficiency of at least 95%.			X
	VOC, BTEX, H ₂ S				
Atmospheric Oil/Water separators	VOC with partial pressure < 0.5 psia at maximum liquid temperature or 95 F whichever is greater.	May vent to atmosphere through vent no larger than 3 inch diameter. If H ₂ S can exceed 24 ppmv in the vapor space the separator vent shall be captured and directed to a control device listed in the Control Device BACT Table with a minimum design control efficiency of at least 95%.	X		
	VOC, BTEX, H_2S				
	VOC with partial pressure ≥ 0.5 psia at maximum liquid surface temperature or 95 F whichever is greater	The oil layer must have a floating cover over the entire liquid surface with a conservation vent to atmosphere or the vents must be captured and directed to a control device listed in the Control Device BACT Table with a minimum design control efficiency of at least 95%. If H ₂ S can exceed 24 ppmv in the vapor space the separator vent shall be captured and directed to a control device listed in the Control Device BACT Table with a minimum design control efficiency of at least 95%. If the separator operates with more than 25,000 gallons (595 barrels) of liquid contained or is used as an oil storage tank, it shall be treated as a storage tank and meet those requirements.			X
	VOC, BTEX, H ₂ S				
	Oil water separators where the material entering the separator may flash.	These separators must be treated as process separators with a gas stream and follow those requirements.	X		
	VOC, BTEX, H ₂ S				

Source or Facility	Air Containment	Minimum Acceptable Design, Control or Technique, Control Efficiencies, and Other Details during Production Operations		plicabi	
Source of Facility	An Containment		Yes	No	N/A
Units including auxiliary fuel for combustion control	H ₂ S	Fuel for all combustion units at the site shall be sweet natural gas or liquid petroleum gas, fuel gas containing no more than ten grains of total sulfur per 100 dry standard cubic feet (dscf), or field gas.			X
devices					_
Boilers, Reboilers, Heater Treaters, and Process Heaters	11 10/210	If any unit has a designed maximum firing rate of < 40 MMBTU/hr and greater than 10 MMBtu/hr, it must be designed and operated for good combustion and meet 0.10 lb/MMBtu for NO _X . For boilers and reboilers greater than or equal to 40 MMBtu/hr, emission shall not exceed 0.036 lb/MMBtu for NO _X . For heaters and			X
Tiocess fieaters		heater treaters greater than or equal to 40 MMBtu/hr but less than 100 MMBtu/hr, emissions shall not exceed 0.06 lb/MMBtu for NO _X . Heaters and heater treaters greater than or equal to 100 MMBtu/hr shall not exceed 0.036 lb/MMBtu for NO _X . For boilers, reboilers, process heaters, and heater treaters with heat inputs equal to or greater than 10 MMBtu/hr, the emission limit for CO is 0.074 lb CO/MMBtu			
Gas Fired Turbines	NO _X , CO, PM _{10/2.5} , VOC, HCHO, SO ₂	Units shall be designed and operate with low NOx combustors and meet 25 ppmvd @ 15% O2 for NOX and 50 ppmvd @ 15% O2 for CO.			X
All Tanks	Uncontrolled PTE of < 1.0 tpy VOC or < 0.1 tpy H2S	Open-topped tanks or ponds containing VOCs or H ₂ S are allowed.			X
All Tanks	$\begin{array}{l} \text{Uncontrolled PTE of} \\ \geq 1.0 \text{ tpy VOC or} \geq \\ 0.1 \text{ tpy } H_2 S \end{array}$	Open-topped tanks or ponds containing VOCs or H_2S are not allowed. Tank hatches and valves, which emit to the atmosphere, shall remain closed except for sampling or planned maintenance activities. All pressure relief devices (PRD) shall be designed and operated to ensure that proper pressure in the vessel is maintained and shall stay closed except in upset or malfunction conditions. If the PRD does not automatically reset, it must be reset within 24 hours at a manned site and within one week if located at an unmanned site.			X
Crude oil, Condensate, Treatment chemicals, Produced water, Fuel, Slop/Sump Oil and any other storage tanks or vessels that contain a VOC	VOC with partial pressure < 0.5 psia at maximum liquid surface temperature or 95 F whichever is greater, or with uncontrolled PTE of < 5 tpy VOC from working and breathing losses, including flash emissions	All storage tanks with a storage capacity greater than 500 gallons must be submerged fill. Existing tanks and vessels (including temporary liquid storage tanks) which are not increasing emissions at an OGS shall also meet this requirement no later than 180 days after a registration renewal as of January 1, 2016	X		

с Б .114	Minimum Acceptable Design Control on Technique Control Efficiencies and Other Details during Dreduction Orangtions		Applicabilit		
Source or Facility	Air Containment	Minimum Acceptable Design, Control or Technique, Control Efficiencies, and Other Details during Production Operations	Yes	No	N/A
(Cont'd)	VOC with partial pressure ≥ 0.5 psia at maximum liquid surface temperature or 95 F (whichever is greater), and with uncontrolled PTE of < 5 tpy from working and breathing losses, including flash emissions VOC, BTEX,	All storage tanks with a storage capacity greater than 500 gallons must be submerged fill. Un-insulated tank exterior surfaces exposed to the sun shall be of a color that minimizes the effects of solar heating (including, but not limited to, white or luminum). To meet this requirement the solar absorptance should be 0.43 or less, as referenced in Table 7.1-6 in AP-42. Paint shall be maintained in good condition. If a new or modified tank cannot be painted white or other reflective color, then another control device may be used to control emissions. Exceptions to the color requirement include the following: (A) Up to 10% of the external surface area of the roof or walls of the tank or vessel may be painted with other colors to allow for identifying information or aesthetic purposes; and (B) If a local, state or federal law or ordinance or private contract which predates this standard permit's effective date establishes in writing tank and vessel colors other than white. If applicable, a copy of this documentation must be provided to the commission upon registration. (C) Tanks and vessels purposefully darkened to create the process reaction and help condense liquids from being entrained in the vapor. Existing tanks and vessels (including temporary liquid storage tanks) which are not increasing emissions at an OGS using shall also meet this requirement no later than 180 days after a registration renewal as of January 1, 2016.			X
	VOC with uncontrolled PTE of \geq 5 tpy	Vents shall be captured and directed to an appropriate control device as listed in standard permit (e) BMP and BACT. Un-insulated tank exterior surfaces exposed to the sun shall be of a color that minimizes the effects of solar heating (including, but not limited to, white or aluminum). To meet this requirement the solar absorptance should be 0.43 or less, as referenced in Table 7.1-6 in AP-42. Paint shall be maintained in good condition. Exceptions to the color requirement include the following: (A) Up to 10% of the external surface area of the roof or walls of the tank or vessel may be painted with other colors to allow for identifying information or aesthetic purposes; and (B) If a local, state or federal law or ordinance or private contract which predates this standard permit's effective date establishes in writing tank and vessel colors other than white. If applicable, a copy of this documentation must be provided to the commission upon registration. (C) Tanks and vessels purposefully darkened to create the process reaction and help condense liquids from being entrained in the vapor. Existing tanks and vessels (including temporary liquid storage tanks) which are not increasing emissions at an OGS using shall also meet this requirement no later than 180 days after a registration renewal as of January 1, 2016.			
Truck Loading	VOC with partial pressure < 0.5 psia at maximum liquid surface temperature or 95 F whichever is greater, or with uncontrolled PTE of < 5 tpy VOC	Loading is recommended to be performed with submerged filling, or vapor balancing back to the tank and any subsequent recovery or control device.	X		
	VOC, BTEX,				

Source or Facility Air Containme		Minimum Acceptable Design, Control or Technique, Control Efficiencies, and Other Details during Production Operations	Applicability		
			Yes	No	N/A
(Cont'd)	VOC with partial pressure ≥ 0.5 psia at maximum liquid surface temperature or 95 F whichever is greater	Splash loading and uncontrolled vacuum truck loading is not allowed. Loading shall be performed with a control effectiveness of at least 42% as compared to splash loading. Loading may occur by submerged filling or equivalent prevention or recovery technique as listed in Table 10.			X
	VOC, BTEX, H2S				
		Loading vapors shall be captured and directed to an appropriate control device listed in the Control Device BACT Table with a minimum design control efficiency of at least 98%, routed to a vapor recovery unit (VRU) with a control effectiveness of at least 95%, or vapor balanced back to the delivering storage tank equipped with a VRU, or connected to a control device listed in the Control Device BACT Table with a minimum design control efficiency of at least 95%.			X
	Controlled Loading	Where loading control is required, the collection or capture system must be connected to the tank truck so all displaced vapors are directed to the control device and the control device is operational before loading is commenced. When properly connected the capture efficiency will be assumed to be 70% efficient at capturing the displaced truck vapors. The capture efficiency may be assumed to be 98.7 percent efficient when the tanker truck has certification that the tank has passed vapor-tightness testing within the last 12 months using the methods described in 40 CFR 60, Subpart XX. The capture efficiency may be assumed to be 99.2 percent efficient when the tanker truck has certification that the tank has passed vapor-tightness testing within the last 12 months using the methods described in 40 CFR 63, Subpart R. Loading shall be discontinued when liquid or gas leaks from the loading or collection system are observed.			X
Cooling Tower Heat Exchange System	VOC, BTEX, H2S	Heat exchange systems must be non-contact design (i.e. designed and operated to avoid direct contact with gaseous or liquid process streams containing VOC, H2S, halogens or halogen compounds, cyanide compounds, inorganic acids, or acid gases). Systems with heat exchangers that cool a fluid with VOC shall meet the following: The cooling water must be at a higher pressure than the process fluid in the heat exchangers or the cooling tower water must be monitored monthly for VOC emissions using TCEQ Sampling Procedures Manual, Appendix P dated January 2003 or a later edition. Equipment shall be maintained so as to minimize VOC emissions into the cooling water. Cooling water VOC concentrations greater than 0.08 ppmw indicate faulty equipment. If the repair of a heat exchanger would require a unit shutdown that would create more emissions than the repair would eliminate, the repair may be delayed until the next planned shutdown or 180 days if no shutdowns are scheduled. Cooling towers shall be designed and operated with properly functioning drift eliminators. New cooling towers shall be designed with drift eliminators designed to meet $\leq 0.001\%$ drift.			Х

Appendix - Section 1

Oil and Gas Emissions Spreadsheet with Impacts Analysis

Revised 10/2/2014

General Notes

*** Before beginning, make sure to enable macros, so that this spreadsheet will run properly. *** See the links below for more information on creating a trusted location and enabling macros for this spreadsheet.

Enable Macro Link

Trusted Location Link

See comments in individual cells and other written notes. Cells with red corners contain comments; place cursor anywhere in a cell which has a red corner, to view comment. These were added to guide you through using this spreadsheet and make it as easy as possible to use.

This spreadsheet should be used as follows: (1) Enter information into this Facility Information spreadsheet tab, (2) after running the macro (which is explained below), fill out the emission calculation tabs, (3) populate the Emissions Summary table (you press a button on the Emissions Summary tab and the macro will populate the table with the values from the emission calculation tabs), and (4) go through the impacts review tabs (if applicable). This basically means estimate what each of the individual source emissions are, then summarize them in a table, then evaluate the impact of the emissions (if impacts review is applicable).

If you want to use any of the impacts review tabs, you will need to have answered "Yes" to the initial question of "Are you using this to meet the new Barnett Shale area rule requirements?". You can press the "Reset" button at the bottom of this tab to have the question pop up again.

Yellow cells require information to be entered. Red cells contain calculated values.

Worst case emissions must be estimated on both an hourly and annual basis for air permitting purposes.

<u>Hourly</u> emissions must be based on worst case maximum parameters realistically expected to occur over the course of any one hour. As an example, where ambient temperature is used as a parameter to estimate <u>hourly</u> emissions, the maximum temperature from the hottest day of the year must be used.

<u>Annual</u> emissions can be based on average parameters. As an example, where ambient temperature is used as a parameter to estimate <u>annual</u> emissions, the average ambient temperature may be used.

<u>Planned Maintenance, Start-up, and Shutdown (MSS)</u>: As of January 5, 2014, all planned emissions from oil and gas facilities must be authorized. This includes planned MSS emissions.

Planned MSS emissions may be authorized under 30 TAC § 106.359, 30 TAC

§ 106.352(a)-(k), or the non-rule standard permit if:

1. the emissions are the direct result of a planned maintenance activity, or

2. the root cause of the emissions is from a planned maintenance activity.

What is Different About Estimating Emissions for the Barnett Shale Area Rule Requirements?

There are level limits (or caps) for the different levels of authorization, which are: PBR Level 1, PBR Level 2, and Standard Permit. The level limits are emission limits of the following air pollutants: Total VOC, Total crude oil or condensate VOC, Total natural gas VOC, benzene, hydrogen sulfide (H₂S), sulfur dioxide (SO₂), nitrogen oxides (NOx), carbon monoxide (CO), and particulate matter (PM₁₀ and PM_{2.5}). There are different level limits for hourly and annual emissions and within hourly emissions there are different level limits for steady state emissions versus periodic emissions.

There is an impacts review for both the Permit by Rule (PBR) and Standard Permit for the following air pollutants: benzene, H₂S, SO₂, and NOx.

VOC emissions need to be separated into (1) Crude Oil or Condensate VOC and (2) Natural Gas VOC.

Hourly and annual emissions need to be estimated. There are potentially three hourly emission types that need to be estimated (1) steady state hourly, (2) low pressure periodic, and (3) high pressure periodic. These are described in detail on the Emissions Summary tab.

Benzene emissions need to be speciated for all sources.

Oil and Gas Site General Information						
Administrative Information						
Company Name	Texland Petroleum, LP					
Facility/Well Name	Lif-Lubheirs					
Field Name	Edmisson (Clearfork)					
Nearest City/Town	Lubbock					
API Number/SIC Code	API #303-31148 / SIC Code 1311					
Latitude/Longitude	33.61129 / -101.80115					
County	Lubbock					
Are you using a Form PI-7, PI-7-CERT, APD-CERT, PI-7 and APD-CERT, or are you using ePermits?	ePermits					
Customer Number, CNxxxxxxxx (if known)	CN602816852					
Regulated Entity Number, RNxxxxxxxx (if known)	RN102597648					
Technical Information						
Natural Gas Site Throughput (MMSCF/day):	1					
Oil/Condensate Site Throughput (bbl/day):	102					
Produced Water Site Throughput (bbl/day):	2185					
Are there any sour gas streams at this site?	Yes					
Is this site currently operational/producing?	Yes					
What is the date of the site start of construction or the date that the project changes were implemented (whichever is applicable to this project, anticipated date if in the future)?	5/1/2024					
Has this site been registered before?	No					

Equipment/Processes at Site						
Before entering any numbers into the Equipment/Processes section of the table below, please make sure to review all of the comments in the cells of the table. These should make it clear what numbers need to be entered and where they need to be entered.						
Equipment/Process Types How many for this project? How many for this site?						
Fugitives	1	1				
IC Engines						
Turbines						
Diesel Engines						
Heaters-Boilers	3	3				
Oil / Condensate Tanks	6	6				
Produced Water Tanks	5	5				
Miscellaneous Tanks						
Loading Jobs						
Glycol Units						
Amine Units						
Vapor Recovery Units						
Flares-Vapor Combustors						
Thermal Oxidizers						
MSS Blowdowns						
MSS FLR Tank Landing Loss						
MSS Tank Non Forced Vent	ISS Tank Non Forced Vent					
MSS Tank Forced Vent Degas						
MSS Defaults						
MSS Paint Blast						
MSS Other	1	1				
Other						

When you are finished entering information on this tab, press the "Run" button below. When it is pressed, the spreadsheet tabs needed will be added and the "Emissions Summary" tab will also be added with the number of rows corresponding to the number of emission points in this registration.

Before pressing "Run", please make sure to review all of the comments in the cells of the table above. These should make it clear what numbers need to be entered and where they need to be entered.

The spreadsheet can be reset if needed by pressing the "Reset" button below. If the "Reset" button is pressed, everything will be cleared and you can start over (the added sheets will disappear along with any data entered into the sheets). When the "Reset" button is pressed and there is anything to clear, a question will pop up asking "Delete all macro created worksheets?". Then if you click "Yes", the question will pop back up asking "Are you using this to most the new Parnett Shele area requiremente?"

this to meet the new Barnett Shale area requirements?".

If the "Run" button is pressed a second time, everything will be cleared and you can start over (the added sheets will disappear along with any data entered into the sheets). When the "Run" button is pressed a second time, a question will pop up asking "Delete all macro created worksheets?". The question will not pop back up asking "Are you using this to meet the new Barnett Shale area requirements?".

Do not press "Run" again or "Reset", unless you intend to clear all of the added sheets (and any data entered into the sheets). This means that it is important to make sure the right numbers of each equipment/process type are entered. If it is possible that an extra piece of equipment could be included, include it because it is better to have too many entered than not enough.

Gas and Liquid Analyses

A) Enter information into the yellow boxes.

B) The purpose of this tab is to extract information from a lab analysis that will be used in emission calculations. Unlike the other other tabs which calculate emissions, nothing from this tab gets pulled to the Emissions Summary table. The big pieces of information needed for emissions estimates are the VOC, benzene, and H₂S weight percents. Sampling of gas and liquid streams from appropriate process sampling points is required in order to determine composition or other properties needed to estimate emissions such as heat content, specific gravity, and vapor pressure. It is essential that stream lab analyses/reports include a measurement of H₂S, individual HAPs, and at least all those hydrocarbons up to at least 10 carbon atoms per molecule (C10+).

C) There are two boxes on the left, for gas and liquid analyses, which take component weight percent inputs and there are two boxes on the right, for gas and liquid analyses, which take component mole percent inputs. You can either fill out the weight percent box <u>OR</u> the mole percent box, depending on what informaton you have available to you.

The boxes are set up in the following arrangement:

Gas Analysis Wt% Inputs	Gas Analysis Mol% Inputs
Liquid Analysis Wt% Inputs	Liquid Analysis Mol% Inputs

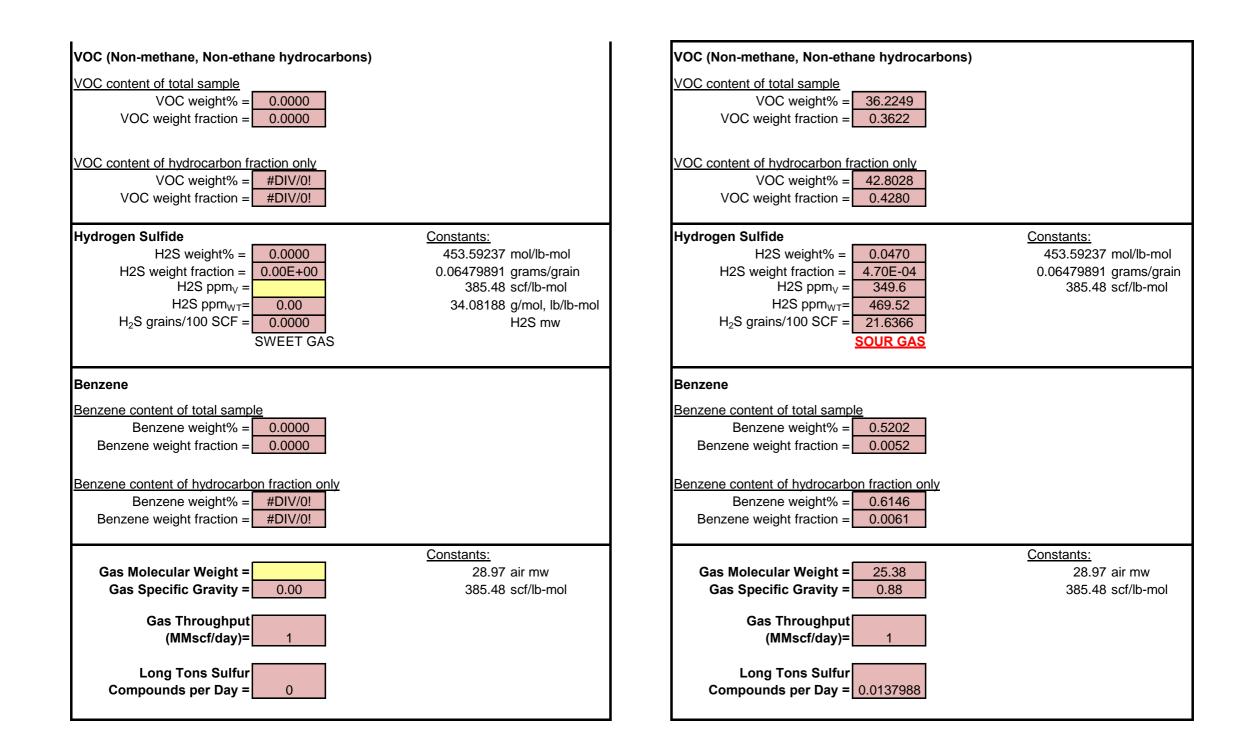
D) If weight percents are provided on the lab report, use the boxes on the left. If only mole percents are provided on the lab report, use the boxes on the right.

E) Make sure to select whether you are inputting weight percents or mole percents from the pull down menus below.

F) If you are using the weight percent boxes (left two), in addition to the component weight percents, you need to enter the gas molecular weight (molecular weight of the total sample) and the gas and liquid H₂S content in parts per million by volume (H₂S ppmv). This will allow for the calcultion of the gas specific gravity and the long tons of sulfur per day in the gas, and the determination of sweet versus sour gas.

G) If you are using the mole percent boxes (right two), in addition to the component mole percents, you need to enter a real value, specific to this sample, for the molecular weight of the deacnes plus (C10+) fraction. You may use the default values listed below for the moleclar weights of the other hexanes (C6), other heptanes (C7), other ocatnes (C8), and nonanes (C9) fractions, unless you have a more accurate number. If you enter number other than the default, you need to explain where the number came from and why it is appropriate to use.

H) What is expected to be inlcuded on these tables is the the inlet gas and liquid streams (the liquid would most likely be sampled from a separator if there is separation at the site). These tables can also be used for any sampled gas and liquid streams as needed. If needed, make a copy of this tab.


I) Use the box provided below for entering any notes necessary.

For the gas sample, I am inputting (pick from list):	mole percents	Select whether weight percents or mole percents are being entered for this gas sample.
--	---------------	--

Then fill out this table OR fill out this table.

<u>Gas Analysi</u>	<u>s</u> - Use if the	e Inputs are <u>Weight</u> Percents
Analysis Identifier/Name		
What site is the sample from?		
If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).		
Where in the process was the sample taken?		
What is the temperature and pressure of the sample (include units)?		
Who analyzed the sample?		
Date of sample:		
Component	weight %	
hydrogen	weight /o	
helium		
nitrogen		
CO2		
H2S		
methane (C1)		
ethane (C2)		
propane (C3)		
butanes (C4) pentanes (C5)		
benzene		
other hexanes (C6)		
toluene		
other heptanes (C7)		
ethylbenzene		
xylenes (o, m, p)		
other octanes (C8)		
nonanes (C9)		
decanes plus (C10+)		
Totals:	0.0000	

Gas Analysis - Use if the Inputs are Mole Percents							
Analysis Identifier/Name	2016-ELDF-000082						
Where was the sample taken?	West Lee						
If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).	A representative gas analysis was chosen due to the area, reservoir conditions, API gravity and operating conditions of the facility. Site Specific H2S reading were used.						
Where in the process was the sample taken?	Separator -	Spot Gas					
What is the temperature and pressure of the sample (include units)?	70 F; 10 psi	9					
Who analyzed the sample?	Intertek						
Date of sample:	4/13/2016						
Common and		Molecular Weight (grams/mole,	grams per 100 moles of				
Component hydrogen	mole %	lb/lb-mol) 2.01588	gas 0	weight % 0.0000			
helium	0.0000	4.0026	0	0.0000			
nitrogen	12.9240	28.01340	362	14.2666			
CO2	0.6080	44.00950	27	1.0544			
H2S	0.0350	34.08188	1	0.0470			
methane (C1)	61.8920	16.04246	993	39.1259			
ethane (C2)	7.8330	30.06904	236	9.2812			
propane (C3)	8.6820	44.09562	383	15.0860			
butanes (C4)	<u>4.8200</u> 58.12220 280 11.0						
pentanes (C5)	2.0710	72.14878	149	5.8880			
benzene	0.1690 78.110000 13 0.52						
other hexanes (C6)	0.5640 86.18000 49 1.91						
toluene	0.0620 92.140000 6 0.225						
other heptanes (C7)	0.2460 100.20000 25 0.9						
ethylbenzene	0.0280 106.170000 3 0.11						
xylenes (o, m, p)	0.0070 106.170000 1 0.0						
other octanes (C8)	0.0780	114.23000	9	0.3511			
nonanes (C9)	0.0140	128.26000	2	0.0708			
decanes plus (C10+)	0.0020	142.28000	0	0.0112			
Totals:	100.0350	25.38	2538	100.00			

For the liquid sample, I am inputting (pick from list):

mole percents Select whether weight percents or mole percents are being entered for this liquid sample.

Then fill out this table **OR** fill out this table.

				ini out this table.				
Liquid Analysis - Use if the Inputs are Weight Percents		Liquid Analysis - Use if the Inputs are <u>Mole</u> Percents						
Analysis Identifier/Name				Analysis Identifier/Name	2016-ELDF	-000082		
What site is the sample from?				What site is the sample from?	West Lee			
If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).				If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).	reservoir co	ative oil analysis nditions, API gra γ. Site Specific Η	vity and operat	ing conditions
Where in the process was the sample taken?				Where in the process was the sample taken?	Separator -	Spot Oil		
What is the temperature and pressure of the sample (include units)?				What is the temperature and pressure of the sample (include units)?	90 F; 10 psi	g		
Who analyzed the sample?				Who analyzed the sample?	Intertek			
Date of sample:				Date of sample:	4/13/2016			
						Molecular Weight (grams/mole,	grams per 100 moles of	
Component	weight %			Component	mole %	lb/lb-mol)	gas	weight %
hydrogen				hydrogen	0.0000		0	0.0000
helium				helium	0.0000		1	0.0000
nitrogen CO2				nitrogen CO2	0.0290		1	0.0065
H2S				H2S	0.0180		1	0.0096
methane (C1)				methane (C1)	0.6080		10	
ethane (C2)				ethane (C2)	0.6080	30.06904	18	
propane (C3)				propane (C3)	2.4090		106	
butanes (C4)				butanes (C4)	4.2530	58.12220	247	1.9856
pentanes (C5)				pentanes (C5)	5.9060	72.14878	426	
benzene				benzene	1.4606	78.110000	114	0.9164
other hexanes (C6)				other hexanes (C6)	4.3394	86.18000	374	3.0039
toluene				toluene	1.3294	92.140000	122	0.9839
other heptanes (C7)				other heptanes (C7)	2.2740		228	
ethylbenzene				ethylbenzene	1.2523		133	
xylenes (o, m, p)				xylenes (o, m, p)	0.1804		19	
other octanes (C8)				other octanes (C8)	1.7106		195	
nonanes (C9)				nonanes (C9)	1.5490		199	
decanes plus (C10+)				decanes plus (C10+)	72.0733		10255	
Totals:	0.0000			Totals:	100.0350	124.50	12449.5407	100.00

VOC content of hydrocarbon fraction onlyVOC weight% =99.7748VOC weight fraction =0.9977
Hydrogen Sulfide H2S weight% = 0.0096 H2S weight fraction = $9.57E-05$ H2S ppm _V = 349.60 H2S ppm _{WT} = 95.71
Benzene Benzene content of total sample Benzene weight% = 0.9164 Benzene weight fraction = 0.0092
Benzene content of hydrocarbon fraction only Benzene weight% = 0.9166 Benzene weight fraction = 0.0092

Enter any notes here:	

Fugitives Emissions

EPN FE-01 Name Fugitive Emissions

A) Enter information into the yellow boxes.

B) VOC and H₂S control efficiencies may be entered (as applicable for reductions from leak detection and repair programs).

C) The vapor VOC, benzene, and H₂S weight percents may be entered. The weight percents from the Analyses tab are displayed below.

D) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

E) This sheet has five parts to it. Part (1) is for Gas Service, (2) is for Heavy Oil Service, (3) is for Light Oil Service, (4) is for Water/Oil Service, and (5) is for a combination of all the results. Fill out all applicable yellow cells in parts (1)-(4) and the final results will be in part (5).

The five parts are set up in this arrangement:

(1)	(2)
(3)	(4)
(5)	

F) Make sure to select the correct VOC Type and Emission Type from the pull down menus below in part (5).

	Gas Weight Per Analyses Tab:	cents From						Liquid Weight Analyses Tab:	Percents From				
	VOC wt %	42.8028						VOC wt %	99.7748				
	Benzene wt %	0.6146						Benzene wt %	0.9166	1			
	H ₂ S wt %	0.0470						H ₂ S wt %	0.0096	1			
	2		1					2					
		1							7				
(1)	Cas						(2)						
(1)	Gas					1	(~)	Heavy Oil	-				
			emission factor (lb/hr of TOC							emission factor (lb/hr of			
			per							TOC per			
	number	component	component)	lb/hr	tpy			number	component	component)	lb/hr	tpy	
	82	Valve	0.009920	0.81344	3.5628672				Valve	0.0000185	0	0	
	0	Pump Seal	0.005290	0	0				Pumps	0.0011300	0	0	
	246	Connector	0.000440	0.10824	0.4740912				Connector	0.0000165	0	0	
	82	Flange	0.000860	0.07052	0.3088776				Flange	0.0000086	0	0	
	8	Open-ended Line	0.004410	0.03528	0.1545264				Open-ended Line	0.0003090	0	0	
	4	Other	0.019400	0.0776	0.339888				Other	0.0000683	0	0	
			Total:	1.10508	4.8402504					Total	: 0	0	
				Control	1						Control		
	VOC content	Benzene content	H₂S content	Efficiency				VOC content	Benzene content	H ₂ S content	Efficiency		
	(wt %)	(wt%)	(wt%)	(%)				(wt%)	(wt%)	(wt%)	(%)		
/alves	42.8028	0.6146	0.0470	0.0000	1		Valves						
ump Seal	42.8028	0.6146	0.0470	0.0000			Pump Seal						
Connector	42.8028	0.6146	0.0470	0.0000			Connector						
lange	42.8028	0.6146	0.0470	0.0000			Flange						
Open-ended Line	42.8028	0.6146	0.0470	0.0000			Open-ended Line						
Other	42.8028	0.6146	0.0470	0.0000	l		Other						
			H ₂ S Emis	oiono	Deveene	F uele e la ma		Voc		H ₂ S Emis	nciono	Deveeve	
		missions	_			Emissions			Emissions	_	-		Emissions
Valves	lb/hr	1.52	lb/hr	tpy	lb/hr	tpy	Valves	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Pump Seal	0.35	1.53 0.00	0.00	0.00	0.00	0.02	Pump Seal	0.00	0.00	0.00	0.00	0.00	0.00
Connector	0.00	0.00	0.00	0.00	0.00	0.00	Connector	0.00	0.00	0.00	0.00	0.00	0.00
Flange	0.03	0.13	0.00	0.00	0.00	0.00	Flange	0.00	0.00	0.00	0.00	0.00	0.00
Open-ended Line	0.02	0.07	0.00	0.00	0.00	0.00	Open-ended Line	0.00	0.00	0.00	0.00	0.00	0.00
Other	0.03	0.15	0.00	0.00	0.00	0.00	Other	0.00	0.00	0.00	0.00	0.00	0.00
Total:		2.07	0.00	0.00	0.01	0.03	Tota		0.00	0.00	0.00	0.00	0.00

Liquid Weight P Analyses Tab:	ercents From
VOC wt %	99.7748
Benzene wt %	0.9166
H ₂ S wt %	0.0096

(3)

Light Oil				
number	component	emission factor (Ib/hr of TOC per component)	lb/hr	tpy
290	Valve	0.005500	1.595	6.9861
0	Pump Seal	0.028660	0	0
870	Connector	0.000463	0.40281	1.7643078
290	Flange	0.000243	0.07047	0.3086586
29 15	Open-ended Line Other	0.003090	0.08961	0.3924918
10		Total:	2.40539	10.5356082

	VOC content (wt%)	Benzene content (wt%)	H₂S content (wt%)	Control Efficiency (%)
Valves	99.7748	0.9166	0.0096	0.0000
Pump Seal	99.7748	0.9166	0.0096	0.0000
Connector	99.7748	0.9166	0.0096	0.0000
Flange	99.7748	0.9166	0.0096	0.0000
Open-ended Line	99.7748	0.9166	0.0096	0.0000
Other	99.7748	0.9166	0.0096	0.0000

	VOC Er	missions	H ₂ S Emiss	sions	Benzene I	Emissions
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Valves	1.59	6.97	0.00	0.00	0.01	0.06
Pump Seal	0.00	0.00	0.00	0.00	0.00	0.00
Connector	0.40	1.76	0.00	0.00	0.00	0.02
Flange	0.07	0.31	0.00	0.00	0.00	0.00
Open-ended Line	0.09	0.39	0.00	0.00	0.00	0.00
Other	0.25	1.08	0.00	0.00	0.00	0.01
Total:	2.40	10.51	0.00	0.00	0.02	0.10

(4)	Water/Oil					
	number	component	emission factor (Ib/hr of TOC per component)	lb/hr	tpy	
	15	Valve	0.000216	0.00324	0.0141912	
	0	Pump Seal	0.000052	0.00024	0	
	45	Connector	0.000243	0.010935	0.0478953	
	15	Flange	0.000006	0.00009	0.0003942	
	2	Open-ended Line	0.000550	0.0011	0.004818	
	1	Other	0.030900	0.0309	0.135342	
			Total:	0.046265	0.2026407	
					1	
	VOC content (wt%)	Benzene content (wt%)	H ₂ S content (wt%)	Control Efficiency (%)		
/alves	99.7748	0.9166	0.0096	0.0000		
ump Seal	99.7748	0.9166	0.0096	0.0000		
Connector	99.7748	0.9166	0.0096	0.0000		
lange	99.7748	0.9166	0.0096	0.0000		
Open-ended Line	99.7748	0.9166	0.0096	0.0000		
Other	99.7748	0.9166	0.0096	0.0000		
	VOC F	missions	H ₂ S Emis	sions	Benzene B	missions
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
Valves	0.00	0.01	0.00	0.00	0.00	0.00
Pump Seal	0.00	0.00	0.00	0.00	0.00	0.00
Connector	0.01	0.05	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
Flange			0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00		0.00
Flange Open-ended Line Other Total:	0.03	0.00 0.14 0.20	0.00	0.00	0.00	0.00

Fugitives (Draft	(tpy)	Fugitive Total Emissions Annual Emissions (tpy) Notes: Source S						Reference to Emission fac 1. Emission factors are for 1995, EPA 4531, R-95-01
(5) Notes: Hourly Emissions (lb/hr) Emissions (tpy)	(tpy) 12.79 0.13	Hourly Emissions (lb/hr) Annual Emissions (tpy) Notes: VOC 2.92 12.79 benzene 0.03 0.13 H_2S 0.00 0.00 VOC Type: (pick from list) Crude Oil or Condensate VOC 0.00						
Hourly Emissions (Ib/hr) Emissions (tpy)	12.79 0.13	Emissions (lb/hr)Annual Emissions (tpy)VOC2.9212.79benzene0.030.13H2S0.000.00VOC Type: (pick from list) Crude Oil or Condensate VOC	5)	Fugitive T	otal Emissions		Notes:	3. For fugitive calculations
	12.79 0.13	VOC 2.92 12.79 benzene 0.03 0.13 H ₂ S 0.00 0.00			Emissions			
		H ₂ S 0.00 0.00 VOC Type: (pick from list) Crude Oil or Condensate VOC		VOC				
	0.00	VOC Type: (pick from list) Crude Oil or Condensate VOC			0.03	0.13		
H ₂ S 0.00 0.00		Crude Oil or Condensate VOC		H ₂ S	0.00	0.00		
Emission Type: (pick from list) Steady State (continuous)								

rs used:

il and gas production facilities (not refineries) come from the EPA's "Protocol for Equipment Leak Emission Estimates" November Table 2-4.

not based on the EPA document are from the TCEQ "Air Permit Technical Guidance for Chemical Source Equipment Leak 0)

OC content should be VOC content of total hydrocarbons, not of total sample.

Heaters-Boilers Emissions

A) Enter information into the yellow boxes.

B) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

C) Make sure to select the correct *Emission Type* from the pull down menus below. A *VOC type* does not need to be selected here; see the note in the comment for more explanation.

ater and Boiler Emission Calculation	ns (fueled by natural gas)			
EPN	HT-01]		
Name	Heater Treater			
Heater/Boiler rating (MMBtu/hr):	1			
Rating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume uncontrolled, unless specifically stated otherwise)		
Operating hours/year:	8760			
Fuel Heat Value (Btu/SCF):	1278.8			
		-		
Pollutant	Emission Factor (Ib/MMCF)	lb/hr	tpy	
VOC	5.5	0.004	0.019	
NOx	100	0.078	0.343	
CO	84	0.066	0.288	
PM ₁₀	7.6	0.006	0.026	
PM _{2.5}	5.7	0.004	0.020	
SO ₂	0.6	0.046	0.203	

If the heater/boiler is fueled by Sour Ga	as, <u>cannot</u> use emission factors above	e to calculate SO ₂ emissions, must use SO	D ₂ mass balance:
SO₂ Mass Balan	ce calculation:		
Fuel H ₂ S content (mol %) =	0.0350	assumptions:	
SO ₂ produced (lb/hr) =	0.0463	SO2 MW	64.06 lb/lb-mole
SO ₂ produced (tpy) =	0.2026	Ideal Gas Law	378.61 SCF/lb-mole

Emission Type: (pick from list)
Steady State (continuous)

Enter any notes here:	

Next Tab

Heaters-Boilers Emissions

A) Enter information into the yellow boxes.

B) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

C) Make sure to select the correct *Emission Type* from the pull down menus below. A *VOC type* does not need to be selected here; see the note in the comment for more explanation.

er and Boiler Emission Calculation	ns (fueled by natural gas)			
EPN	HT-02]		
Name	Heater Treater			
Heater/Boiler rating (MMBtu/hr):	0.5			
Rating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume uncontrolled, unless specifically stated otherwise)		
Operating hours/year:	8760			
Fuel Heat Value (Btu/SCF):	1278.8			
		•		
Pollutant	Emission Factor (Ib/MMCF)	lb/hr	tpy	
VOC	5.5	0.002	0.009	
NOx	100	0.039	0.171	
CO	84	0.033	0.144	
PM ₁₀	7.6	0.003	0.013	
PM _{2.5}	5.7	0.002	0.010	
SO ₂	0.6	0.023	0.101	

 If the heater/boiler is fueled by Sour Gas, cannot use emission factors above to calculate SO₂ emissions, must use SO₂ mass balance:

 SO₂ Mass Balance calculation:

 Fuel H₂S content (mol %) =
 0.0350

 SO₂ produced (lb/hr) =
 0.0350

 SO₂ produced (lb/hr) =
 0.0231

 SO₂ produced (tpy) =
 0.1013

<u>Emission Type:</u> (pick from list) Steady State (continuous)

Enter any notes here:	

Next Tab

Heaters-Boilers Emissions

A) Enter information into the yellow boxes.

B) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

C) Make sure to select the correct *Emission Type* from the pull down menus below. A *VOC type* does not need to be selected here; see the note in the comment for more explanation.

ter and Boiler Emission Calculation	ns (fueled by natural gas)			
EPN	HT-03]		
Name	Heater Treater			
Heater/Boiler rating (MMBtu/hr):	0.5			
Rating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume und	controlled, unle	ess specifically stated otherwise)
Operating hours/year:	8760			
Fuel Heat Value (Btu/SCF):	1278.8			
Pollutant	Emission Factor (Ib/MMCF)	lb/hr	tpy	
VOC	5.5	0.002	0.009	
NOx	100	0.039	0.171	
CO	84	0.033	0.144	
PM ₁₀	7.6	0.003	0.013	
PM _{2.5}	5.7	0.002	0.010	
SO ₂	0.6	0.023	0.101	

 If the heater/boiler is fueled by Sour Gas, cannot use emission factors above to calculate SO₂ emissions, must use SO₂ mass balance:

 SO₂ Mass Balance calculation:

 Fuel H₂S content (mol %) =
 0.0350

 SO₂ produced (lb/hr) =
 0.0350

 SO₂ produced (lb/hr) =
 0.0231

 SO₂ produced (lb/hr) =
 0.1013

<u>Emission Type:</u> (pick from list) Steady State (continuous)

Enter any notes here:	

Next Tab

Tank Emissions - Lab Gas Oil Ratio (GOR) Method

A) Enter information into the yellow boxes.

B) VOC and H₂S control efficiencies may be entered (if applicable).

C) A reduction for produced water tank emissions calculated as oil/condensate may be entered.

D) The tank vapor VOC, benzene, and H_2S weight percents may be entered.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) The table below can be used to calculate the flash gas molecular weight and the component weight percents if needed.

G) Make sure to answer the control device question.

H) Make sure to select the correct *VOC Type* and *Emission Type* from the pull down menus below.

EPN	ESTIMATING FLASH LOSSES I	Flash Initial Press. (psig)	- Flash Initial	Flash Final Press. (psig)	Flash	gas/bbl of	Barrels of Oil or Condensate per day (bbl/day)	Flash Gas Molecular Weight		Flash Gas Benzene wt%	Flash Gas H ₂ S wt%	Percent Reduction for Produced Water Tank Calc. as Oil/Cond. (%)	thermal oxidizer, or	VOC Control Efficiency (%)	H₂S Control Efficiency (%)	VOC Results (Ib/hr)	VOC Results (tpy)	Benzene Results (Ib/hr)	Benzene Results (tpy)	H₂S Results (Ib/hr)	H ₂ S Results (tpy)
OST-01	Oil Storage Tank - Flash	10	90	0	60	1.52	17	31.8509	58.5377	0.5224	0.0374	0	(A) uncontrolled			0.05	0.23			0.00	0.00
	Oil Storage Tank - Flash	10	90	0	60	1.52	17	31.8509	58.5377	0.5224	0.0374	0	(A) uncontrolled			0.05	0.23			0.00	0.00
OST-03	Oil Storage Tank - Flash	10	90	0	60	1.52	17	31.8509	58.5377	0.5224	0.0374	0	(A) uncontrolled			0.05	0.23			0.00	0.00
OST-04	Oil Storage Tank - Flash	10	90	0	60	1.52	17	31.8509	58.5377	0.5224	0.0374	0	(A) uncontrolled			0.05	0.23			0.00	0.00
	Oil Storage Tank - Flash	10	90	0	60		17	31.8509		0.5224	0.0374	0	(A) uncontrolled			0.05	0.23			0.00	0.00
OST-06	Oil Storage Tank - Flash	10	90	0	60	1.52	17	31.8509	58.5377	0.5224	0.0374	0	(A) uncontrolled			0.05	0.23	0.00	0.00	0.00	0.00
															Totals:	0.32	1.39	0.00	0.01	0.00	0.00

VOC Type: (pick from list) Crude Oil or Condensate VOC

Emission Type: (pick from list) Steady State (continuous)

Enter any notes here:

Company Name:	Texland Petroleum, L.P.				
Facility Name:	Lif-Lubheirs				
EPN:	OST-01 thru OST-06				
FIN:	OST-01 thru OST-06				
CIN:	None				
Source Description:	Oil Storage Tanks				

Oil API Gravity	
Measured/Calculated Gas Specific Gravity	
Separator Pressure (PSIG)	
Separator Temperature (F)	
Site Elevation (Feet above Mean Sea Level)	
Calculated Atmospheric Pressure @ Site Elevation:	

Analytical GOR (Gas-Oil Ratio) in standard cubic feet per bbl (SCF/BBL)	1.5200	
---	--------	--

Oil Production Rate (BOPD):	
-----------------------------	--

Hours Operated per Year:

tons/yr hydrocarbons:

Flash Losses

Oil API Gravity

Total cubic ft. hydrocarbons/hour:	1.077						
Flash lbs/hr hydrocarbons:	0.090						
Flash tons/yr hydrocarbons:	0.394						
Total Hydrocarbon Emissions							
lbs/hr hydrocarbons:	0.090						

0.090
0.394

Speciation Of Estimated VOCs fr	peciation Of Estimated VOCs from Flash, Standing & Working Losses								
Component	Mole Percent	Component Molecular Weight	Mole Fraction X Mole Wt	Weight Fraction	Lbs/hr	Tons/yr			
Hydrogen Sulfide	0.0350%	34.080	0.0119	0.0004	0.0000	0.0001			
Nitrogen	2.7568%	28.013	0.7723	0.0242	0.0022	0.0096			
Carbon Dioxide	0.7203%	44.010	0.3170	0.0100	0.0009	0.0039			
Methane	44.8781%	16.043	7.1998	0.2260	0.0203	0.0891			
Ethane	16.3137%	30.070	4.9055	0.1540	0.0139	0.0607			
Propane	19.8281%	44.097	8.7436	0.2745	0.0247	0.1082			
iso-Butane	3.6265%	58.123	2.1078	0.0662	0.0060	0.0261			
n-Butane	6.6903%	58.123	3.8886	0.1221	0.0110	0.0481			
iso-Pentane	2.5375%	72.150	1.8308	0.0575	0.0052	0.0227			
n-Pentane	1.5974%	72.150	1.1525	0.0362	0.0033	0.0143			
Other Hexanes	0.2079%	86.178	0.1792	0.0056	0.0005	0.0022			
*n-Hexane	0.4163%	86.178	0.3588	0.0113	0.0010	0.0044			
*Benzene	0.2130%	78.114	0.1664	0.0052	0.0005	0.0021			
*Toluene	0.0504%	92.141	0.0464	0.0015	0.0001	0.0006			
*Ethylbenzene	0.0142%	106.167	0.0151	0.0005	0.0000	0.0002			
*Xylenes	0.0017%	106.167	0.0018	0.0001	0.0000	0.0000			
*Trimethylpentane	0.0000%	114.231	0.0000	0.0000	0.0000	0.0000			
Heptanes	0.1108%	100.272	0.1111	0.0035	0.0003	0.0014			
Octanes	0.0311%	114.231	0.0355	0.0011	0.0001	0.0004			
Nonanes	0.0051%	128.258	0.0065	0.0002	0.0000	0.0001			
Decanes +	0.0008%	142.280	0.0011	0.0000	0.0000	0.0000			
Total	100.035%	Molecular Wt =	31.85	1.0000					

Calculation formula

Air Toxics	0.0017	0.0073
VOC (Including HAP)	0.0527	0.2308

25.4

1.098

10

90

0 14.70

17.00

8760

Component lbs/hr = (HC lbs/hr)(Weight fraction of component)

Component tons/yr = (component lbs/hr)(hrs/yr)(1 ton/2000 lbs)

Texland Petroleum, LP Lif-Lubheirs Tank Emissions - Tanks 4.0

A) Enter information into the yellow boxes.

B) VOC and H₂S control efficiencies may be entered (if applicable).

C) A reduction for produced water tank emissions calculated as oil/condensate may be entered.

D) The tank vapor VOC, benzene, and H_2S weight percents may be entered.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) Make sure to answer the control device question.

G) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

Tanks 4.0 Softv	are TANKS 4.0 SOFTWARE [FOR E	STIMATING WO	ORKING AND	BREATHING LOSSES FI	ROM STORAGE	TANKS]															
EPN	Tank Identifier	Throughput (gal/year)	Turnovers per year	Mixture/Component	Basis for VP Calculations	Vapor MW	Total Uncontrolled Emissions (Ib/hr)	Total Uncontrolled Emissions (ton/yr)	Tank Vapor VOC wt%	Tank Vapor Benzene wt%	Tank Vapor H₂S wt%	Percent Reduction for Produced Water Tank Calc. as Oil/Cond. (%)	Are tank vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?	Efficiency (%)	H₂S Control Efficiency (%)	VOC Results (Ib/hr)	VOC Results (tpy)	Benzene Results (lb/hr)	Benzene Results (tpy)	H₂S Results (lb/hr)	H₂S Results (tpy)
OST-01	Oil Storage Tank - Breathing & Working	260610	30	Crude Oil	Option 4: RVP =	50	0.2062	0.9033	58.5377	0.5224	0.0374	0	(A) uncontrolled			0.12	0.53	0.00	0.00	0.00	0.00
OST-02	Working Oil Storage Tank - Breathing & Working	260610	30	Crude Oil	Option 4: RVP =	50	0.2062	0.9033	58.5377	0.5224	0.0374	0	(A) uncontrolled			0.12	0.53	0.00	0.00	0.00	0.00
OST-03	Working Oil Storage Tank - Breathing & Working	260610	30	Crude Oil	Option 4: RVP =	50	0.2062	0.9033	58.5377	0.5224	0.0374	0	(A) uncontrolled			0.12	0.53	0.00	0.00	0.00	0.00
OST-04	Dil Storage Tank - Breathing & Working	260610	30	Crude Oil	Option 4: RVP =	50	0.2062	0.9033	58.5377	0.5224	0.0374	0	(A) uncontrolled			0.12	0.53	0.00	0.00	0.00	0.00
OST-05	Dil Storage Tank - Breathing & Working	260610	12	Crude Oil	Option 4: $RVP =$	50	0.362	1.5857	58.5377	0.5224	0.0374	0	(A) uncontrolled			0.21	0.93	0.00	0.01	0.00	0.00
OST-06	Dil Storage Tank - Breathing & Working	260610	12	Crude Oil	Option 4: RVP =	50	0.362	1.5857	58.5377	0.5224	0.0374	0	(A) uncontrolled			0.21	0.93	0.00	0.01	0.00	0.00
															Totals:	0.91	3.97	0.01	0.04	0.00	0.00

VOC Type: (pick from list) Crude Oil or Condensate VOC

Emission Type: (pick from list) Steady State (continuous)

Enter any notes here:

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	OST-01 thru OST-04 Lubbock Texas Texland Petroleum, LP Vertical Fixed Roof Tank Oil Storage Tanks
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	15.00 10.00 7.50 8,812.81 29.57 260,610.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Red/Primer Good Red/Primer Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 0.06 10.00
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Lubbock, Texas (Avg Atmospheric Pressure = 13.11 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

OST-01 thru OST-04 - Vertical Fixed Roof Tank Lubbock, Texas

		Daily Liquid Surf. Bul			Liquid Bulk Temp	lk			Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Crude oil (RVP 5)	All	73.94	59.07	88.82	64.47	3.7572	2.8254	4.9197	50.0000			207.00	Option 4: RVP=5

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

OST-01 thru OST-04 - Vertical Fixed Roof Tank Lubbock, Texas

Annual Emission Calcaulations	
Standing Losses (Ib):	932.3564
Vapor Space Volume (cu ft):	591.4049
Vapor Density (lb/cu ft):	0.0328
Vapor Space Expansion Factor:	0.3291
Vented Vapor Saturation Factor:	0.4001
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	591.4049
Tank Diameter (ft):	10.0000
Vapor Space Outage (ft): Tank Shell Height (ft):	7.5300 15.0000
Average Liquid Height (ft):	7.5000
Roof Outage (ft):	0.0300
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.0300
Dome Radius (ft):	10.0000
Shell Radius (ft):	5.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0328
Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	50.0000
Surface Temperature (psia):	3.7572
Daily Avg. Liquid Surface Temp. (deg. R):	533.6114
Daily Average Ambient Temp. (deg. F):	60.1333
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	524.1433
Tank Paint Solar Absorptance (Shell):	0.8900
Tank Paint Solar Absorptance (Roof): Daily Total Solar Insulation	0.8900
Factor (Btu/sqft day):	1,618.2092
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.3291
Daily Vapor Temperature Range (deg. R):	59.5018
Daily Vapor Pressure Range (psia):	2.0943
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid	3.7572
Surface Temperature (psia):	2.8254
Vapor Pressure at Daily Maximum Liquid	2.0204
Surface Temperature (psia):	4.9197
Daily Avg. Liquid Surface Temp. (deg R):	533.6114
Daily Min. Liquid Surface Temp. (deg R):	518.7359
Daily Max. Liquid Surface Temp. (deg R):	548.4868
Daily Ambient Temp. Range (deg. R):	26.6333
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.4001
Vapor Pressure at Daily Average Liquid:	0 7570
Surface Temperature (psia): Vapor Space Outage (ft):	3.7572 7.5300
Working Losses (lb):	874.2558
Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.7572
Annual Net Throughput (gal/yr.):	260,610.0000
Annual Turnovers:	29.5717
Turnover Factor:	1.0000
Maximum Liquid Volume (gal): Maximum Liquid Hojoht (ft):	8,812.8086
Maximum Liquid Height (ft): Tank Diameter (ft):	15.0000 10.0000
Working Loss Product Factor:	0.7500
Total Losses (lb):	1,806.6122

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

OST-01 thru OST-04 - Vertical Fixed Roof Tank Lubbock, Texas

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Crude oil (RVP 5)	874.26	932.36	1,806.61						

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	OST-05 thru OST-06 Lubbock Texas Texland Petroleum, LP Vertical Fixed Roof Tank Oil Storage Tanks
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Tumovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	16.00 15.50 16.00 8.00 21,172.77 12.31 260,610.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Red/Primer Good Red/Primer Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 0.06 15.50
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Lubbock, Texas (Avg Atmospheric Pressure = 13.11 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

OST-05 thru OST-06 - Vertical Fixed Roof Tank Lubbock, Texas

			ily Liquid S perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Crude oil (RVP 5)	All	73.94	59.07	88.82	64.47	3.7572	2.8254	4.9197	50.0000			207.00	Option 4: RVP=5

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

OST-05 thru OST-06 - Vertical Fixed Roof Tank Lubbock, Texas

Annual Emission Calcaulations	
Standing Losses (Ib):	2,297.2141
Vapor Space Volume (cu ft):	1,515.1961
Vapor Density (lb/cu ft):	0.0328
Vapor Space Expansion Factor:	0.3291
Vented Vapor Saturation Factor:	0.3848
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,515.1961
Tank Diameter (ft):	15.5000
Vapor Space Outage (ft):	8.0300 16.0000
Tank Shell Height (ft): Average Liquid Height (ft):	8.0000
Roof Outage (ft):	0.0300
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.0300
Dome Radius (ft):	15.5000
Shell Radius (ft):	7.7500
Vapor Density	
Vapor Density (lb/cu ft):	0.0328
Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid Surface Temperature (psia):	3.7572
Daily Avg. Liquid Surface Temp. (deg. R):	533.6114
Daily Average Ambient Temp. (deg. F):	60.1333
Ideal Gas Constant R	00.1000
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	524.1433
Tank Paint Solar Absorptance (Shell):	0.8900
Tank Paint Solar Absorptance (Roof):	0.8900
Daily Total Solar Insulation Factor (Btu/sqft day):	1,618.2092
Vener Seere Function Factor	
Vapor Space Expansion Factor Vapor Space Expansion Factor:	0.3291
Daily Vapor Temperature Range (deg. R):	59.5018
Daily Vapor Pressure Range (psia):	2.0943
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.7572
Vapor Pressure at Daily Minimum Liquid	0.0054
Surface Temperature (psia):	2.8254
Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia):	4.9197
Daily Avg. Liquid Surface Temp. (deg R):	533.6114
Daily Min. Liquid Surface Temp. (deg R):	518,7359
Daily Max. Liquid Surface Temp. (deg R):	548.4868
Daily Ambient Temp. Range (deg. R):	26.6333
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.3848
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	3.7572
Vapor Space Outage (ft):	8.0300
Working Losses (lb):	874.2558
Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.7572 260,610.0000
Annual Net Throughput (gal/yr.): Annual Turnovers:	260,610.0000 12.3087
Turnover Factor:	12.3087
Maximum Liquid Volume (gal):	21,172.7726
Maximum Liquid Height (ft):	16.0000
Tank Diameter (ft):	15.5000
Working Loss Product Factor:	0.7500
Total Losses (lb):	3,171.4699

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

OST-05 thru OST-06 - Vertical Fixed Roof Tank Lubbock, Texas

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Crude oil (RVP 5)	874.26	2,297.21	3,171.47						

Texland Petroleum, LP Lif-Lubheirs

Tank Emissions - Lab Gas Oil Ratio (GOR) Method

A) Enter information into the yellow boxes.

B) VOC and H₂S control efficiencies may be entered (if applicable).

C) A reduction for produced water tank emissions calculated as oil/condensate may be entered.

D) The tank vapor VOC, benzene, and H_2S weight percents may be entered.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) The table below can be used to calculate the flash gas molecular weight and the component weight percents if needed.

G) Make sure to answer the control device question.

H) Make sure to select the correct *VOC Type* and *Emission Type* from the pull down menus below.

EPN	Tank Identifier	Flash Initial Press. (psig)		Flash Final Press. (psig)	Flash Final Temp. (°F)	GOR (scf of flash gas/bbl of oil/cond. produced)	or Condonsato	Flash Gas Molecular Weight	i laon ouo	Flash Gas Benzene wt%	Flash Gas H ₂ S wt%	Percent Reduction for Produced Water Tank Calc. as Oil/Cond. (%)	Are tank vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?	VOC Control Efficiency (%)	H₂S Control Efficiency (%)	VOC Results (Ib/hr)	VOC Results (tpy)	Benzene Results (Ib/hr)	Benzene Results (tpy)	H₂S Results (Ib/hr)	H₂S Results (tpy)
VST-01	Water Storage Tank - Flash	10	90	0	60	1.52	437	31.8509	58.5377	0.5224	0.0374	. 99	(A) uncontrolled			0.01	0.06	0.00	0.00	0.00	0.00
VST-02	Water Storage Tank - Flash	10	90	0	60	1.52	437	31.8509	58.5377	0.5224	0.0374	. 99	(A) uncontrolled			0.01	0.06	0.00	0.00	0.00	0.00
VST-03	Water Storage Tank - Flash	10	90	0	60	1.52	437	31.8509	58.5377	0.5224	0.0374	. 99	(A) uncontrolled			0.01	0.06	0.00	0.00	0.00	
VST-04	Water Storage Tank - Flash	10	90	0	60	1.52	437	31.8509	58.5377	0.5224	0.0374	. 99	(A) uncontrolled			0.01	0.06	0.00	0.00	0.00	0.00
VST-05	Water Storage Tank - Flash	10	90	0	60	1.52	437	31.8509	58.5377	0.5224	0.0374	. 99	(A) uncontrolled			0.01	0.06	0.00	0.00	0.00	0.00
															Totals:	0.07	0.30	0.00	0.00	0.00	0.02

VOC Type: (pick from list) Crude Oil or Condensate VOC

Emission Type: (pick from list) Steady State (continuous)

Enter any notes here:

Company Name:	Texland Petroleum, L.P.
Facility Name:	Lif-Lubheirs
EPN:	WST-01 thru WST-05
FIN:	WST-01 thru WST-05
CIN:	None
Source Description:	Water Storage Tanks

Oil API Gravity

OII API Gia	vity	4
Measured/C	Calculated Gas Specific Gravity	1
Separator F	Pressure (PSIG)	
Separator T	Temperature (F)	
Site Elevation	on (Feet above Mean Sea Level)	
Calculated	Atmospheric Pressure @ Site Elevation:	14

Analytical GOR (Gas-Oil Ratio) in standard cubic feet per bbl (SCF/BBL)

Oil Production Rate (BOPD): Hours Operated per Year:

Flash Losses

Total cubic ft. hydrocarbons/hour:	27.677
Flash lbs/hr hydrocarbons:	2.323
Flash tons/yr hydrocarbons:	10.175
Total Hydrocarbon Emissions	
lbs/hr hydrocarbons:	2.323
tons/yr hydrocarbons:	10.175

25.4	
1.098	
10	
90	
0	
14.70	

1.5200	
407.00	

437.00	
8760	

Per guidance from the Texas Commission of Environmental Quality, water storage tank emissions were calculated using crude oil/condensate properties and water production rate. Emissions are then estimated at one percent of the calculated value.

Speciation Of Estimated VOCs fr	om Flash, Standing &	Working Losses	Uncor	ntrolled	Uncontrolled @ 1% Total			
Component	Mole Percent	Component Molecular Weight	Mole Fraction X Mole Wt	Weight Fraction	Lbs/hr	Tons/yr	Lbs/hr	Tons/yr
Hydrogen Sulfide	0.0350%	34.080	0.0119	0.0004	0.0009	0.0038	0.0000	0.0000
Nitrogen	2.7568%	28.013	0.7723	0.0242	0.0563	0.2467	0.0006	0.0025
Carbon Dioxide	0.7203%	44.010	0.3170	0.0100	0.0231	0.1013	0.0002	0.0010
Methane	44.8781%	16.043	7.1998	0.2260	0.5251	2.2999	0.0053	0.0230
Ethane	16.3137%	30.070	4.9055	0.1540	0.3578	1.5670	0.0036	0.0157
Propane	19.8281%	44.097	8.7436	0.2745	0.6377	2.7931	0.0064	0.0279
iso-Butane	3.6265%	58.123	2.1078	0.0662	0.1537	0.6733	0.0015	0.0067
n-Butane	6.6903%	58.123	3.8886	0.1221	0.2836	1.2422	0.0028	0.0124
iso-Pentane	2.5375%	72.150	1.8308	0.0575	0.1335	0.5848	0.0013	0.0058
n-Pentane	1.5974%	72.150	1.1525	0.0362	0.0841	0.3682	0.0008	0.0037
Other Hexanes	0.2079%	86.178	0.1792	0.0056	0.0131	0.0572	0.0001	0.0006
*n-Hexane	0.4163%	86.178	0.3588	0.0113	0.0262	0.1146	0.0003	0.0011
*Benzene	0.2130%	78.114	0.1664	0.0052	0.0121	0.0531	0.0001	0.0005
*Toluene	0.0504%	92.141	0.0464	0.0015	0.0034	0.0148	0.0000	0.0001
*Ethylbenzene	0.0142%	106.167	0.0151	0.0005	0.0011	0.0048	0.0000	0.0000
*Xylenes	0.0017%	106.167	0.0018	0.0001	0.0001	0.0006	0.0000	0.0000
*Trimethylpentane	0.0000%	114.231	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Heptanes	0.1108%	100.272	0.1111	0.0035	0.0081	0.0355	0.0001	0.0004
Octanes	0.0311%	114.231	0.0355	0.0011	0.0026	0.0113	0.0000	0.0001
Nonanes	0.0051%	128.258	0.0065	0.0002	0.0005	0.0021	0.0000	0.0000
Decanes +	0.0008%	142.280	0.0011	0.0000	0.0001	0.0004	0.0000	0.0000
Total	100.035%	Molecular Wt =	31.85	1.0000				

Calculation formula

 Air Toxics
 0.0429
 0.1880
 0.0004
 0.0019

 VOC (Including HAP)
 1.3598
 5.9561
 0.0136
 0.0596

Component lbs/hr = (HC lbs/hr)(Weight fraction of component)

Component tons/yr = (component lbs/hr)(hrs/yr)(1 ton/2000 lbs)

Texland Petroleum, LP Lif-Lubheirs **Tank Emissions - Tanks 4.0**

A) Enter information into the yellow boxes.

B) VOC and H₂S control efficiencies may be entered (if applicable).

C) A reduction for produced water tank emissions calculated as oil/condensate may be entered.

D) The tank vapor VOC, benzene, and H_2S weight percents may be entered.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) Make sure to answer the control device question.

G) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

EPN	Tank Identifier	Throughput (gal/year)	Turnovers per year	Mixture/Component	Basis for VP Calculations	Vapor MW	Total Uncontrolled Emissions (Ib/hr)	Total Uncontrolled Emissions (ton/yr)	Tank Vapor VOC wt%	Tank Vapor Benzene wt%	Tank Vapor H₂S wt%	Percent Reduction for Produced Water Tank Calc. as Oil/Cond. (%)	(VRU); or (C) controlled by another type of control device?	Efficiency (%)	H ₂ S Control Efficiency (%)	VOC Results (lb/hr)	VOC Results (tpy)	Benzene Results (Ib/hr)	Benzene Results (tpy)	H₂S Results (lb/hr)	H₂S Results (tpy)
WST-01	Water Storage Tank - Breathing & Working	6699210	330	Produced Water	Option 4: RVP =	50	0.8411	3.684	58.5377	0.5224	0.0374	99	(A) uncontrolled			0.00	0.02	0.00	0.00	0.00	0.00
WST-02	Working Water Storage Tank - Breathing & Working	6699210	791	Produced Water	Option 4: RVP =	50	0.9493	4.158	58.5377	0.5224	0.0374	99	(A) uncontrolled			0.01	0.02	0.00	0.00	0.00	0.00
WST-03	Working Water Storage Tank - Breathing & Working	6699210	791	Produced Water	Option 4: RVP =	50	0.6853	3.002	58.5377	0.5224	0.0374	99	(A) uncontrolled			0.00	0.02	0.00	0.00	0.00	0.00
WST-04	ater Storage Tank - Breathing & Worki	6699210	791	Produced Water	Option 4: RVP =	50	0.6853	3.002	58.5377	0.5224	0.0374	99	(A) uncontrolled			0.00	0.02	0.00	0.00	0.00	0.00
WST-05	ater Storage Tank - Breathing & Worki	6699210	791	Produced Water	Option 4: RVP =	50	0.6853	3.002	58.5377	0.5224	0.0374	99	(A) uncontrolled			0.00	0.02	0.00	0.00	0.00	0.00
															Totals:	0.02	0.10	0.00	0.00	0.00	0.01

VOC Type: (pick from list)
Crude Oil or Condensate VOC

<u>Emission Type:</u> (pick from list) Steady State (continuous)

Enter any notes here:

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	WST-01 Lubbock Texas Texland Petroleum, LP Vertical Fixed Roof Tank Water Storage Tank
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	24.00 12.00 24.00 20,304.71 329.93 6,699,210.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Red/Primer Good Red/Primer Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 0.06 12.00
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Lubbock, Texas (Avg Atmospheric Pressure = 13.11 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

WST-011111111 - Vertical Fixed Roof Tank Lubbock, Texas

			ily Liquid S perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Crude oil (RVP 5)	All	73.94	59.07	88.82	64.47	3.7572	2.8254	4.9197	50.0000			207.00	Option 4: RVP=5

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

WST-011111111 - Vertical Fixed Roof Tank Lubbock, Texas

Annual Emission Calcaulations	
Standing Losses (Ib):	1,578.8860
Vapor Space Volume (cu ft):	1,360.5611
Vapor Density (lb/cu ft):	0.0328
Vapor Space Expansion Factor:	0.3291
Vented Vapor Saturation Factor:	0.2945
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,360.5611 12,0000
Tank Diameter (ft): Vapor Space Outage (ft):	12.0000
Tank Shell Height (ft):	24.0000
Average Liquid Height (ft):	12.0000
Roof Outage (ft):	0.0300
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.0300
Dome Radius (ft):	12.0000
Shell Radius (ft):	6.0000
Vapor Density	0.0328
Vapor Density (lb/cu ft): Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	50.0000
Surface Temperature (psia):	3.7572
Daily Avg. Liquid Surface Temp. (deg. R):	533.6114
Daily Average Ambient Temp. (deg. F):	60.1333
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R): Tank Paint Solar Absorptance (Shell):	524.1433 0.8900
Tank Paint Solar Absorptance (Sneil).	0.8900
Daily Total Solar Insulation	0.0000
Factor (Btu/sqft day):	1,618.2092
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.3291
Daily Vapor Temperature Range (deg. R):	59.5018
Daily Vapor Pressure Range (psia):	2.0943
Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0600
Surface Temperature (psia):	3.7572
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	2.8254
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	4.9197
Daily Avg. Liquid Surface Temp. (deg R):	533.6114
Daily Min. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R):	518.7359 548.4868
Daily Ambient Temp. Range (deg. R):	26.6333
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.2945
Vapor Pressure at Daily Average Liquid:	0.2343
Surface Temperature (psia):	3.7572
Vapor Space Outage (ft):	12.0300
Working Losses (lb):	5,789.0433
Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	0 7570
Surface Temperature (psia):	3.7572 6,699,210.0000
Annual Net Throughput (gal/yr.): Annual Turnovers:	6,699,210.0000
Turnover Factor:	0.2576
Maximum Liquid Volume (gal):	20,304.7110
Maximum Liquid Height (ft):	24.0000
Tank Diameter (ft):	12.0000
Working Loss Product Factor:	0.7500
Total Langes (Ib):	7 267 6000
Total Losses (lb):	7,367.9293

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

WST-011111111 - Vertical Fixed Roof Tank Lubbock, Texas

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Crude oil (RVP 5)	5,789.04	1,578.89	7,367.93					

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	WST-02 Lubbock Texas Texland Petroleum, LP Vertical Fixed Roof Tank Water Storage Tank
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	16.00 15.50 16.00 8.00 22,584.29 296.63 6,699,210.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Red/Primer Good Red/Primer Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 0.06 15.50
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Lubbock, Texas (Avg Atmospheric Pressure = 13.11 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

WST-021 - Vertical Fixed Roof Tank Lubbock, Texas

		Da Tem	ily Liquid S perature (d	urf. ∋g F)	Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Crude oil (RVP 5)	All	73.94	59.07	88.82	64.47	3.7572	2.8254	4.9197	50.0000			207.00	Option 4: RVP=5

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

WST-021 - Vertical Fixed Roof Tank Lubbock, Texas

Annual Emission Calcaulations	
Standing Losses (lb):	2,297.2141
Vapor Space Volume (cu ft):	1,515.1961
Vapor Density (lb/cu ft):	0.0328 0.3291
Vapor Space Expansion Factor: Vented Vapor Saturation Factor:	0.3291
	0.3040
Tank Vapor Space Volume: Vapor Space Volume (cu ft):	1,515.1961
Tank Diameter (ft):	15.5000
Vapor Space Outage (ft):	8.0300
Tank Shell Height (ft):	16.0000
Average Liquid Height (ft):	8.0000
Roof Outage (ft):	0.0300
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.0300
Dome Radius (ft):	15.5000
Shell Radius (ft):	7.7500
Vapor Density Vapor Density (lb/cu ft):	0.0328
Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.7572
Daily Avg. Liquid Surface Temp. (deg. R):	533.6114
Daily Average Ambient Temp. (deg. F): Ideal Gas Constant R	60.1333
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	524.1433
Tank Paint Solar Absorptance (Shell):	0.8900
Tank Paint Solar Absorptance (Roof):	0.8900
Daily Total Solar Insulation Factor (Btu/sqft day):	1,618.2092
	1,010.2002
Vapor Space Expansion Factor Vapor Space Expansion Factor:	0.3291
Daily Vapor Temperature Range (deg. R):	59.5018
Daily Vapor Pressure Range (psia):	2.0943
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.7572
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	2.8254
Vapor Pressure at Daily Maximum Liquid Surface Temperature (psia):	4.9197
Daily Avg. Liquid Surface Temp. (deg R):	533.6114
Daily Min. Liquid Surface Temp. (deg R):	518,7359
Daily Max. Liquid Surface Temp. (deg R):	548.4868
Daily Ambient Temp. Range (deg. R):	26.6333
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.3848
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	3.7572
Vapor Space Outage (ft):	8.0300
Working Losses (lb):	6,018.4592
Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	0 7570
Surface Temperature (psia): Annual Net Throughput (gal/yr.):	3.7572 6,699,210.0000
Annual Turnovers:	296.6314
Turnover Factor:	0.2678
Maximum Liquid Volume (gal):	22,584.2908
Maximum Liquid Height (ft):	16.0000
Tank Diameter (ft):	15.5000
Working Loss Product Factor:	0.7500
Total Losses (lb):	8,315.6733

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

WST-021 - Vertical Fixed Roof Tank Lubbock, Texas

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Crude oil (RVP 5)	6,018.46	2,297.21	8,315.67					

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	WST-03 thru WST-05 Lubbock Texas Texland Petroleum, LP Vertical Fixed Roof Tank Water Storage Tanks
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Tumovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	6.00 15.50 6.00 3.00 8,469.11 791.02 6,699,210.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Red/Primer Good Red/Primer Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 0.06 15.50
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Lubbock, Texas (Avg Atmospheric Pressure = 13.11 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

WST-02 thru WST-05 - Vertical Fixed Roof Tank Lubbock, Texas

			ily Liquid Su perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Crude oil (RVP 5)	All	73.94	59.07	88.82	64.47	3.7572	2.8254	4.9197	50.0000			207.00	Option 4: RVP=5

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

WST-02 thru WST-05 - Vertical Fixed Roof Tank Lubbock, Texas

Annual Emission Calcaulations	
Standing Losses (Ib):	1,405.0967
Vapor Space Volume (cu ft):	571.7366
Vapor Density (lb/cu ft):	0.0328
Vapor Space Expansion Factor:	0.3291
Vented Vapor Saturation Factor:	0.6237
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	571.7366
Tank Diameter (ft):	15.5000
Vapor Space Outage (ft):	3.0300
Tank Shell Height (ft): Average Liquid Height (ft):	6.0000 3.0000
Roof Outage (ft):	0.0300
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.0300
Dome Radius (ft):	15.5000
Shell Radius (ft):	7.7500
Vapor Density	
Vapor Density (lb/cu ft):	0.0328
Vapor Molecular Weight (lb/lb-mole):	50.0000
Vapor Pressure at Daily Average Liquid	0.7570
Surface Temperature (psia):	3.7572 533.6114
Daily Avg. Liquid Surface Temp. (deg. R): Daily Average Ambient Temp. (deg. F):	60.1333
Ideal Gas Constant R	00.1333
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	524.1433
Tank Paint Solar Absorptance (Shell):	0.8900
Tank Paint Solar Absorptance (Roof):	0.8900
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,618.2092
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.3291
Daily Vapor Temperature Range (deg. R):	59.5018
Daily Vapor Pressure Range (psia):	2.0943 0.0600
Breather Vent Press. Setting Range(psia): Vapor Pressure at Daily Average Liquid	0.0600
Surface Temperature (psia):	3.7572
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	2.8254
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	4.9197
Daily Avg. Liquid Surface Temp. (deg R):	533.6114
Daily Min. Liquid Surface Temp. (deg R):	518.7359
Daily Max. Liquid Surface Temp. (deg R):	548.4868 26.6333
Daily Ambient Temp. Range (deg. R):	20.0333
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.6237
Vapor Pressure at Daily Average Liquid:	2 7570
Surface Temperature (psia): Vapor Space Outage (ft):	3.7572 3.0300
Working Losses (Ib):	4,597.9136
Vapor Molecular Weight (lb/lb-mole):	4,597.9136
Vapor Pressure at Daily Average Liquid	00.0000
Surface Temperature (psia):	3.7572
Annual Net Throughput (gal/yr.):	6,699,210.0000
Annual Turnovers:	791.0171
Turnover Factor:	0.2046
Maximum Liquid Volume (gal):	8,469.1090
Maximum Liquid Height (ft):	6.0000
Tank Diameter (ft):	15.5000
Working Loss Product Factor:	0.7500
Total Losses (lb):	6,003.0103
Total 20303 (ID).	0,003.0103

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

WST-02 thru WST-05 - Vertical Fixed Roof Tank Lubbock, Texas

	Losses(lbs)				
Components	Working Loss	Breathing Loss	Total Emissions		
Crude oil (RVP 5)	4,597.91	1,405.10	6,003.01		

Planned MSS - Other Emissions

Any other planned MSS activity or tank cleaning operation needs to be reported in this section. Please briefly explain all the calculations involved in the notes section. Notes: 2.

1. Enter information into the yellow boxes.

Please provide a separate detailed calculation for these emissions; also include any necessary supplemental information and notes (such as the source/justification for any calculation inputs).

3. VOC, Benzene and H2S control efficiencies may be entered (if applicable).

4. Make sure to answer the control device question.5. Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

Texland
Petroleum, LP
MSS-01
Lif-Lubheirs
Routine MSS

VOC Wt%	36.22
H ₂ S Wt%	0.05
Benzene Wt%	0.52
Type of Control Device	None
Are tank vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?	(A) uncontrolled

<u>VOC Type:</u> (pick from list) Natural Gas VOC

Emission Type: (pick from list) Low Pressure Periodic						
		du stie e				
Emissions before control and before wt% reduction						
	Max. hourly	Avg.Annual				
Type of Losses	emissions lb/hr	emissions tpy				
Routine MSS	0.23	1.01				

Planned MSS Emissions							
Max. hourly Avg.An Air contaminant emissions lb/hr emission							
Total VOC	0.08	0.37					
Total H₂S	0.00	0.00					
Total Benzene	0.00	0.01					

Notes:

Appendix - Section 2

Major Source determination

Major Source determination: A site is required to obtain an operating permit if it is considered to be a major source (per 30 TAC Section 122.10). A site's potential to emit is an important factor to determine if the site is a major source and is thus required to apply and obtain an FOP.

Company Name	Texland Petroleum, LP			
	Lif-Lubheirs			
County	Other			

Annual Site Wide Emission Rates							
Air Contaminant Name (3)	TPY (4)						
Total VOC	18.95						
Benzene	0.18						
Formaldehyde	0.00						
SO ₂	0.41						
NO _X	0.69						
СО	0.58						
PM ₁₀	0.05						
PM _{2.5}	0.04						

Maior Course Determination						
Major Source Determination						
Air Contaminant	Major Source determination					
Name (3)						
Total VOC	NA					
Benzene	NA					
Formaldehyde	NA					
SO ₂	NA					
NO _X	NA					
СО	NA					
PM ₁₀	NA					
PM _{2.5}	NA					

Texland Petroleum, LP Lif-Lubheirs

Authorization Level Determination

The level of authorization is determined by comparing the Registration Total Emission Rates (as shown on the previous tab) to the emission limits of the different authorization levels.

This table is an expanded explanation of how the authorization level shown on the Emissions Summary tab was determined. The table shows which authorization level each compound's emissions fall into, and then at the bottom of the chart it shows which authorization level the entire authorization falls under.

The possible authorization levels are:

PBR Level 1 PBR Level 2 Standard Permit NSR Case-by-case Permit

	Based on the Registration Total Emission Rates (on the previous tab), what Level of Authorization Does Each Emission Rate Fall Into?							
	Emission Rates							
Air Contaminant Name	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr	ТРУ				
Total VOC	NA, no limit	NA, no limit	NA, no limit	PBR Level 2				
Total Crude Oil or Condensate VOC	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 2				
Total Natural Gas VOC	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1				
Benzene	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1				
Formaldehyde	NA, no limit	NA, no limit	NA, no limit	PBR Level 1				
H ₂ S	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1				
SO ₂	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1				
NO _X	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1				
со	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1				
PM ₁₀	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1				
PM _{2.5}	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1				

What Level of Authorization Applies to this Registration? (If any of the registration emissions are equal to or greater than the limits of a level, then the whole registration falls into that level above.) PBR Level 2 Appendix - Section 3

Texland Petroleum, LP Lif-Lubheirs

Is a Full Impacts Review Required?

and NO₂. A full impacts review involves showing protection of public health and welfare and compliance with applicable ambient air standards (state and federal) on a short term and long term basis.

A full impacts review is not required for a certain compound under these certain circumstances:

- if there is no receptor (to be affected by benzene emissions) or property line (where compliance with NO_2 , SO_2 , and H_2S ambient air quality standards is required) within a certain distance of a registration (that is if there is no receptor or property line within a certain distance of any emitting source in the registration), or
- if the net project emission increases of that compound are very small.

Based on these circumstances, the worksheet below determines whether or not a full impacts review is required for any of the four compounds (benzene, H_2S , SO_2 , and NO_2).

If any of (1)-(3) below shows that a full impacts review is not required for a compound, then under (4) it will show that no further impacts review needs to be done and it will explain that "you are done" for that compound. If all of (1)-(3) show that a full impacts review is required, then (4) will explain that one of the three methods for doing a full impacts review (screening modeling, dispersion modeling, or the modeling tables from the rule) must be used.

If the modeling tables from the rule are used, then the spreadsheet tabs labeled for benzene, H_2S , SO_2 , and NO_2 should be used. These tabs provide a way to use the modeling tables and perform the necessary calculations to show whether the impacts review is passed.

(1) Based on receptor and property line distances, is a full impacts review required for any air contaminant? (Is there a receptor or property line within the specified distance of the registration? The distances are 1/4 mile for PBR Level 1, 1/2 mile for PBR Level 2, and 1 mile for Standard Permit.) First the level of authorization must be known.

> Based on the Registration Total Emission Rates, this authorization falls under: PBR Level 2

What is the shortest distance in feet to any receptor from any facility/unit included in this registration?	1175	ft
What is the shortest distance in feet to any property line from any facility/unit included in this registration?	80	ft

 Based on the nearest receptor distance:

 A full impacts review is required for benzene.

Based on the nearest property line distance:A full impacts review is required for H2S, SO2, and NO2.

(2) Based on the <u>net project emission increases</u>, is a full impacts review required for any air contaminent? (Are the net project emission increases less than any of the de-minimis rates?)

	Net Project Emission Increases								
		Emissio	n Rates						
Air Contaminant Name	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr	ТРҮ					
Benzene	0.04	0.04	0.04	0.18					
H ₂ S	0.01	0.01	0.01	0.03					
SO ₂	0.09	0.09	0.09	0.41					
NO _X	0.16	0.16	0.16	0.69					
Please explain the logic behind the values here if any values are different than the Project Total Emission Rates from the Emissions Summary tab.									

De-minimis Rates					
Air contaminant	lb/hr				
Benzene	0.039				
H₂S	0.025				
SO ₂	2				
NO _X	4				

Based on the net project emission increases:	
A full impacts review is required for benzene.	
A full impacts review is NOT required for H2S	5.
A full impacts review is NOT required for SO2	2.
A full impacts review is NOT required for NO2	2.

Based on the <u>project maximum predicted concentrations</u>, is a full impacts review required for any air contaminant? (Are the project maximum predicted benzene concentrations \leq 10% of the applicable effects screening level (ESL) or \leq 25% of the applicable ESL when combined with project increases over 60-month period after rule effective date? Are project maximum predicted H₂S, SO₂, and NO_x concentrations \leq the significant impact level, SIL, also known as a de-minimis impact in Chapter 101 of 30 TAC, where the SIL = 4% of the applicable ambient air standard (AAQS)?)

LOLS and AAQO needed for impacts

review:						
ESLs and AAQSs	(µg/m³)					
Benzene Short Term ESL	170					
Benzene Long Term ESL	4.5					
H ₂ S Hourly SAAQS	108					
SO ₂ Hourly NAAQS	196					
NO ₂ Hourly NAAQS	188					
What is the project maximu	m predicted 1	l-hr_				
concentration of <u>benzene</u> i	n micrograms	per cubic				
meter?			NA	(µg/m³)		
Based on this:						
A full impacts revi	ew is required	for benzene or	n an hourly ba	sis.		
What is the maximum predi <u>benzene</u> in micrograms per <u>project combined with prev</u> over a 60-month period afte	cubic meter f vious project i	for the ncreases				
this rule?	-		NA	(µg/m³)		
Based on this:						
A full impacts revi	ew is required	for benzene or	n an hourly ba	sis.		
What is the <u>project</u> maximu	m predicted a	nnual				
concentration of <u>benzene</u> in						
meter?			NA	(µg/m³)		
Based on this:						
A full impacts revi	ew is required	for benzene on	an annual ba	sis.		
What is the maximum predi of <u>benzene</u> in micrograms p <u>project combined with prev</u> over a 60-month period after this rule?	per cubic meter vious project i	er for the ncreases	NA	(µg/m ³)		
Based on this:	l					
A full impacts revi	ew is required	for benzene on	an annual ba	SÍS.		
What is the <u>project</u> maximu concentration of <u>H₂S</u> in mic	-		NA	(µg/m³)		
Based on this:	l <u></u>					
A full impacts re	eview is require	ed for H2S on a	an hourly basis	.		
What is the <u>project</u> maximum predicted <u>1-hr</u> concentration of <u>SO₂</u> in micrograms per cubic meter? NA (μg/m³)						
Based on this:						
A full impacts re	eview is require	ed for SO2 on a	an hourly basis	<u>.</u>		
What is the <u>project</u> maximu concentration of <u>NO₂ in mic</u> Based on this:			NA	(µg/m³)		

(3)

(4) Based on the above assessment from (1) - (3):

A full impacts review is required for benzene. Perform review on benzene impacts tab. Consider the Impacts Scope table on the next tab as additional emission points outside of the registration may need to be considered for the impacts review. A full impacts review is NOT required for H2S. A full impacts review is NOT required for SO2. A full impacts review is NOT required for NO2.

Press this button to make the impacts review tabs visible if needed, that is if you want to use the modeling tables from the rule for any of the four compounds.

Texland Petroleum, LP Lif-Lubheirs

Emissions Summary Including Any Additional Impacts Scope Emissions

Registration emissions are included in the impacts scope totals.

The only air contaminents that potentially may need to be filled in are benzene H_2S , SO_2 , and NO_X , because these are the four air contaminents that a full impacts review could potentially be required for (note that the impacts review is actually done on NO_2 , not NO_X). Within those four contaminents, the only ones that absolutely need to be filled in are the ones which require a full impacts review. The rest can be filled in if chosen to be.

To change the number of rows in the charts below, click on the button to the right of the chart that says "Expand Table" and it will ask how many rows you need. You can press the button more than once to add or delete more rows; the rows will be added or deleted starting at the bottom.

Impacts Scope Emissions (This needs to include any other emission points not included in the Project Emissions Summary or the Registration Emissions Summary that are in the impacts review scope. The impacts review scope includes all units owned/operated by the same company, located on contigous or adjacent property, and designated under same two digit standard industrial classification (SIC) code, within 1/4 mile of any unit in the project for PBR Level 1, within 1/2 mile of any unit in the project for PBR Level 2, and within 1 mile of any unit in the project for the Standard Permit, regardless of the units being operationally dependent and regardless of the unit authorization type(s). It is possible that nothing needs to be entered here.)

				Emissio	n Rates	
Emission Point No. Source Name		Air Contaminant Name	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr	ТРҮ
		Total VOC				
		Total Crude Oil or Condensate VOC				
		Total Natural Gas VOC				
		Benzene				
		Formaldehyde				
		H ₂ S				
		SO ₂				
		NO _X				
		СО				
		PM ₁₀				
		PM _{2.5}				

			Emissio	n Rates	
Impacts Scope Total Emission Rates (Note that these periodic totals are NOT simply the sum of the periodic emission rates from each emission point. The	Air Contaminant Name	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr	TPY (4)
periodic emission limits need to be	Total VOC	4.24	4.33	4.33	18.95
compared to the sum of steady state and periodic emissions, that is the worst case combination of continously and periodically emitting sources that could	Total Crude Oil or Condensate VOC	4.23	4.23	4.23	18.54
occur in any one hour. The periodic emission rates shown here are the sum of all steady state and periodic emissions. If		0.00	0.08	0.08	0.37
the worst case combination of continously	Benzene	0.04	0.04	0.04	0.18
and periodically emitting sources is less	Formaldehyde	0.00	0.00	0.00	0.00
	H ₂ S	0.01	0.01	0.01	0.03
this table to the right. Please explain below which emission points are	SO ₂ NO _X	0.09	0.09	0.09	0.41
included in this worst case	$\frac{NO_X}{CO}$	0.10	0.10	0.13	0.58
combination.)	PM ₁₀	0.13	0.13	0.01	0.05
	$\mathbf{PM}_{2.5}$	0.01	0.01	0.01	0.04
If the automated formulas for the impacts scope emission totals (which assume that it is possible for all steady state and periodic emissions in the impacts scope to occur in the same hour) have been overwritten, explain any changes made and list the impacts scope emission points that occur in the realistic worst case hour. (Leave this blank or put NA if none of the formulas have been overwritten.)					

Texland Petroleum, LP Lif-Lubheirs

Full Impacts Review

A full impacts review must be done for all of the following as applicable: Benzene Hourly Steady State Benzene Hourly Low Pressure Periodic Benzene Hourly High Pressure Periodic Benzene Annual

The maximum acceptable emission rate can be found on an hourly steady state basis, hourly periodic (low pressure) basis, hourly periodic (high pressure) basis, and annual basis, which can be expressed as E_{max,hourly,steadystate}, E_{max,hourly,periodic(low pressure)}, E_{max,hourly,periodic(high pressure)}, and E_{max,annual, respectively}.

The equations for Emax, hourly and Emax, annual are:

$E_{max,hourly} = (WR_{EPN1}) * \left(\frac{P \text{ or ESL}}{G_{hourly,EPN1}}\right)$	$\left(\frac{P \text{ or ESL}}{G_{hourly,EPNx}}\right) * \left(\frac{P \text{ or ESL}}{G_{hourly,EPNx}}\right)$)
$E_{\max,\text{annual}} = \left(\frac{8,760}{2,000}\right) * (WR_{EPN1}) *$	$\left(\frac{\text{P or ESL}}{0.08 * G_{\text{hourly,EPN1}}}\right) + \dots + \left(\frac{8,760}{2,000}\right)$	$(WR_{EPNx}) * (WR_{EPNx}) * \left(\frac{P \text{ or } ESL}{0.08 * G_{hourly, EPNx}}\right)$

The emissions must include all emissions in the impacts scope, which are contained in the Impacts Scope Emissions Totals box on the Impacts Scope Tab.

Impacts review is passed when the total estimated emission rate is less than the calculated maximum acceptable emission rate $E_{estimated,total} \leq E_{max,total}$.

The shortest distance from any emitting source to the nearest receptor can be used for each emitting source or the actual distance from the source to the nearest receptor.

The appropriate G factor can be found on the impact chart tabs based on the distance from the emission point to the nearest receptor, the height of the emission release point, and the type of emission point.

To change the number of rows in the charts below, click on the button to the right of the chart that says "Set Row Count" and it will ask how many rows you need. You can press the button more than once to add or delete more rows; the rows will be added or deleted starting at the bottom.

Benzene Short Term ESL (μg/m³):	170
Benzene Long Term ESL (µg/m³):	4.5

	Benzene Hourly Steady State - Impact Review								
EPN	Source Name	Which impacts table corresponds to this EPN?	EPN (Ibs/hr)	21112	short term (µg/m ³)	Distance from emission point to nearest receptor (ft)	Height of emission release point (ft)	G _{epnx}	E _{max,EPNx,} hourly,steadystate (Ib/hr)
FE-01	Fugitive Emissions	Fugitive	0.0293	0.7146341	170	1175	3	135	0.89990967
HT-01	Heater Treater	Proc. Vessel Vent	0	0	170	1188	20	71	0
HT-02	Heater Treater	Proc. Vessel Vent	0	0	170				0
HT-03	Heater Treater	Proc. Vessel Vent	0	0	170	1209	20	70	0
OST-01	Oil Storage Tank - Flash	Tank Hatch	0.0005	0.0121951	170				
OST-02	Oil Storage Tank - Flash	Tank Hatch	0.0005	0.0121951	170	1150			
OST-03	Oil Storage Tank - Flash	Tank Hatch	0.0005	0.0121951	170	1155	15	119	0.0174216
OST-04	Oil Storage Tank - Flash	Tank Hatch	0.0005	0.0121951	170	1160			
OST-05	Oil Storage Tank - Flash	Tank Hatch	0.0005	0.0121951	170	1101	16		0.01658537
OST-06	Oil Storage Tank - Flash	Tank Hatch	0.0005	0.0121951	170	1123	16	122	0.0169932
OST-01	Oil Storage Tank - Breathing & Working Oil Storage Tank -	Tank Hatch	0.0011	0.0268293	170	1145	15	120	0.03800813
OST-02	Breathing & Working	Tank Hatch	0.0011	0.0268293	170	1150	15	120	0.03800813
OST-03	Oil Storage Tank - Breathing & Working	Tank Hatch	0.0011	0.0268293	170	1155	15	119	0.03832753
OST-04	Oil Storage Tank - Breathing & Working	Tank Hatch	0.0011	0.0268293	170	1160	15	119	0.03832753
OST-05	Oil Storage Tank - Breathing & Working Oil Storage Tank -	Tank Hatch	0.0019	0.0463415	170	1101	16	125	0.06302439
OST-06	Breathing & Working	Tank Hatch	0.0019	0.0463415	170	1123	16	122	0.06457417
WST-01	Water Storage Tank - Flash Water Storage Tank -	Tank Hatch	0.0001	0.002439	170	1185	24	116	0.00357443
WST-02	Flash Water Storage Tank -	Tank Hatch	0.0001	0.002439	170	1170	16	118	0.00351385
WST-03	Flash Water Storage Tank -	Tank Hatch	0.0001	0.002439	170	1145	6	120	0.00345528
WST-04	Flash Water Storage Tank -	Tank Hatch	0.0001	0.002439	170	1155	6	119	0.00348432
WST-05	Flash Water Storage Tank -	Tank Hatch	0.0001	0.002439	170	1148	6	120	0.00345528
WST-01	Breathing & Working Water Storage Tank -	Tank Hatch	0	0	170	1185	24	116	0
WST-02	Breathing & Working Water Storage Tank -	Tank Hatch	0	0	170	1170	16	118	0
WST-03	Breathing & Working Water Storage Tank -	Tank Hatch	0	0	170	1145	6	120	0
WST-04	Breathing & Working Water Storage Tank -	Tank Hatch	0	0	170	1155	6	119	0
WST-05	Breathing & Working	Tank Hatch	0	0	170	1148	6	120	0
			E _{estimated,tota} I,hourly,steadyst ate (Ib/hr) 0.041	Total		Pas	sed		E _{max,total,} hourly,steadystate (Ib/hr) 1.30063733

		Benzene He	ourly Low Pr	essure Peri	odic - Impac	t Review			
EPN	Source Name	Which impacts table corresponds to this EPN?	EPN		ESL _{benzene,}	Distance from emission point to nearest receptor (ft)	Height of emission release point (ft)	G _{epnx}	E _{max,EPNx,} hourly,periodic(lo w pressure) (Ib/hr)
MSS-01	Routine MSS	Proc. Vessel Vent	0.0012	1	170	1175	20	72	2.36111111
					170				
					170				
					170				
					170				
					170				
					170				
					170				
					170				
					170				
			E _{estimated,tota} I,hourly,periodic (low pressure) (Ib/hr) 0.0012	Total		Pas	sed		E _{max,total,} hourly,periodic(lo w pressure) (Ib/hr) 2.36111111

	Benzene Hourly High Pressure Periodic - Impact Review								
EPN	Source Name		EPN		ESL _{benzene,}	Distance from emission point to nearest receptor (ft)	Height of emission release point (ft)	G _{epnx}	E _{max,EPNx,} hourly,periodic(hi gh pressure) (Ib/hr)
					170				
					170				
					170				
					170				
					170				
					170				
					170 170				
					170				
					170				
			E _{estimated,tota} I,hourly,periodic (high pressure) (Ib/hr) 0	Total		Pass or Fail?			E _{max,total,} hourly,periodic(hi gh pressure) (Ib/hr) 0

			Benze	ne Annual -	mpact Revie	ew				
EPN	Source Name	What amount of time is this source is emitting? (hrs/yr)	table correspon ds to this EPN?		ELINA	ESL _{benzene,} long term (μg/m ³)	Distance from emission point to nearest receptor (ft)		G _{EPNx}	E _{max,EPNx,} annual (tons/yr)
FE-01	Fugitive Emissions	8760	Fugitive Proc.	0.1282	0.692973	4.5	1175	3	10.8	15.80845
HT-01	Heater Treater	8760	Vessel	0	0	4.5	1188	20	5.68	0
HT-02	Heater Treater	8760	Proc.	0	0	4.5	1209	20	5.6	0
HT-03	Heater Treater	8760	Vessel Vent	0	0	4.5	1209	20	5.6	0
OST-01	Oil Storage Tank - Flash	8760	Tank Hatch	0.0021	0.0113514	4.5	1145	15	9.6	0.291322
OST-02	Oil Storage Tank - Flash	8760	Tank Hatch	0.0021	0.0113514	4.5	1150	15	9.6	0.291322
OST-03	Oil Storage Tank - Flash	8760	Tank Hatch	0.0021	0.0113514	4.5	1155	15	9.52	0.29377
OST-04	Oil Storage Tank - Flash	8760	Tank Hatch	0.0021	0.0113514	4.5	1160	15	9.52	0.29377
OST-05	Oil Storage Tank - Flash	8760	Tank Hatch	0.0021	0.0113514	4.5	1101	16	10	0.279669
OST-06	Oil Storage Tank - Flash Oil Storage Tank -		Tank Hatch	0.0021	0.0113514			16		
OST-01	Breathing & Working Oil Storage Tank -		Tank Hatch	0.0047	0.0254054	4.5				0.652006
OST-02	Breathing & Working Oil Storage Tank -		Tank Hatch	0.0047	0.0254054	4.5				0.652006
OST-03 OST-04	Breathing & Working Oil Storage Tank - Breathing & Working		Tank Hatch Tank Hatch	0.0047	0.0254054					0.657485
OST-04	Oil Storage Tank - Breathing & Working		Tank Hatch	0.0047				15		1.105358
OST-06	Oil Storage Tank - Breathing & Working		Tank Hatch	0.0083				16		
WST-01	Water Storage Tank - Flash		Tank Hatch	0.0005		4.5		24		
WST-02	Water Storage Tank - Flash	8760	Tank Hatch	0.0005	0.0027027	4.5	1170	16	9.44	0.070538
WST-03	Water Storage Tank - Flash	8760	Tank Hatch	0.0005	0.0027027	4.5	1145	6	9.6	0.069362
WST-04	Water Storage Tank - Flash Water Storage Tank -	8760	Tank Hatch	0.0005	0.0027027	4.5	1155	6	9.52	0.069945
WST-05	Flash Water Storage Tank -	8760	Tank Hatch	0.0005	0.0027027	4.5	1148	6	9.6	0.069362
WST-01	Breathing & Working Water Storage Tank -	8760	Tank Hatch	0.0002	0.0010811	4.5	1185	24	9.28	0.028702
WST-02	Breathing & Working Water Storage Tank -	8760	Tank Hatch	0.0002	0.0010811	4.5	1170	16	9.44	0.028215
WST-03	Breathing & Working Water Storage Tank -	8760	Tank Hatch	0.0002	0.0010811	4.5	1145	6	9.6	0.027745
WST-04	Breathing & Working Water Storage Tank -		Tank Hatch	0.0002	0.0010811	4.5		6		0.027978
WST-05 MSS-01	Breathing & Working Routine MSS		Tank Hatch Proc. Vessel Vent	0.0002	0.0010811	4.5				0.002837
				E _{estimated,tota} I,annual (tons/yr) 0.185	Total 1		Pas	sed		E _{max,total,} ^{annual} (tons/yr) 22.89591

Appendix - Section 4

Comm Engineering West Lee 2016-ELDF-000082

Pressurized Liquid Compositional Data							
Component	Mol %	Weight %	ppm				
Carbon Dioxide	0.0180	0.0037	-				
Nitrogen	0.0290	0.0038	-				
Methane	0.6080	0.0457	-				
Ethane	0.6080	0.0856	-				
Propane	2.4090	0.4976	-				
i-Butane	1.1570	0.3150	-				
n-Butane	3.0960	0.8428	-				
i-Pentane	3.1530	1.0655	-				
n-Pentane	2.7530	0.9303	-				
i-Hexane	1.7412	0.6863	-				
n-Hexane	2.5983	1.0487	-				
2,2,4 Trimethylpentane or IsoOctane	0.0000	0.0000	-				
Benzene	1.4606	0.5343	-				
Heptanes	2.2740	1.0573	-				
Toluene	1.3294	0.5737	-				
Octanes	1.7106	0.9083	-				
E-Benzene	1.2523	0.6227	-				
M-,O-,P- Xylene	0.1804	0.0897	-				
Nonanes	1.5490	0.9066	-				
Decanes+	72.0733	89.7822	-				
Totals	100.0000	100.0000					
Pressurized Liquid F	Physical	Data					
Property/Parameter	Value	Units	-				
GOR or Flash Factor	1.52	ft3/bbl	-				
Molecular Weight	213.51	-	-				
Specific Gravity	0.9020	-	-				
API Gravity	25.4	0	-				
Separator Pressure	10.0	psi	-				
Separator Temperature	90.0	F	-				

Comm Engineering West Lee 2016-ELDF-000082

Pressurized Gas Compositional Data						
Component	Mol %	Weight %	ppm			
Carbon Dioxide	0.6080	1.0560	-			
Nitrogen	12.9240	14.2890	-			
Methane	61.8920	39.1900	-			
Ethane	7.8330	9.2960	-			
Propane	8.6820	15.1090	-			
i-Butane	1.7120	3.9270	-			
n-Butane	3.1080	7.1290	-			
i-Pentane	1.2460	3.5480	-			
n-Pentane	0.8250	2.3490	-			
i-Hexane	0.3860	1.3130	-			
n-Hexane	0.1780	0.6050	-			
2,2,4 Trimethylpentane or IsoOctane	0.0000	0.0000	-			
Benzene	0.1690	0.5210	-			
Heptanes	0.2460	0.8970	-			
Toluene	0.0620	0.2250	-			
Octanes	0.0780	0.3270	-			
E-Benzene	0.0280	0.1170	-			
M-,O-,P- Xylene	0.0070	0.0290	-			
Nonanes	0.0140	0.0630	-			
Decanes+	0.0020	0.0100	-			
Totals	100.0000	100.0000				
Pressurized Gas Ph	nysical	Data				
Property/Parameter	Value	Units	-			
Molecular Weight	25.34	-	-			
Specific Gravity	0.8776	-	-			
BTU Content (Real Dry)	1278.8	BTU/ft3	-			
BTU Content (Real Sat)	1257.0	BTU/ft3				
Relative Density	0.4170	-	-			
Sample Pressure	10.0	psi	-			
Sample Temperature	70.0	F	-			

Comm Engineering West Lee 2016-ELDF-000082

Flash Gas Compositional Data							
Component	Mol %	Weight %	ppm				
Carbon Dioxide	0.7203	0.9958	-				
Nitrogen	2.7568	2.4259	-				
Methane	44.8781	22.6165	-				
Ethane	16.3137	15.4097	-				
Propane	19.8281	27.4661	-				
i-Butane	3.6265	6.6214	-				
n-Butane	6.6903	12.2154	-				
i-Pentane	2.5375	5.7511	-				
n-Pentane	1.5974	3.6205	-				
i-Hexane	0.2079	0.5496	-				
n-Hexane	0.4163	1.1269	-				
2,2,4 Trimethylpentane or IsoOctane	0.0000	0.0000	-				
Benzene	0.2130	0.5225	-				
Heptanes	0.1108	0.3453	-				
Toluene	0.0504	0.1458	-				
Octanes	0.0311	0.1103	-				
E-Benzene	0.0142	0.0473	-				
M-,O-,P- Xylene	0.0017	0.0056	-				
Nonanes	0.0051	0.0203	-				
Decanes+	0.0008	0.0038	-				
Totals	100.0000	100.0000					
Flash Gas Physi	ical Dat	a					
Property/Parameter	Value	Units	-				
Molecular Weight	31.83	-	-				
Specific Gravity	1.1115	-	-				
BTU Content (Real Dry)	1810.9	BTU/ft3	-				
BTU Content (Real Sat)	1779.2	BTU/ft3					
Relative Density	1.1115	-	-				
Staged Pressure - INITIAL	10.0	psi	-				
Staged Pressure - FINAL	0.0	psi	-				
Staged Temperature - INITIAL	90.0	F	-				
Staged Temperature - FINAL	60.0	F	-				
Gas Oil Ratio	1.52	ft3/bbl	-				

Pantechs Laboratories, Inc. - Order: 639-6661 - 6/13/2024 - Lif-Lubheirs - TCEQ Air Permitting Sample

SAMPLE ID	, no. order. 009 0001 0/10/2024 En Eusnens	COLLECTION DATA		
Operator	Texland Petroleum, LP	Pressure	17 psig	
Location	Lif-Lubheirs	Sample Temp	81 F	
Site	Central Tank Battery	Atm Temp	76 F	
Site Type	Battery	Collection Date	06/13/2024	
Sample Point	Gas Leg of Production Separator	Collection Time	9:35 AM	
Spot/Comp	Spot	Collection By	Mike McKinney	
Meter ID		Pressure Base	14.650 psi	
Regulatory ID	65679	Temperature Base	60 F	
Fluid	Gas	Container(s)	PL1017	

GPA 2261-20 Gas Fractional Analysis

COMPOUND	FORMULA	MOL%	WT%	GPM
NITROGEN	N2	11.359	11.515	1.246
CARBON DIOXIDE	CO2	0.950	1.513	0.162
HYDROGEN SULFIDE	H2S	0.035	0.043	0.005
METHANE	C1	57.196	33.206	9.696
ETHANE	C2	9.053	9.851	2.422
PROPANE	C3	10.311	16.453	2.842
I-BUTANE	iC4	2.168	4.560	0.709
N-BUTANE	nC4	4.032	8.480	1.271
I-PENTANE	iC5	1.739	4.540	0.637
N-PENTANE	nC5	1.210	3.159	0.438
HEXANES PLUS	C6+	1.947	6.680	0.830
TOTALS:		100.000	100.000	20.258

Value of "0.000" in fractional interpreted as below detectable limit. Onsite H2S value is used in fractional table if performed.

LIQUID YIELD	C2+	C3+	C4+	C5+	26# Liquid	10# Liquid
GAL/MSCF (GPM)	9.149	6.727	3.885	1.905	2.871	1.587

GPA 2172/ASTM D3588 CALCULATED PROPERTIES

WATER CONTENT	BTU/CF, Gross	BTU/CF, Net	Specific Gr.	Z Factor	Mol Weight	Wobbe IDX
DRY	1,422.01	1,299.68	0.959	0.994	27.635	1,452.00
SATURATED	1,398.62	1,276.93	0.954	0.994	27.152	

Onsite Testing by Stain Tube

METHOD	ТҮРЕ	MOL%	GRAINS/100	PPMV	LB/MMSCF
GPA2377	hydrogen sulfide	0.0346	21.99	349.6	16.5

Mol%, Grains/100, PPMV are pressure and temperature corrected to base conditions.