

30 TAC 106. 352(1) 30 TAC 106. 359 30 TAC 106. 512

TCEQ CN: CN605746593 TCEQ RN: RN106501851 Registration No.: 150015

Prepared By: EnTech Consulting Corp. 21 Waterway Ave., Ste. 300 The Woodlands, Texas 77380

Micheal K. Harris, P.E. Senior Air Project Manager (936) 443-5332

Date: 03/11/2024

TABLE OF CONTENTS

1 ADMINISTRATIVE SECTION

- 1.1 Cover Letter
- 1.2 Core Data Form
- 1.3 PI-7-CERT Registration
- 1.4 Copy of Fee Payment (if applicable)

2 TECHNICAL SECTION

- 2.1 Introduction
- 2.2 Process Description
- 2.3 Emissions Summary (MAERT)
- 2.4 Emission Calculations
- 2.5 NAAQS Review (if required)
- 2.6 Regulatory Analysis
- 2.7 Analytical Data
- 2.8 Maps
- 2.9 Checklists/Tables
- 2.10 Supporting Documentation/Simulations

1 ADMINISTRATIVE SECTION

Ineos USA Oil & Gas LLC

03/11/2024

Texas Commission on Environmental Quality (TCEQ) Air Permits Initial Review Team (APIRT) 12100 Park 35 Circle Mail Code 161; Building C, Third Floor Austin, Texas 78753

Subject: Ineos USA Oil & Gas LLC

1164 FM 2367, Carrizo Springs, Texas 78834

Corner S Ranch Mcm B Pad CN: CN605746593 RN: RN106501851 Permit No.: 150015 PI-7-CERT Registration

The Executive Director:

Please find attached the following documents:

• PI-7-CERT Registration for the above referenced facility.

Please call for additional information or further assistance.

Sincerely,

Jase Perry SHE-R Programs Manager 1164 FM 2367 Carrizo Springs, Texas 78834

Phone No.: 512-917-2685

Email: jase.perry@ineos.com

TCEQ Core Data Form

TCEQ Use Only	

For detailed instructions regarding completion of this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION I: General Information

DECTION 1. Ocheral informati	UII								
1. Reason for Submission (if other	is checked please describe in space	e provide	ede)						
New Permit, Registration or Authorization	(Core Data Form should be submi	itted with	h the program appl	ication)					
Renewal (Core Data Form should be subm	nitted with the renewal form)				X Other PI-7-CE	RT Registration			
2. Customer Reference Number (if issued)			3. Re	egulated Ent	ity Refernce Number (i	f issued)			
CN	Follow this link to search for		RN			,			
CN605746593	or RN numbers in Centray R	egistry	KNIU	6501851					
SECTION II: Customer Informa	tion								
4. General Customer Information	5. Effective Date for Custome	er Inforn	mation Updates (1	mm/dd/yyy	y)	03/11/2024			
New Customer									
Change in Legal Name (Verifiable with th	e Texas Secretary of State or Texas	s Comptro	roller of Public Ac	counts)					
The Custome Name submitted he Texas Secretary of State (SOS) o			-		current and acti	ive with the			
Customer Legal Name (if an individual, print			new Customer, ente		Customer below				
				•					
Ineos USA Oil & Gas LLC									
7. TX SOS Filing Number (if applicable) 803300949	8. TX State Franchise Tax ID 32070505428	(11 digi	its) 9.	Federal '	Tax ID (9 digits)	10. DUNS Number UNKNOW			
11. Type of Customer: Corporation	Individual		X Li	mited Partne		X Limited	IN .		
Government: City County Federal State Other Sole Proprietorship Other:									
12. Number of Employees 21-100	X 101-250 251-	500	501 +		13. Independently O	wned and Operate	d?		
14. Customer Role (Proposed or Actual) - as it rel	ates to the Regulated Entity listed of	on this fo	orm. Please check	only one of	the following:				
Owner	erator X	Owner &	& Operator	-	_				
	ponsible Party		ry Cleanup Applic	ant	Other				
1164 FR 226									
15. Mailing Address 1164 FM 2367									
City Carrizo	Springs	State	Texas	ZIP	78834	ZIP +4			
16. Country Mailing Information (if outside USA	A)	17. E-N	Mail Address (if a	pplicable)					
			erry@ineos.com						
18. Telephone Number 19. 512-917-2685	Extensionn or Code		20. Fax Number	er (if applica	able)				
SECTION III: Regulated Entity I	nfaumation								
21. General Regulated Entity Information (if "N		elow, this	is form should be a	accompanie	l by a permit application	n).			
	,		_	•	, , , , , ,				
New Regulated Entity Upo	date to Regulated Entity Name		Update to Regula	ated Entity I	ntormation				
The Regulated Entity Name sub- of organizational endings such a		ı ordei	r to meet TC	EQ Agei	ıcy Data Standar	rds (removal			
22. Regulated Entity Name (name of the site whe		ice).							
Corner S Ranch Mcm B Pad	regulated action is taking pie	,.							

TCEQ Core Data Form (continued)

	Street Address of													
	Regulated Entity: (No P.O.Box)		_											
			Ci	ity				State			Zip		Zip + 4	
				,	25.25.11								1	
24.	County				Mc Mullen Enter Ph	l nysical Location if n	o street addres	ss is provi	ded.					
25.	Description to		Er	om FM		•		•		0 mi turn l	2 go S 1 r	ni turn I. go F	1 mi turn R go	S for 1 mi turn L and
	Physical Location	:				9 mi to drilling loca		trance turi	IL go E for 2.	.9 IIII turii i	K go 5 i i	in tuin L go I	z i illi turli K go	5 for 1 fill turn L and
	Nearest City								Sta				Nearest ZIP	Code
_	Fowlerton Latitued (N) In D	ecimal:	28	8.585				28. Lo	ngitude (W)	xas In Decima	1: -98	3.706	78021	
						T-			-9 ()				1	
Degr. 28.0			outes .00			Seconds 5.20		Degrees -98.00		Min 42.			Seconds 23.10	
20	D.' SIC C. I		20 6		erc C. 1.	(4. F. %)	21 P.	NATOO	C. 1. (5	11 - 14 - 1	122	S	NATOR C. 1. (5	(
	Primary SIC Cod	е	30. 56	conda	ry SIC Code	(4 digits)	31. Primar	y NAICS	Code (5 or 6	aigits)	32.	Secondary	NAICS Code (5	or 6 digits)
131	1						211111							
33.	What is the Prima	ry Busi	ness of t	his ent	ity? (Please d	do not repeatr the SI	IC or NAICS	description	1)					
Oil	production well													
34.	Mailing Address:		1	164 FI	M 2367									
			Ci	ity	Carrizo Spi	rings		State	Texas		Zip	78834	Zip + 4	
25	Email Address:				ry@ineos.c								•	
			Ja	.sc.pci	ry @ mcos.c									
36.	Telephone Numb	er				37. Ext	ension or Co	de			38. Fax	Number (if	applicable)	
512	-917-2685													
						ns and write in the p								
	Dam Safety	s may no	t be mad	Disti		s not listed, check o	Edwards Aqu		the Core Data		ructions f l Hazardo			al Solid Waste
	-													
X	New Source Revie	w - Air		OSS	F		Petroleum St	orage Tan	k	PWS			Sludge	
##				ı			1							
	Stormwater			Title	V - Air		Tires			Used Oil	1		Utilities	
										•			•	
	Voluntary Cleanup			Was	te Water		Wastewater A	Agricultur	e	Water R	ights		Other:	
						<u> </u>							<u>ļ</u>	
	CTION IV:	Prepa Perry	irer I	nforn	nation				41. Title:	SHE-B E	Programs	Manager		
42.	Telephone Numb	er		43.	Extension or	r Code	44. Fa:	x Number	(if applicable	e) 	45. E-n	nail Address		
512	-917-2685										jase.pe	rry@ineos.	com	
CT	CTION V.	A41-		l Cian	4		•							
	CTION V: By my signature be				nature t of my knowl	ledge, that the infor	mation provid	ed in this	form is true ar	nd complet	e, and tha	t I have signa	ture authority to	
						I, Field 9 and/or as r			to the ID num	bers identi	fied in fie	ld 39.		
	mpany:				as LLC	on who should s	2511 mis 101 lll		b Title:	SHE-R	Progran	ns Manager	r	
Naı	me (In Print):	Jase Pe	erry									Phone:	512-917-26	85
Sign	nature:											Date:		

Texas Commission on Environmental Quality Form PI-7-CERT Certification and Registration for Permits by Rule (Page 1)

The TCEQ requires that a complete Core Data Form bearing an original signature be submitted on all incoming applications unless a Regulated Entity and Customer Reference Number have been issued by the TCEQ and no core data information has changed. For more information regarding the Core Data Form, call (512) 239-5175 or go to the TCEQ Web site at www.tceq.texas.gov/permitting/central_registry/guidance.html.

I. REGISTRANT INFORMATION		
A. Company or Other Legal Customer Name: Ineos USA Oil &	Gas LLC	
B. Company Official Contact Name: X Mr. Mrs. Ms.	Other	
Name: Jase Perry		
Title: SHE-R Programs Manager		
Mailing Address: 1164 FM 2367		
City: Carrizo Springs State: Texas	Zip C	ode: 78834
Phone: 512-917-2685 Fax:		
Email: jase.perry@ineos.com		
All PBR registration responses will be sent via e-mail.		
C. Technical Contact Name: X Mr. Mrs. Ms.	Other	
Name: Micheal K Harris, P.E.		
Title: Senior Air Project Manager		
Company: EnTech Consulting Corp.		
Mailing Address: 21 Waterway Ave.		
City: The Woodlands State: Texas	Zip C	ode: 77380
Phone: 936-443-5332 Fax:		
Email: mike.harris@entechservice.com		
II. FACILITY AND SITE INFORMATION		
A. Name/Type of Facility:		
Facility Name: Corner S Ranch Mcm B Pad		
Type of Facility: Oil production well		X Permanent Temporary
For portable units, please provide the serial number of the equipment being authorize	ed below.	
Serial No.:	Serial No.:	
B. Facility Location Information		
Street Address:		
If there is no street address, provide written driving directions to the site and provide county, and ZIP code for the site (attach description if additional space is needed).	the closest city or town,	
From FM 1582 and Hwy 97 go about 9 mi to oilfield entrance turn L go I follow fence line E for 9 mi to drilling location	E for 2.9 mi turn R go S 1 mi turn I	go E 1 mi turn R go S for 1 mi turn L and
City: Fowlerton County	: Mc Mullen	ZIP Code: 78021

Texas Commission on Environmental Quality Form PI-7-CERT

Certification and Registration for Permits by Rule

(Page 2)

II. FACILITY AND SITE INFORMATION (continued)								
C. TCEQ Core Data Form						1		
Is the Core Data Form (TCEQ Form Number 10400) attached?					X	Yes		No
If "NO," provide customer reference number (CN) and regulate	ed entity number (I	RN) belo	w.					
Customer Reference Number (CN): CN605746593								
Regulatory Entity Number (RN): RN106501851								
D. TCEQ Account Identification Number (if known):								
E. Type of action: Initial Application X Char	nge to Registration							
For Change to Registration provide the Registration Number:	150015							
F. PBR numbers(s) claimed under 30 TAC Chapter 106								
§ 106. 352(l)	§ 106.							
§ 106. 359			§ 106.					
§ 106. 512			§ 106.					
G. Historical Standard Exemption or PBR								
Are you claiming an historical standard exemption or PBR?					Yes		X No	
If "YES," enter rule number(s) and associated effective date in	the spaces provide	ed below.			•			
Rule Number(s)			Effective	Date				
H. Previous Standard Exemption or PBR Registration Numbe	r	1						
Is this authorization for a change to an existing facility previous		er a stand	ard exemption or PBR?	X	Yes		No	
If "YES," enter previous standard exemption number(s) and PE	R registration nur	nber(s), a	and associated effective dates in the	he space	s provided be	low.		
Standard Exemption and PBR Registration Njumber(s)	Effe	ective Dat	te		Registration	Number		
106.352(1)	11/22/2012	2			150015			
106.359	09/10/2013	3			150015			
106.492	09/04/2000)			150015			
106.512	06/13/2001	<u> </u>			150015			
H. Other Facilities at this Site Authorized by Standard Exer	mption, PBR, or S	tandard F	Permit 1					
Are there any other facilities at this site that are authorized by an					Yes		X No	
If "YES," enter standard exemption number(s), PBR registratio								
and associated effective date in the spaces provided below.								
Standard Exemption and PBR Registration Njumber(s)	Effe	ective Dat	'e		Registration	Number		
Samuel Marie and 1 Marie and 1 June 1 (a)	23110				registration	1 (41110-01		
	1							

TCEQ-20182 (APDG 5379v21, Revised 03/18) PI-7-CERT

This form is for use by facilities subject to air quality permit requirements and may be revised periodically.

Texas Commission on Environmental Quality Form PI-7-CERT

Certification and Registration for Permits by Rule

(Page 3)

II. FACILITY AND SITE INFORMATION (continued)								
J. Other Air Preconstruction Permits								
Are there any other air preconstruction permits at this site?			Yes	X No				
If "YES," enter permit number(s) in the spaces provided below.		-						
K. Affected Air Preconstruction Permits								
Does the PBR being claimed directly affect any permitted facility?			Yes	X No				
If "YES," enter the permit number(s) in the spaces provided below.		<u> </u>						
L. Federal Operating Permit (FOP) Requirements (30 TAC Chapter 122 Applicability)								
I. Is this facility located at a site that is required to obtain an FOP pursuant to 30 TAC Ch	napter 122?	Yes X	No T	o Be Determined				
If the site currently has an existing federal operating permit, enter the permit number.	 	<u> </u>	<u> </u>					
Check the requirements of 30 TAC Chapter 122 that will be triggered if this certification is	accepted (check all t	that apply).						
Initial Application for an FOPSignificant R	evision for an SOP		Minor Revision for an SOP					
Operational Flexibility/off Permit Notification for an SOP			Revision fo	or GOP				
To Be Determined X None								
10 be beterminedX_INOIRE								
2. Identify the type(s) of FOP issued and/or FOP application(s) submitted/pending for the	site (check all that a	apply).						
		C-1	A DID					
SOP GOP GOP application/s	revision application:	Submitted or under	APD review.					
V) v								
X N/A SOP application/revision application: submitted of	r under APD review	7.						
III. FEE INFORMATION (See Section VII. for address to send fee or go to www.tceq.te	xas.gov/epay to pay	online.)						
A. Fee Requirements								
Is a fee required per Title 30 TAC § 106.50?		X	Yes	No				
If "NO," specify the exception. There are three exceptions to paying a PBR fee.		<u> </u>	(check all that	t apply).				
Registration is solely to establish a federally enforceable emission limit.			Yes					
Registration is within six months of an initial PBR review, and it is addressing deficier	ncies, administrative	<u>L</u>						
changes, or other allowed changes.			Yes					
Registration is for a remediation project (30 TAC § 106.533).		Yes						

Texas Commission on Environmental Quality Form PI-7-CERT

_ -----

Certification and Registration for Permits by Rule

(Page 4)

Transaction of the Control of the Co						
III. FEE INFORMATION (See Section VII. for address to send fee or go to www.tceq.texas.gov/epay to pay online). (contin	ıued)					
B. Fee Amount						
1. A \$100 fee is required if any of the answers in III.B.1 are "YES."						
This business have less than 100 employees?		Yes	X	No		
This business have less than 6 million dollars in annual gross receipts?		Yes	X	No		
This registration is submitted by a governmental entity with a population of less than 10,000?		Yes	X	No		
This registration is submitted by a non-profit organization		Yes	X	No		
2. A \$450 fee is required for all other registrations						
C. Payment Information						
Check/money order/transaction or voucher number:						
Individual or company name check:						
Fee amount (\$): \$450.00						
Was fee Paid online?	X	Yes		No		
IV. Technical Information Including State And Federal Regulatory Requirements						
Place a check next to the appropriate box to indicate what is included in your submittal.						
NOTE: Any technical or essential information needed to confirm that facilities are meeting the requirements of the PBR	must	be provided. Not prov	iding	; key information		
could result in an automatic deficiency and voiding of the project.						
A. PBR requirements (Checklists are optional; however, your review will go faster if you provide applicable checklists.)						
Did you demonstrate that the general requirements in 30 TAC § 106.4 are met?	X	Yes		No		
Did you demonstrate that the individual requirements of the specific PBR are met?	X	Yes		No		
B. Confidential Information (All pages properly marked "CONFIDENTIAL")		Yes	X	No		
C. Process Flow Diagram	X	Yes		No		
D. Process Description	X	Yes		No		
E. Maximum Emissions Data and Calculations	X	Yes		No		
Note: If the facilities listed in this registration are subject to the Mass Emissions Cap & Trade program under 30 TAC Chap	ter 1	01, Subchapter H, Div	ision	3,		
the owner/operator of these facilities must possess NOv allowances equivalent to the actual NOv emissions from these facilities) C					

Texas Commission on Environmental Quality

Form PI-7-CERT

Certification and Registration for Permits by Rule

(Page 5)

	(0 /						
IV. Technical Information Includ	ling State And Federal Regulatory Requirements (continued)						
Place a check next to the appr	ropriate box to indicate what is included in your submittal.						
NOTE: Any technical or esser	ntial information needed to confirm that facilities are meeting the requ	irements of the PBR mus	t be provided. Not prov	viding	key information		
could result in an automatic de	ficiency and voiding of the project.						
F. F. Is this certification being sub	omitted to certify the emissions for the entire site?	X	Yes		No		
If "NO," include a summary of the	specific facilities and emissions being certified.						
G. Table 1(a) (Form 10153) Emiss	sion Point Summary	X	Yes		No		
H. H. Distances from Property Lin	ne and Nearest Off-Property Structure						
Distance from this facility's emission	on release point to the nearest property line:	<u>20</u>	0.000	feet			
Distance from this facility's emission	on release point to the nearest off-property structure:	<u>>3</u>	3,000	feet			
I. Project Status							
Has the company implemented the p	project or waiting on a response from TCEQ?		Implemented	X	Waiting		
J. Projected Start of Construction and Pr	rojected Start of Operation Dates	_					
Projected Start of Construction (pro	Projected Start of Construction (provide date): PENDING						
Projected Start of Operation (provid	le date):	PI	ENDING				
V. DELINQUENT FEES							
-	il all delinquent fees and/or penalties owed to the TCEQ or the Office of tocol. For more information regarding Delinquent Fees and Penalties, g	•		•			
VI. SIGNATURE FOR CER	TIFICATION AND REGISTRATION						
state that to the best of my knowled the Texas Health and Safety Code, of governmental ordinance or resolution prevention of significant deterioration	have knowledge of the facts included in this application and that these ge and belief, the project for which this application is made will not in Chapter 382, the Texas Clean Air Act (TCAA); the air quality rules of on enacted pursuant to the TCAA. I further state that I understand my son, or major source of hazardous air pollutant permitting requirements material statements or representations in the application is a criminal of	any way violate any prov he Texas Commission or ignature indicates that th The signature further signature	vision of the Texas Wate in Environmental Quality is application meets all gnifies awareness that in	er Coo y; or a applic	le (TWC), Chapter 7; any local cable nonattainment,		
Name (printed):	Jase Perry	SHE-R Programs	Manager				
Signature (original signature require	ed):						
Date:							

TCEQ-20182 (APDG 5379v21, Revised 03/18) PI-7-CERT
This form is for use by facilities subject to air quality permit requirements and may be revised periodically.

Texas Commission on Environmental Quality Form PI-7-CERT Certification and Registration for Permits by Rule (Page 6)

Copies must be sent as listed below:								
•								
Processing delays may occur if copies are not sent as noted.								
Who	Where	What						
Air Permits Initial Review Team (APIRT)	Regular, Certified, Priority Mail	Originals Form PI-7, Core Data Form and						
	MC161, P.O. Box 13087 Austin, Texas 78711-3087	all attachments. Not required if using ePermits ¹						
	Hand Delivery, Overnight Mail							
	MC 161, 12100 Park 35 Circle, Building C, Third Floor							
	Austin, Texas 78753							
Revenue Section, TCEQ	Regular, Certified, Priority Mail	Original Money Order or Check, Copy						
	MC 214, P.O. Box 13088 Austin, Texas 78711-3088	of Form PI-7 and Core Data Form						
	Hand Delivery, Overnight Mail	Not required if fee was paid using ePay ²						
	MC 214, 12100 Park 35 Circle, Building A, Third Floor							
	Austin, Texas 78753							
Appropriate TCEQ Regional Office	To find your Regional Office address, go to the TCEQ Web site	Copy of Form PI-7, Core Data Form						
	at www.tceq.texas.gov/publications/gi/gi-002.html, or call (512) 239-12	and all attachments. Not required if using ePermits1						
Appropriate Local Air Pollution	To Find your local or Regional Air Pollution Control Programs go to the	Copy of Form PI-7, Core Data Form						
Control Program(s)	TCEQ, APD Website at www.tceq.texas.gov/permitting/air/local_prog	r and all attachments.						
	or call (512) 239-1250							

TCEQ-20182 (APDG 5379v21, Revised 03/18) PI-7-CERT
This form is for use by facilities subject to air quality permit requirements and may be revised periodically.

Permits located at www3.tceq.texas.gov/steers/
 ePay located at www.tceq.texas.gov/epay

2 TECHNICAL SECTION

2.1 Introduction

The applicant: Ineos USA Oil & Gas LLC

Address: 1164 FM 2367

Carrizo Springs, Texas 78834

Phone No.: 512-917-2685

Responsible official: Jase Perry

SHE-R Programs Manager

512-917-2685

jase.perry@ineos.com

Technical contact: Micheal K Harris, P.E.

Senior Air Project Manager

936-443-5332

mike.harris@entechservice.com

The facility: Corner S Ranch Mcm B Pad

TCEQ CN: CN605746593 TCEQ RN: RN106501851

Current registration no(s).: 150015 Description: PI-7-CERT Registration

Registrations claimed in this document: 106.352(l)

106.359 106.512

From FM 1582 and Hwy 97 go about 9 mi to oilfield entrance turn L go E for 2.9 mi turn R

Physical location: go S 1 mi turn L go E 1 mi turn R go S for 1 mi turn L and follow fence line E for 9 mi to

drilling location

Latitude/Longitude: 28 35 05 N -98 42 23 W UTM: Zone: Easting: Northing:

14R 528,720.020 3,162,010.570

Facility type: Oil production well

2.2 Process Description

This is a sweet production facility, with natural gas H2S content of 18 ppm, and crude production of 22.5 bbls/d. The following activities occur on-site:

- Inlet separation
- · Heater-treater processing
- Product storage (tanks)
- Product flash generation
- Product loading activities
- Blowdown/MSS activities
- Fugitive component emissions
- Other activities/sources: 4 gasoline pump engines.

ENDEAVOR ENERGY RESOURCES, L.P.

Corner S Ranch Mcm B Pad

Fowlerton, Mc Mullen County, Texas

PI-7-CERT Registration

2.2 Process Description (continued)

A detailed description of all on-site process acrtivities is provided below:

• Inlet separation

Natural gas is directed to the sales pipeline and crude/liquids are directed to either the heater-treater (if present on-site) for vapor pressure reduction or are sent directly into storage tanks.

• Crude is directed into the heater-treater for vapor pressure reduction/stabilization.

FIN	RATING	OPERATION	
HT1	1.000 mmbtu/hr	8,760.00 hrs/yr	_
HT2	1.000 mmbtu/hr	8,760.00 hrs/yr	
HT3	1.000 mmbtu/hr	8,760.00 hrs/yr	
HT4	1.000 mmbtu/hr	8,760.00 hrs/yr	

• The following product storage tanks exist or are proposed at the facility:

FIN	PRODUCT	SIZE		THROUG	GPUT	VENTS TO
TANK1	stabilized crude	400.00	bbls ea. in size	1.41	bbls/d-ea.	to air
TANK2	stabilized crude	400.00	bbls ea. in size	1.41	bbls/d-ea.	to air
TANK17	produced water	400.00	bbls ea. in size	2.81	bbls/d-ea.	to air
TANK3	stabilized crude	400.00	bbls ea. in size	1.41	bbls/d-ea.	to air
TANK4	stabilized crude	400.00	bbls ea. in size	1.41	bbls/d-ea.	to air
TANK5	stabilized crude	400.00	bbls ea. in size	1.41	bbls/d-ea.	to air
TANK6	stabilized crude	400.00	bbls ea. in size	1.41	bbls/d-ea.	to air
TANK7	stabilized crude	400.00	bbls ea. in size	1.41	bbls/d-ea.	to air
TANK8	stabilized crude	400.00	bbls ea. in size	1.41	bbls/d-ea.	to air
TANK9	stabilized crude	400.00	bbls ea. in size	1.41	bbls/d-ea.	to air
TANK10	stabilized crude	400.00	bbls ea. in size	1.41	bbls/d-ea.	to air
TANK11	stabilized crude	400.00	bbls ea. in size	1.41	bbls/d-ea.	to air
TANK12	stabilized crude	400.00	bbls ea. in size	1.41	bbls/d-ea.	to air
TANK13	stabilized crude	400.00	bbls ea. in size	1.41	bbls/d-ea.	to air
TANK14	stabilized crude	400.00	bbls ea. in size	1.41	bbls/d-ea.	to air
TANK15	stabilized crude	400.00	bbls ea. in size	1.41	bbls/d-ea.	to air
TANK16	stabilized crude	400.00	bbls ea. in size	1.41	bbls/d	
TANK18	produced water	400.00	bbls ea. in size	2.81	bbls/d	to air
TANK19	produced water	400.00	bbls ea. in size	2.81	bbls/d	to air
TANK20	produced water	400.00	bbls ea. in size	2.81	bbls/d	to air

• The following crude/produced-water related flash vapors will be generated at the facillity:

FIN	PRODUCT	THRO	OUGHPUT	OPERATING PR	ESSURE				
HT1-FLASH	crude/natural gas	6	bbls/d	flashing from:	110.0	to:	14.27	psig	
HT2-FLASH	crude/natural gas	6	bbls/d	flashing from:	110.0	to:	14.27	psig	
HT3-FLASH	crude/natural gas	6	bbls/d	flashing from:	110.0	to:	14.27	psig	
HT4-FLASH	crude/natural gas	6	bbls/d	flashing from:	110.0	to:	14.27	psig	

• The following activities occur at the facillity:

FIN	PRODUCT	THROUG	HPUT	LOADING TYPE	CONTROL TYPE
C LOAD 1	stabilized crude	22.50	bbls/d	submerged loading	to air
PW LOAD 1	produced water	11.25	bbls/d	submerged loading	to air

• The following fugitve component emissions will occur at the facility:

1111	DESCRII TION
FUG	light-liquid components
FUG	natural gas components

• The following blowdowns/MSS activities will occur at the facility:

FIN	DESCRIPTION	THROUG	HPUT	VENTS TO	
MSS 1	natural gas	0.00750	mmscf/yr	to atmosphere	
MSS 2	natural gas	0.00562	mmscf/yr	to atmosphere	
MSS 3	blasting/coating vapo	ors 0.11520	mmscf/yr	to atmosphere	
VENTING 1	natural gas	0.00493	mmscf/yr	to atmosphere	

Other activities/sources: 4 gasoline pump engines.
 FIN MAKE MODEL HP RATING CONTROL DESCRIPTION

Corner S Ranch Mcm B Pad Fowlerton, Mc Mullen County, Texas PI-7-CERT Registration

2.2 Process Description (continued)

ENG3	HONDA	GX160	4.8	none	gasoline fired pump engine; 106.512; un-modified
ENG4	HONDA	GX160	4.8	none	gasoline fired pump engine; 106.512; un-modified
ENG5	HONDA	GX160	4.8	none	gasoline fired pump engine; 106.512; un-modified
ENG6	HONDA	GX160	4.8	none	gasoline fired pump engine; 106.512; un-modified

Corner S Ranch Mcm B Pad Fowlerton, Mc Mullen County, Texas PI-7-CERT Registration

2.2 Process Description (continued)

Table 2.2.1 provides a list/description and operating parameters of emission sources at the facility. Table 2.2.2 provides FIN descriptions. Table 2.2.3 provides a summary of revisions associated with this submittal. Figure 2.2.1 provides a simplified process description. This registration is submitted to certify emissions from all on-site sources. The following is a brief process description for this site.

Crude, produced water and natural gas from the wellheads pass through on-site separation. Natural gas is then directed to the sales pipeline, and liquids are direct to the heater-treaters for further vapor- pressure reduction. The heater-treaters vent flash vapors to atmosphere. From the heater-treaters, crude and produced water are directed into the on-site storage tanks. The storage tank working/breathing vapors are vented to atmosphere. Crude and produced water are periodically trucks off-site to sales/disposal. The trucks are in dedicated normal service.

The following MSS activities will occur at this facility (authorized under 30 TAC 106.359):

- •EPNs MSS-01, blowdown activities during equipment maintenance; vented to atmosphere;
- •EPN MSS-02, tank de-gassing operations; and,
- •EPN MSS-03, periodic maintenance blasting/painting of equipment.

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad PI-7-CERT Registration 03/11/24

TABLE 2.2.1 (SOURCE OPERATING DATA)

SOURCE DESCRIPTION	(SOURCE OPERATING DATA) IPTION OPERATING PARAMETERS SOURCE CONTROLS															
	ТУРЕ		1		TINITEG.	WALLED	TINITEG	WALTER .	TINITEG.	X/AX XIE	1		CONTROLS	DESCRIPTIONS/C		
FIN / EPN	ТҮРЕ			VALUE	UNITS			VALUE		VALUE	UNITS	CONTROLS	CONTROLS	OMMENTS WASTE VAPORS		
COMBUSTION CONTROL DEVICES	1	CONTROL EF	1	HEAT INPUT		WASTE VAPO	l	OPERATING TI	1		l	PRIMARY CONTROL	SECONDARY CONTROL	CONTROLLED		
FLARE1 / FLARE1	COMBUSTOR		DRE		MMBTU/HR		ACFM		HRS/YR					REMOVED FROM S	I	
ENGINES (COMPRESSION IGNITED)	GASOLINE FIRED	RATING	ı	RUN-TIME	1	FUEL USEAG	Е		1		Ī	PRIMARY CONTROL	SECONDARY CONTROL	MAKE	MODEL	USAGE
ENG3 / ENG3	PUMP ENGINE; 106.512; UN-MODIFIED	4.800	ВНР	8,760.000	HRS/YR	0.255	GAL/HR	267.435	G/HP-HR	6.600	G/HP-HR	4S-RB	NONE	HONDA	GX160	PUMP
ENG4 / ENG4	GASOLINE FIRED PUMP ENGINE; 106.512; UN-MODIFIED	4.800	ВНР	8,760.000	HRS/YR	0.255	GAL/HR	267.435	G/HP-HR	6.600	G/HP-HR	4S-RB	NONE	HONDA	GX160	
ENG5 / ENG5	GASOLINE FIRED PUMP ENGINE; 106.512; UN-MODIFIED	4.800	ВНР	8,760.000	HRS/YR	0.255	GAL/HR					4S-RB	NONE	HONDA	GX160	
ENG6 / ENG6	GASOLINE FIRED PUMP ENGINE; 106.512; UN-MODIFIED	4.800	ВНР	8,760.000	HRS/YR	0.255	GAL/HR					4S-RB	NONE	HONDA	GX160	
BOILERS/HEATERS		RATING		RUN-TIME		NOX		со		VOC		PRIMARY CONTROL	SECONDARY CONTROL	MAKE	MODEL	
HT1 / HT1	BOILERS (<100 MMBTU/HR)	1.000	MMBTU/HR	8,760.000	HRS/YR	129.216	LBS/MMSCF	108.541	LBS/MMSCF	7.107	LBS/MMSCF	UNCONTROLLED		UNKNOWN	UNKNOWN	
HT2 / HT2	BOILERS (<100 MMBTU/HR)	1.000	MMBTU/HR	8,760.000	HRS/YR	129.216	LBS/MMSCF	108.541	LBS/MMSCF	7.107	LBS/MMSCF	UNCONTROLLED		UNKNOWN	UNKNOWN	
HT3 / HT3	BOILERS (<100 MMBTU/HR)	1.000	MMBTU/HR	8,760.000	HRS/YR	129.216	LBS/MMSCF	108.541	LBS/MMSCF	7.107	LBS/MMSCF	UNCONTROLLED		UNKNOWN	UNKNOWN	
HT4 / HT4	BOILERS (<100 MMBTU/HR)	1.000	MMBTU/HR	8,760.000	HRS/YR	129.216	LBS/MMSCF	108.541	LBS/MMSCF	7.107	LBS/MMSCF	UNCONTROLLED		UNKNOWN	UNKNOWN	
TANKS		SIZE		TYPE	•	THROUGHPU	Т	VOC CONTENT		VOC THRO	UGHPUT	PRIMARY CONTROL	SECONDARY CONTROL	CONTENTS		
TANK1 / TANK1	STORAGE TANKS	400.000	BBLS/EA.	VFR		1.406	BBLS/D-EA.	100.00%	%	1.406	BBLS/D	TO AIR	TO AIR	STABILIZED CRUD	E	
TANK2 / TANK2	STORAGE TANKS	400.000	BBLS/EA.	VFR		1.406	BBLS/D-EA.	100.00%	%	1.406	BBLS/D	TO AIR	TO AIR	STABILIZED CRUD	E	
TANK17 / TANK17	STORAGE TANKS	400.000	BBLS/EA.	VFR		2.813	BBLS/D-EA.	1.00%	%	0.028	BBLS/D	TO AIR	TO AIR	PRODUCED WATE	R	
TANK3 / TANK3	STORAGE TANKS	400.000	BBLS/EA.	VFR		1.406	BBLS/D-EA.	100.00%	%	1.406	BBLS/D	TO AIR	TO AIR	STABILIZED CRUD	Έ	
TANK4 / TANK4	STORAGE TANKS	400.000	BBLS/EA.	VFR		1.406	BBLS/D-EA.	100.00%	%	1.406	BBLS/D	TO AIR	TO AIR	STABILIZED CRUD	Έ	
TANK5 / TANK5	STORAGE TANKS	400.000	BBLS/EA.	VFR		1.406	BBLS/D-EA.	100.00%	%	1.406	BBLS/D	TO AIR	TO AIR	STABILIZED CRUD	Έ	
TANK6 / TANK6	STORAGE TANKS	400.000	BBLS/EA.	VFR		1.406	BBLS/D-EA.	100.00%	%	1.406	BBLS/D	TO AIR	TO AIR	STABILIZED CRUD	Έ	
TANK7 / TANK7	STORAGE TANKS	400.000	BBLS/EA.	VFR		1.406	BBLS/D-EA.	100.00%	%	1.406	BBLS/D	TO AIR	TO AIR	STABILIZED CRUD	E	
TANK8 / TANK8	STORAGE TANKS	400.000	BBLS/EA.	VFR		1.406	BBLS/D-EA.	100.00%	%	1.406	BBLS/D	TO AIR	TO AIR	STABILIZED CRUD	Έ	
TANK9 / TANK9	STORAGE TANKS	400.000	BBLS/EA.	VFR		1.406	BBLS/D-EA.	100.00%	%	1.406	BBLS/D	TO AIR	TO AIR	STABILIZED CRUD	E	
TANK10 / TANK10	STORAGE TANKS	400.000	BBLS/EA.	VFR		1.406	BBLS/D-EA.	100.00%	%	1.406	BBLS/D	TO AIR	TO AIR	STABILIZED CRUD	E	
TANK11 / TANK11	STORAGE TANKS	400.000	BBLS	VFR		1.406	BBLS/D-EA.	100.00%	%	1.406	BBLS/D	TO AIR	TO AIR	STABILIZED CRUD	E	
TANK12 / TANK12	STORAGE TANKS	400.000	BBLS	VFR		1.406	BBLS/D-EA.	100.00%	%	1.406	BBLS/D	TO AIR	TO AIR	STABILIZED CRUD	E	
TANK13 / TANK13	STORAGE TANKS	400.000	BBLS	VFR		1.406	BBLS/D-EA.	100.00%	%	1.406	BBLS/D	TO AIR	TO AIR	STABILIZED CRUD	Έ	
TANK14 / TANK14	STORAGE TANKS	400.000	BBLS	VFR		1.406	BBLS/D-EA.	100.00%	%	1.406	BBLS/D	TO AIR	TO AIR	STABILIZED CRUD	E	
TANK15 / TANK15	STORAGE TANKS	400.000	BBLS	VFR		1.406	BBLS/D-EA.	100.00%	%	1.406	BBLS/D	TO AIR	TO AIR	STABILIZED CRUD	Έ	
TANK16 / TANK16	STORAGE TANKS	400.000	BBLS	VFR		1.406	BBLS/D-EA.	100.00%	%	1.406	BBLS/D	TO AIR	TO AIR	STABILIZED CRUD	Έ	

COMPANY: SITE NAME: DESCRIPTION: DATE: Ineos USA Oil & Gas LLC Comer S Ranch Mcm B Pad PI-7-CERT Registration 03/11/24

TABLE 2.2.1 (SOURCE OPERATING DATA)

SOURCE DESCRIPTION		OPERATING PARAMETERS SOURCE CONTROLS													
FIN / EPN	ТУРЕ	VALUE	UNITS	VALUE	UNITS	VALUE	UNITS	VALUE	UNITS	VALUE	UNITS	CONTROLS	CONTROLS	DESCRIPTIONS/C OMMENTS	
TANK18 / TANK18	STORAGE TANKS	400.000	BBLS	VFR		2.813	BBLS/D-EA.	1.00%	%	0.028	BBLS/D	TO AIR	TO AIR	PRODUCED WATER	
TANK19 / TANK19	STORAGE TANKS	400.000	BBLS	VFR		2.813	BBLS/D-EA.	1.00%	%	0.028	BBLS/D	TO AIR	TO AIR	PRODUCED WATER	
TANK20 / TANK20	STORAGE TANKS	400.000	BBLS	VFR		2.813	BBLS/D-EA.	1.00%	%	0.028	BBLS/D	TO AIR	TO AIR	PRODUCED WATER	
LOADING		THROUGHPU	T	VOC CONTE	NT	VOC THROUG	GHPUT					PRIMARY CONTROL	SECONDARY CONTROL	LIQUIDS LOADED	LOADING TYPE
C LOAD 1 / C LOAD 1	LOADING	22.500	BBLS/D	100.00%	%	22.500	BBLS/D					TO AIR	TO AIR	STABILIZED CRUDE	SUBMERGED
PW LOAD 1 / PW LOAD 1	LOADING	11.250	BBLS/D	1.00%	%	0.113	BBLS/D					TO AIR	TO AIR	PRODUCED WATER	SUBMERGED
FLASH		THROUGHPU	T	VOC CONTE	NT	VOC THROUG	GHPUT	PSIG RANGE		GOR		PRIMARY CONTROL	SECONDARY CONTROL	LIQUID	
HT1-FLASH / HT1-FLASH	FLASH	5.653	BBLS/D	100.00%	%	5.653	BBLS/D	110 - 14.27	PSIG		SCF/BBL	TO ATMOSPHERE	TO ATMOSPHERE	CRUDE/NATURAL GAS	
HT2-FLASH / HT2-FLASH	FLASH	5.653	BBLS/D	100.00%	%	5.653	BBLS/D	110 - 14.27	PSIG		SCF/BBL	TO ATMOSPHERE	TO ATMOSPHERE	CRUDE/NATURAL GAS	
HT3-FLASH / HT3-FLASH	FLASH	5.653	BBLS/D	100.00%	%	5.653	BBLS/D	110 - 14.27	PSIG		SCF/BBL	TO ATMOSPHERE	TO ATMOSPHERE	CRUDE/NATURAL GAS	
HT4-FLASH / HT4-FLASH	FLASH	5.653	BBLS/D	100.00%	%	5.653	BBLS/D	110 - 14.27	PSIG		SCF/BBL	TO ATMOSPHERE	TO ATMOSPHERE	CRUDE/NATURAL GAS	
/	FLASH		BBLS/D		%		BBLS/D	0 - 0	PSIG		SCF/BBL				
/	FLASH		BBLS/D		%		BBLS/D	0 - 0	PSIG		SCF/BBL				
FUGITIVE COMPONENTS		OPERATING	TIME	EMISSIONS (VOC)	EMISSIONS (VOC)					PRIMARY CONTROL	SECONDARY CONTROL		
FUG / FUG	FUGITIVES	8,760.000	HRS/YR	1.701	РРН	7.449	TPY							SITE FUGITIVE EMISSIONS; 106.352(l)	
MSS ACTIVITIES/BLOWDOWNS		OPERATING	TIME	RATE		RATE		EMISSIONS (VO	OC)	HEAT CON	TENT	PRIMARY CONTROL	SECONDARY CONTROL	VAPOR DESCRIPTION	
MSS 1 / MSS 1	BLOW DOWNS	300.000	HRS/YR	25.000	SCF/HR	0.008	MMSCF/YR	0.074	PPH	1,318.000	BTU/SCF	TO ATMOSPHERE	TO ATMOSPHERE	MSS ACTIVITY; VAPORS VENTED TO ATMOSPHERE DURING MSS ACTIVITIES; 106.359	
MSS 2 / MSS 2	BLOW DOWNS	1.000	HRS/YR	5,620.000	SCF/HR	0.006	MMSCF/YR	16.658	РРН	1,318.000	BTU/SCF	TO ATMOSPHERE	TO ATMOSPHERE	MASIAC HVITT; STORAGE TANK DE-GASSING DURING MAINTENANCE ACTIVITY; ASSUME DE-GASSING 1 TANK/YEAR; VENTS TO ATMOSPHEDE: 106 350	
MSS 3 / MSS 3	BLOW DOWNS	96.000	HRS/YR	1,200.000	SCF/HR	0.115	MMSCF/YR	2.989	РРН	3,071.000	BTU/SCF	TO ATMOSPHERE	TO ATMOSPHERE	MSS ACTIVITIES; MISC. ABRASIVE BLASTING/COATING ACTIVITIES; VENTS TO ATMOSPHERE; AREA SOURCE; 106.359	
VENTING 1 / VENTING 1	BLOW DOWNS	2,190.000	HRS/YR	2.250	SCF/HR	0.005	MMSCF/YR	0.007	PPH	1,318.000	BTU/SCF	TO ATMOSPHERE	TO ATMOSPHERE	NATURAL GAS	

COMPANY: Ineos USA Oil & Gas LLC
SITE NAME: Corner S Ranch Mcm B Pad
DESCRIPTION: PI-7-CERT Registration
DATE: 03/11/24

TABLE 2.2.2 (SOURCE I	DESCRIPTIONS)					
SOURCE DESCRIPTION						
FIN / EPN	EPN	ТУРЕ	DESCRIPTIONS/COMMENTS			
COMBUSTION CONTROL DEVICES	S	•				
FLARE1	FLARE1	COMBUSTOR	REMOVED FROM SERVICE			
ENGINES (COMPRESSION IGNITEI	D)		MAKE	MODEL		
ENG3	ENG3	GASOLINE FIRED PUMP ENGINE; 106.512; UN-MODIFIED	HONDA	GX160		
ENG4	ENG4	GASOLINE FIRED PUMP ENGINE; 106.512; UN-MODIFIED	HONDA	GX160		
ENG5	ENG5	GASOLINE FIRED PUMP ENGINE; 106.512; UN-MODIFIED	HONDA	GX160		
ENG6	ENG6	GASOLINE FIRED PUMP ENGINE; 106.512; UN-MODIFIED	HONDA	GX160		
BOILERS/HEATERS			MAKE	MODEL		
нті	HT1	BOILERS (<100 MMBTU/HR)	UNKNOWN	UNKNOWN		
HT2	НТ2	BOILERS (<100 MMBTU/HR)	UNKNOWN	UNKNOWN		
нт3	НТ3	BOILERS (<100 MMBTU/HR)	UNKNOWN	UNKNOWN		
НТ4	НТ4	BOILERS (<100 MMBTU/HR)	UNKNOWN	UNKNOWN		
TANKS			CONTENTS			
TANKI STORAGE TANKS			CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)			

COMPANY: Ineos USA Oil & Gas LLC
SITE NAME: Corner S Ranch Mcm B Pad
DESCRIPTION: PI-7-CERT Registration
DATE: 03/11/24

SOURCE DESCRIPTION	,		
FIN / EPN	EPN	ТҮРЕ	DESCRIPTIONS/COMMENTS
TANK2	TANK2	STORAGE TANKS	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK17	TANK17	STORAGE TANKS	PRODUCED WATER TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(l)
TANK3	TANK3	STORAGE TANKS	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK4	TANK4	STORAGE TANKS	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK5	TANK5	STORAGE TANKS	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK6	TANK6	STORAGE TANKS	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK7	TANK7	STORAGE TANKS	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK8	TANK8	STORAGE TANKS	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK9	TANK9	STORAGE TANKS	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK10	TANK10	STORAGE TANKS	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK11	TANK11	STORAGE TANKS	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK12	TANK12	STORAGE TANKS	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK13	TANK13	STORAGE TANKS	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK14	TANK14	STORAGE TANKS	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I) 20

COMPANY: SITE NAME: DESCRIPTION:

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad PI-7-CERT Registration

03/11/24 DATE:

SOURCE DESCRIPTION						
FIN / EPN	EPN	ТУРЕ	DESCRIPTIONS/COMMENTS			
TANK15	TANK15	STORAGE TANKS	CRUDE TANK; 400 BBL; VENTING TO ATMO	SPHERE; 106.352(l)		
TANK16	TANK16	STORAGE TANKS	CRUDE TANK; 400 BBL; VENTING TO ATMO	SPHERE; 106.352(l)		
TANK18	TANK18	STORAGE TANKS	PRODUCED WATER TANK; 400 BBL; VENTIN	NG TO ATMOSPHERE; 106.352(l)		
TANK19	TANK19	STORAGE TANKS	PRODUCED WATER TANK; 400 BBL; VENTIN	NG TO ATMOSPHERE; 106.352(l)		
TANK20	TANK20	STORAGE TANKS	PRODUCED WATER TANK; 400 BBL; VENTIN	NG TO ATMOSPHERE; 106.352(l)		
LOADING			LIQUIDS LOADED			
C LOAD 1	C LOAD 1	LOADING	CRUDE LOADING; VENTING TO ATMOSPHE	RE; 106.352(L)		
PW LOAD 1	PW LOAD 1	LOADING	PRODUCED WATER LOADING; ASSUMED 1% CRUDE BY VOLUME; VENTING TO ATMOSPHERE; 106.352(L)			
FLASH			LIQUID	COMMENTS		
HT1-FLASH	HT1-FLASH	FLASH	CRUDE/NATURAL GAS	HEATER-TREATER CRUDE FLASH VAPORS; VENTING TO ATMOSPHERE; 106.352(1)		
HT2-FLASH	HT2-FLASH	FLASH	CRUDE/NATURAL GAS	HEATER-TREATER CRUDE FLASH VAPORS; VENTING TO ATMOSPHERE; 106.352(1)		
HT3-FLASH	HT3-FLASH	FLASH	CRUDE/NATURAL GAS	HEATER-TREATER CRUDE FLASH VAPORS; VENTING TO ATMOSPHERE; 106.352(1)		
HT4-FLASH	HT4-FLASH	FLASH	CRUDE/NATURAL GAS	HEATER-TREATER CRUDE FLASH VAPORS; VENTING TO ATMOSPHERE; 106.352(1)		
		FLASH		21		

COMPANY: Ineos USA Oil & Gas LLC
SITE NAME: Corner S Ranch Mcm B Pad
DESCRIPTION: PI-7-CERT Registration
DATE: 03/11/24

SOURCE DESCRIPTION	,						
FIN / EPN	EPN TYPE		DESCRIPTIONS/COMMENTS				
		FLASH					
FUGITIVE COMPONENTS							
FUG	FUG	FUGITIVES	SITE FUGITIVE EMISSIONS; 106.352(1)				
MSS ACTIVITIES/BLOWDOWNS							
MSS 1	MSS 1	BLOW DOWNS	MSS ACTIVITY; VAPORS VENTED TO ATMO	SPHERE DURING MSS ACTIVITIES; 106.359			
MSS 2	MSS 2	BLOW DOWNS	MSS ACTIVITY; STORAGE TANK DE-GASSIN ASSUME DE-GASSING 1 TANK/YEAR; VENTS				
MSS 3	MSS 3	IRLOW DOWNS	MSS ACTIVITIES; MISC. ABRASIVE BLASTIN ATMOSPHERE; AREA SOURCE; 106.359	G/COATING ACTIVITIES; VENTS TO			
VENTING 1	VENTING 1	BLOW DOWNS	PNEUMATIC DEVICE; VENTING TO ATMOSP	PHERE; 106.352(1)			

03/11/24

TABLE 2.2.3 (PERMIT REVISIONS)

1 ABLE 2.2.3 (I	PERMIT REVISIONS))
FIN	EPN	REVISIONS
FLARE1	FLARE1	REMOVED FROM SERVICE
нті	нті	LOWER HEATER-TREATER EMISSIONS, DUE TO LOWER PRODUCTION/DEPLETION; HEAT INPUT RATING INCREASED TO 1.0 MMBTU/HR; VENTING TO ATMOSPHERE; REVISED FUEL COMPOSITION/HEAT INPUT; UPDATED EMISSION FACTORS DUE TO UPDATED FUEL HEAT CONTENT; 106.352(1).
HT2	HT2	LOWER HEATER-TREATER EMISSIONS, DUE TO LOWER PRODUCTION/DEPLETION; HEAT INPUT RATING INCREASED TO 1.0 MMBTU/HR; VENTING TO ATMOSPHERE; REVISED FUEL COMPOSITION/HEAT INPUT; UPDATED EMISSION FACTORS DUE TO UPDATED FUEL HEAT CONTENT; 106.352(I).
нт3	НТ3	LOWER HEATER-TREATER EMISSIONS, DUE TO LOWER PRODUCTION/DEPLETION; HEAT INPUT RATING INCREASED TO 1.0 MMBTU/HR; VENTING TO ATMOSPHERE; REVISED FUEL COMPOSITION/HEAT INPUT; UPDATED EMISSION FACTORS DUE TO UPDATED FUEL HEAT CONTENT; 106.352(I).
НТ4	HT4	LOWER HEATER-TREATER EMISSIONS, DUE TO LOWER PRODUCTION/DEPLETION; HEAT INPUT RATING INCREASED TO 1.0 MMBTU/HR; VENTING TO ATMOSPHERE; REVISED FUEL COMPOSITION/HEAT INPUT; UPDATED EMISSION FACTORS DUE TO UPDATED FUEL HEAT CONTENT; 106.352(I).
TANK1	TANK1	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.
TANK2	TANK2	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.
TANK17	TANK17	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.
TANK3	TANK3	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.
TANK4	TANK4	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.
TANK5	TANK5	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.
TANK6	TANK6	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.
TANK7	TANK7	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.
TANK8	TANK8	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.
TANK9	TANK9	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.
TANK10	TANK10	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.
TANK11	TANK11	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.
TANK12	TANK12	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.
TANK13	TANK13	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.

03/11/24

TABLE 2.2.3 (PERMIT REVISIONS)

TABLE 2.2.3 (PERM	III KEVISIUNS)	
FIN	EPN	REVISIONS
TANK14	TANK14	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.
TANK15	TANK15	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.
TANK16	TANK16	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.
TANK18	TANK18	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.
TANK19	TANK19	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.
TANK20	TANK20	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.
C LOAD 1	C LOAD 1	MODIFIED EMISSIONS DUE TO LOWER PRODUCTION/DEPLETION; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION.
PW LOAD 1	PW LOAD 1	MODIFIED EMISSIONS DUE TO LOWER PRODUCTION/DEPLETION; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION.
HT1-FLASH	HT1-FLASH	NEW SOURCE; HEATER-TREATER CRUDE FLASH VAPORS; FLASH VAPOR VENTING TO ATMOSPHERE.
HT2-FLASH	HT2-FLASH	NEW SOURCE; HEATER-TREATER CRUDE FLASH VAPORS; FLASH VAPOR VENTING TO ATMOSPHERE.
HT3-FLASH	HT3-FLASH	NEW SOURCE; HEATER-TREATER CRUDE FLASH VAPORS; FLASH VAPOR VENTING TO ATMOSPHERE.
HT4-FLASH	HT4-FLASH	NEW SOURCE; HEATER-TREATER CRUDE FLASH VAPORS; FLASH VAPOR VENTING TO ATMOSPHERE.
FUG	FUG	UPDATED COMPONENT COUNT/VAPOR ANALYSIS.
MSS 1	MSS 1	EPN MSS-1 REPLACES EPN MSS; REVISED VAPOR COMPOSITION/REVISED BLOWDOWN RATE/REVISED DURATION.
MSS 2	MSS 2	NEW SOURCE
MSS 3	MSS 3	NEW SOURCE
VENTING 1	VENTING 1	NEW SOURCE
ENG3	ENG3	NO REVISIONS/MODIFICATIONS
ENG4	ENG4	NO REVISIONS/MODIFICATIONS

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad PI-7-CERT Registration DATE:

03/11/24

TABLE 2.2.3 (PERMIT REVISIONS)

	·	
FIN	EPN	REVISIONS
ENG5	ENG5	NO REVISIONS/MODIFICATIONS
ENG6	ENG6	NO REVISIONS/MODIFICATIONS

2.3 Emissions Summary (MAERT)

Ineos USA Oil & Gas Corner S Ranch Mcm B Pad

PI-7-CERT Registration

DATE: 3/11/2024

MAERT

POTENTIAL TO EMI	T (DTE)																		
POTENTIAL TO EMI	I (PIE)																		
EMISSION SOURCE		voc		NOX		co		PM10		PM 2.5		SO2		H2S		BENZE	NE	TOTAL	L HAP
FIN	EPN	PPH	TPY	PPH	TPY	PPH	TPY	PPH	TPY	PPH	TPY	PPH	TPY	PPH	TPY	PPH	TPY	PPH	TPY
FLARE1	FLARE1																		
HT1	HT1	0.005	0.024	0.098	0.429	0.082	0.361	0.007	0.033	0.007	0.033	0.001	0.003	0.000	0.000	0.000	0.000	0.002	0.008
HT2	HT2	0.005	0.024	0.098	0.429	0.082	0.361	0.007	0.033	0.007	0.033	0.001	0.003	0.000	0.000	0.000	0.000	0.002	0.008
HT3	HT3	0.005	0.024	0.098	0.429	0.082	0.361	0.007	0.033	0.007	0.033	0.001	0.003	0.000	0.000	0.000	0.000	0.002	0.008
HT4	HT4	0.005	0.024	0.098	0.429	0.082	0.361	0.007	0.033	0.007	0.033	0.001	0.003	0.000	0.000	0.000	0.000	0.002	0.008
TANK1	TANK1	0.042	0.184											0.000	0.000	0.000	0.000	0.001	0.005
TANK2	TANK2	0.042	0.184											0.000	0.000	0.000	0.000	0.001	0.005
TANK17	TANK17	0.054	0.234											0.000	0.000	0.000	0.001	0.001	0.006
TANK3	TANK3	0.042	0.184											0.000	0.000	0.000	0.000	0.001	0.005
TANK4	TANK4	0.042	0.184											0.000	0.000	0.000	0.000	0.001	0.005
TANK5	TANK5	0.042	0.184											0.000	0.000	0.000	0.000	0.001	0.005
TANK6	TANK6	0.042	0.184											0.000	0.000	0.000	0.000	0.001	0.005
TANK7	TANK7	0.042	0.184											0.000	0.000	0.000	0.000	0.001	0.005
TANK8	TANK8	0.042	0.184											0.000	0.000	0.000	0.000	0.001	0.005
TANK9	TANK9	0.042	0.184											0.000	0.000	0.000	0.000	0.001	0.005
TANK10	TANK10	0.042	0.184											0.000	0.000	0.000	0.000	0.001	0.005
TANK11	TANK11	0.042	0.184											0.000	0.000	0.000	0.000	0.001	0.005
TANK12	TANK12	0.042	0.184											0.000	0.000	0.000	0.000	0.001	0.005
TANK13	TANK13	0.042	0.184											0.000	0.000	0.000	0.000	0.001	0.005
TANK14	TANK14	0.042	0.184											0.000	0.000	0.000	0.000	0.001	0.005
TANK15	TANK15	0.042	0.184											0.000	0.000	0.000	0.000	0.001	0.005
TANK16	TANK16	0.042	0.184											0.000	0.000	0.000	0.000	0.001	0.005
TANK18	TANK18	0.054	0.234											0.000	0.000	0.000	0.001	0.001	0.006
TANK19	TANK19	0.054	0.234											0.000	0.000	0.000	0.001	0.001	0.006
TANK20	TANK20	0.054	0.234											0.000	0.000	0.000	0.001	0.001	0.006
C LOAD 1	C LOAD 1	34.272	0.782											0.000	0.000	0.001	0.000	0.012	0.000
PW LOAD 1	PW LOAD 1	0.343	0.004											0.000	0.000	0.000	0.000	0.000	0.000
HT1-FLASH	HT1-FLASH	0.645	2.824											0.000	0.002	0.002	0.007	0.016	0.072
HT2-FLASH	HT2-FLASH	0.645	2.824											0.000	0.002	0.002	0.007	0.016	0.072
HT3-FLASH	HT3-FLASH	0.645	2.824											0.000	0.002	0.002	0.007	0.016	0.072
HT4-FLASH	HT4-FLASH	0.645	2.824											0.000	0.002	0.002	0.007	0.016	0.072
FUG	FUG	1.701	7.449											0.000	0.000	0.000	0.000	0.001	0.003
MSS 1	MSS 1	0.074	0.011											0.000	0.000	0.000	0.000	0.002	0.000
MSS 2	MSS 2	16.658	0.008											0.000	0.000	0.039	0.000	0.426	0.000
MSS 3	MSS 3	2.989	0.143					0.062	0.003	0.062	0.003			0.000	0.000	0.467	0.022	2.335	0.112
VENTING 1	VENTING 1	0.007	0.007											0.000	0.000	0.000	0.000	0.000	0.000
ENG3	ENG3	0.070	0.306	0.070	0.307	2.830	12.395	0.003	0.015			0.003	0.012	0.000	0.000	0.000	0.000	0.020	0.088
ENG4	ENG4	0.070	0.306	0.070	0.307	2.830	12.395	0.003	0.015			0.003	0.012	0.000	0.000	0.000	0.000	0.020	0.088
ENG5	ENG5	0.070	0.306	0.070	0.307	2.830	12.395	0.003	0.015			0.003	0.012	0.000	0.000	0.000	0.000	0.020	0.088
ENG6	ENG6	0.070	0.306	0.070	0.307	2.830	12.395	0.003	0.015			0.003	0.012	0.000	0.000	0.000	0.000	0.020	0.088
TOTAL EMISSIONS		59.808	24.895	0.672	2.944	11.649	51.024	0.106	0.192	0.092	0.134	0.014	0.060	0.002	0.008	0.515	0.059	2.952	0.888
(TPY):		37.000	27.073	0.072	2.744	11.07)	31.024	0.100	0.172	0.072	5.154	0.017	0.000	0.002	5.000	0.515	0.057	2.752	0.000
MAXIMUM																			
OPERATING			HOURS/	DAY:	24.00	DAYS/W	/EEK:	7.00	WEEKS	/YR:	52.00	HOURS	/YR	8,760.00					
SCHEDULE:																			
TOTAL EMISSIONS:	ALL STORAGE TANKS		3.876	FOR OC	000a & 00	OOb APPI	LICABILIT	ГΥ											

2.4 Emission Calculations

Emission calculations have been provided based on the following (if located on-site; and, as applicable):

- Boiler emissions were calculated using factors provided in the EPA publication AP-42, Compilation of Air Pollution Emission Factors;
- Tank emissions were calculated using factors provided in the EPA publications AP-42, Compilation of Air Pollution Emission Factors; and, the formulas presented in Section 7;
- Loading fugitive emissions were calculated using factors provided in the EPA publication AP-42, Compilation of Air Pollution Emission Factors;
- Crude flash emissions were calculated using the laboratory data.

 The crude properties used for this application were selected from the site with the highest emissions potential within the same geographical area of this site;
- Produced water flash emissions were calculated assuming 1% crude by volume, using the above referenced crude properties;
- Plant fugitive emissions were calculated using factors provided in the EPA publication API Publication No. 4615, Emission Factors For Oil And Gas Production Operations;
- Engine emissions (if applicable/included) were calculated using factors provided in the EPA publication AP-42, Compilation of Air Pollution Emission Factors; and/or, manufacturer factors.
- Flare emissions (if applicable/included) were calculated using factors provided in the TCEQ "Air Permit Technical Guidance for Chemical Sources, Flares and Vapor Oxidizers".
- Dehydration plant emissions (if applicable/included) were calculated using GRI-GLYCalc software and inlet natural gas flow rate/vapor speciation.
- Amine plant emissions (if applicable/included) were calculated using AMINE-Calc software and inlet natural gas flow rate/vapor speciation.

COMPANY: Ineos USA Oil & Gas LLC SITE: Corner S Ranch Mcm B Pad ACTION: PI-7-CERT Registration

DATE: 3/11/2024 WORKSHEET: Fuel Gas 1

ITEM	UNITS	VALUE	
HEAT CONTENT	BTU/SCF	1,318.000	
MOLECULAR WT.	LBS/LB-MOLE	40.242	
CRITERIA POLLUTANTS		MOLE %	WT %
WT. % COMPOSITION			
NOx	%		
CO	%		
SO2	%		
PM10	%		
PM2.5	%		
H2S	%	0.0018%	0.003%
VOC	%	10.689%	25.611%
HAP POLLUTANTS			
BENZENE	%	0.017%	0.060%
ETHYLBENZENE	%	0.001%	0.005%
FORMALDEHYDE	%		
HEXANE-N	%	0.131%	0.509%
METHANOL	%		
TOLUENE	%	0.014%	0.058%
XYLENE-M	%	0.005%	0.024%
XYLENE-O	%		
XYLENE-P	%		
	%		
	%		
	%		
VOC(HAP)-u	%		
GHG POLLUTANTS			
METHANE	%	74.756%	54.111%
CO2	%	0.864%	1.716%
N2O	%		
<u> </u>	%		
	%		
TOTAL	%	100.000%	100.000%

COMPANY: Ineos USA Oil & Gas LLC SITE: Corner S Ranch Mcm B Pad ACTION: PI-7-CERT Registration

DATE: 3/11/2024

WORKSHEET: BOILERS/HEATERS 1 (<100 MMBTU/HR)

SOURCE DESCRIPTION		
FIN	EPN	DESCRIPTION
HT1	HT1	HEATER-TREATER; VENTING TO ATMOSPHERE; 106.352(L)
HT2	HT2	HEATER-TREATER; VENTING TO ATMOSPHERE; 106.352(L)
HT3	HT3	HEATER-TREATER; VENTING TO ATMOSPHERE; 106.352(L)
HT4	HT4	HEATER-TREATER; VENTING TO ATMOSPHERE; 106.352(L)

SOURCE OPERATING PARAMETERS	OURCE OPERATING PARAMETERS										
FIN	EPN	MAKE	MODEL	CONTROL TYPE	FUEL TYPE						
HT1	HT1	UNKNOWN	UNKNOWN	UNCONTROLLED	NATURAL GAS						
HT2	HT2	UNKNOWN	UNKNOWN	UNCONTROLLED	NATURAL GAS						
HT3	HT3	UNKNOWN	UNKNOWN	UNCONTROLLED	NATURAL GAS						
HT4	HT4	UNKNOWN	UNKNOWN	UNCONTROLLED	NATURAL GAS						

SOURCE OPERATING PARAM	IETERS								
FIN	EPN	RUN-TIME	HEAT INPUT	EXH. TEMP	EXH. VEL.	FUEL	FUEL	FUEL	
FIIN	EFN	HRS/YR	MMBTU/HR	DEG. F	FPS	MMSCF/HR	MMSCF/YR	MMBTU/YR	
HT1	HT1	8,760.0	1.000	850.0	8.94	0.001	6.646	8,760.000	
HT2	HT2	8,760.0	1.000	850.0	8.94	0.001	6.646	8,760.000	
HT3	HT3	8,760.0	1.000	850.0	8.94	0.001	6.646	8,760.000	
HT4	HT4	8,760.0	1.000	850.0	8.94	0.001	6.646	8,760.000	

SOURCE STACK PARAMETERS	DURCE STACK PARAMETERS											
FIN	EPN	ZONE	UTM E	UTM N	STACK DIA.	STACK HT.						
					FT.	FT.						
HT1	HT1	14R	528,720.0	3,162,010.6	1.000	20.000						
HT2	HT2	14R	528,720.0	3,162,010.6	1.000	20.000						
HT3	HT3	14R	528,720.0	3,162,010.6	1.000	20.000						
HT4	HT4	14R	528,720.0	3,162,010.6	1.000	20.000						
				, and the second								
						1		1				

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad PI-7-CERT Registration 3/11/2024 BOILERS/HEATERS 1 (<100 MMBTU/HR) COMPANY: SITE: ACTION: DATE: WORKSHEET:

EMISSION FACTORS	UNITS	TOTAL	HT1	HT2	HT3	HT4	
NOx	LBS/MMSCF		129.216	129.216	129.216	129.216	
CO	LBS/MMSCF		108.541	108.541	108.541	108.541	
SO2	LBS/MMSCF		0.778	0.778	0.778	0.778	
PM10	LBS/MMSCF		9.820	9.820	9.820	9.820	
PM2.5	LBS/MMSCF		9.820	9.820	9.820	9.820	
Pb	LBS/MMSCF		0.001	0.001	0.001	0.001	
VOC	LBS/MMSCF		7.107	7.107	7.107	7.107	
HAP POLLUTANTS							
BENZENE	LBS/MMSCF		0.003	0.003	0.003	0.003	
ETHYLBENZENE	LBS/MMSCF						
FORMALDEHYDE	LBS/MMSCF		0.097	0.097	0.097	0.097	
HEXANE-N	LBS/MMSCF		2.326	2.326	2.326	2.326	
METHANOL	LBS/MMSCF						
TOLUENE	LBS/MMSCF		0.004	0.004	0.004	0.004	
XYLENE-M	LBS/MMSCF						
XYLENE-O	LBS/MMSCF		0.001	0.001	0.001	0.001	
XYLENE-P	LBS/MMSCF						
	LBS/MMSCF						
	LBS/MMSCF						
H2S (CALCULATED)	LBS/MMSCF		0.000	0.000	0.000	0.000	
VOC(HAP)-u	LBS/MMSCF						
GHG POLLUTANTS							
METHANE	LBS/MMSCF		2.972	2.972	2.972	2.972	
CO2	LBS/MMSCF		155,058.824	155,058.824	155,058.824	155,058.824	
N2O	LBS/MMSCF		2.843	2.843	2.843	2.843	
	LBS/MMSCF						
	LBS/MMSCF						

NOTES:

^{1.} AP-42 EMISSION FACTORS ADJUSTED FOR FUEL/VAPOR HEAT CONTENT.

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad PI-7-CERT Registration 3/11/2024 BOILERS/HEATERS 1 (<100 MMBTU/HR) COMPANY: SITE: ACTION: DATE: WORKSHEET:

Color Colo	WI GOLD OF THE CONTROL OF							
SOL	EMISSIONS TO ATMOSPHERE	L	1	I	I	1	I	
CO								
Second								
PAID								
PRO								
Proceedings Process								
Voc Pri								
IMP POLITIANTS								
BINZINE PPH 0.000		PPH	0.022	0.005	0.005	0.005	0.005	
FIFTH DENZENE PPH								
FORMALDEIPYDE PPH 0.000			0.000	0.000	0.000	0.000	0.000	
HEXANNEN		PPH						
METHANOL	FORMALDEHYDE			0.000		0.000	0.000	
TOLLIESE		PPH	0.007	0.002	0.002	0.002	0.002	
XYLINEAD PPH	METHANOL	PPH						
XYLINLO	TOLUENE	PPH	0.000	0.000	0.000	0.000	0.000	
XYLINE	XYLENE-M							
PPH	XYLENE-O	PPH	0.000	0.000	0.000	0.000	0.000	
PPH	XYLENE-P	PPH						
HS		PPH						
HS		PPH						
VOCHAP-	H2S		0.000	0.000	0.000	0.000	0.000	
GHO POLIUTANTS								
PPH 470.588 117.647		•	•	•	•	•	•	
PPH 470.588 117.647		PPH	0.009	0.002	0.002	0.002	0.002	
PPH			470.588		117.647	117.647	117.647	
PPH		PPH		0.002	0.002	0.002	0.002	
PPH 2,996,607 749,152 749,153 749,152 749,15								
TOTAL								
EMISSIONS UNITS TOTAL HT1 HT2 HT3 HT4	TOTAL		2.996.607	749.152	749.152	749.152	749.152	
NOX								
TPY								
SO2								
PM10								
PM2.5								
Ph								
VOC								
HAP POLLUTANTS								
BENZENE		1111	0.07 1	0.021	0.02	0.021	0.021	
ETHYLBENZENE		TPY	0.000	0.000	0.000	0.000	0.000	
FORMALDEHYDE			0.000	0.000	0.000	0.000	0.000	
HEXANE-N			0.001	0.000	0.000	0.000	0.000	
METHANOL TPY 0.000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
TOLUENE			0.031	0.000	0.000	0.000	0.000	
XYLENE-M			0.000	0.000	0.000	0.000	0.000	
XYLENE-O			0.000	0.000	0.000	0.000	0.000	
TPY			0.000	0.000	0.000	0.000	0.000	
TPY			0.000	0.000	0.000	0.000	0.000	
TPY	A I LENE-I		<u> </u>			<u> </u>	 	
H2S			 		+	 	+	
VOC(HAP)-u TPY	Hac		0.000	0.000	0.000	0.000	0.000	
GHG POLLUTANTS TPY			0.000	0.000	0.000	0.000	0.000	
METHANE TPY 0.040 0.010 0.010 0.010 0.010 CO2 TPY 2,061.176 515.294 515.294 515.294 515.294 N2O TPY 0.038 0.009 0.009 0.009 0.009 TPY TPY TPY TPY TPY TPY TPY		ırı	L		L	L	i	
CO2 TPY 2,061.176 515.294 515.294 515.294 N2O TPY 0.038 0.009 0.009 0.009 0.009 TPY TPY TPY TPY TPY TPY TPY		ITDV	10.040	0.010	0.010	10.010	10.010	
N2O TPY 0.038 0.009 0.009 0.009 0.009								
TPY TPY								
TPY	N2O		0.038	0.009	0.009	0.009	0.009	
			ļ			ļ		
TOTAL TPY 13,125.140 3,281.285 3,281.285 3,281.285 3,281.285	mom . v		10 10 110				2 201 202	
	TOTAL	TPY	13,125.140	3,281.285	3,281.285	3,281.285	3,281.285	

COMPANY: Ineos USA Oil & Gas LLC SITE: ACTION: Corner S Ranch Mcm B Pad PI-7-CERT Registration

DATE: 3/11/2024

WORKSHEET: BOILERS/HEATERS 1 (<100 MMBTU/HR)

EXAMPLE CALCULATIONS: CALCULATE NOX EMISSIONS:

HT1

HEAT INPUT FUEL HEAT CONTENT MMBTU/HR 1.000 BTU/SCF 1,318.000 RUN TIME HRS/YR 8,760.000

FUEL CONSUMPTION= MMSCF/HR HEAT INPUT, MMBTU/HR HEAT CONTENT, BTU/SCF

FUEL CONSUMPTION= MMSCF/HR 0.00076

NOX E.F. LBS/MMSCF AT 1020 BTU/SCF 100.000

CORRECTED FOR FUEL HEAT CONTENT NOX E.F. LBS/MMSCF 129.216

PPH FUEL CONSUMPTION, MMSCF/HR X NOX E.F., LBS/MMSCF NOX EMISSIONS=

NOX EMISSIONS= PPH 0.098

NOX EMISSIONS, PPH X RUN TIME, HRS/YR 2,000 LBS/TON NOX EMISSIONS= TPY

NOX EMISSIONS= TPY 0.429

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad PL-7-CERT Registration 3/11/2024 Tanks 1-SWF COMPANY: SITE: ACTION: DATE: WORKSHEET:

SOURCE DESCRIPTION		
FIN	EPN	DESCRIPTION
TANK1	TANK1	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK2	TANK2	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK17	TANK17	PRODUCED WATER TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK3	TANK3	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK4	TANK4	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK5	TANK5	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)

OURCE OPERATING PARAMETERS												
FIN	EDNI	TYPE	CONTENTS	SIZE	SIZE	THROUGHPUT	FILL RATE	TEMP.	RUN-TIME			
FIN	EFIN	TIPE	CONTENTS	GALLONS	BBLS	BBLS/D	GPH	DEDG. F	HRS/YR			
TANK1	TANK1	VFR	STABILIZED CRUDI	16,800.0	400.0	1.41	2.461	90.108	8,760.0			
TANK2	TANK2	VFR	STABILIZED CRUDI	16,800.0	400.0	1.41	2.461	90.108	8,760.0			
TANK17	TANK17	VFR	PRODUCED WATER	16,800.0	400.0	2.81	4.922	90.108	8,760.0			
TANK3	TANK3	VFR	STABILIZED CRUDI	16,800.0	400.0	1.41	2.461	90.108	8,760.0			
TANK4	TANK4	VFR	STABILIZED CRUDI	16,800.0	400.0	1.41	2.461	90.108	8,760.0			
TANK5	TANK5	VFR	STABILIZED CRUDI	16,800.0	400.0	1.41	2.461	90.108	8,760.0			

SOURCE STACK PARAMET	TERS								
FIN	EPN	ZONE	UTM E	UTM N	STACK DIA.	STACK HT.	EXH. TEMP	EXH. VEL.	
1110	ETIV	ZONE	OTNL	OTMIN	FT.	FT.	DEG. F	FPS	
TANK1	TANK1	14R	528,720.0	3,162,010.6	0.500	21.000	90.1	0.00	
TANK2	TANK2	14R	528,720.0	3,162,010.6	0.500	21.000	90.1	0.00	
TANK17	TANK17	14R	528,720.0	3,162,010.6	0.500	21.000	90.1	0.00	
TANK3	TANK3	14R	528,720.0	3,162,010.6	0.500	21.000	90.1	0.00	
TANK4	TANK4	14R	528,720.0	3,162,010.6	0.500	21.000	90.1	0.00	
TANK5	TANK5	14R	528,720.0	3,162,010.6	0.500	21.000	90.1	0.00	

UN-CONTROLLED VAPORS									
FIN	EPN	LBS/YR	MAX. LBS/MO.	S/MO. LBS/OZ. SEA.	PRIMARY	P. C. DRE	SECONDARY	S.C. DRE	
LIIA	EFN	LDS/ 1 K			CONTROL	%	CONTROL	%	
TANK1	TANK1	489.687	122.422	204.036	TO AIR		TO AIR		
TANK2	TANK2	489.687	122.422	204.036	TO AIR		TO AIR		
TANK17	TANK17	625.041	156.260	260.434	TO AIR		TO AIR		
TANK3	TANK3	489.687	122.422	204.036	TO AIR		TO AIR		
TANK4	TANK4	489.687	122.422	204.036	TO AIR		TO AIR		
TANK5	TANK5	489.687	122.422	204.036	TO AIR		TO AIR		

MISSIONS TO ATMOSPHERE									
FIN	EPN	EMISSIONS	EMISSIONS	EMISSIONS					
FIIN	EFN	MAX. PPH	AVE. PPH	TPY					
TANK1	TANK1	0.168	0.056	0.245					
TANK2	TANK2	0.168	0.056	0.245					
TANK17	TANK17	21.406	0.071	0.313					
TANK3	TANK3	0.168	0.056	0.245					
TANK4	TANK4	0.168	0.056	0.245	,		•	,	
TANK5	TANK5	0.168	0.056	0.245					

COMPANY: Ineos USA Oil & Gas LLC SITE: ACTION: DATE: WORKSHEET: Corner S Ranch Mcm B Pad PI-7-CERT Registration 3/11/2024 Tanks 1-SWF

EPN	TANK1	TANK2	TANK17	TANK3	TANK4	TANK5
CRITERIA POLLUTANTS	WT%	WT%	WT%	WT%	WT%	WT%
NOx						
00						
SO2						
PM10						
PM2.5						
Pb						
VOC	74.9996%	74.9996%	74.9996%	74.9996%	74.9996%	74.9996%
HAP POLLUTANTS						
BENZENE	0.1752%	0.1752%	0.1752%	0.1752%	0.1752%	0.1752%
ETHYLBENZENE	0.0140%	0.0140%	0.0140%	0.0140%	0.0140%	0.0140%
FORMALDEHYDE						
HEXANE-N	1.4896%	1.4896%	1.4896%	1.4896%	1.4896%	1.4896%
METHANOL						
TOLUENE	0.1702%	0.1702%	0.1702%	0.1702%	0.1702%	0.1702%
XYLENE-M	0.0700%	0.0700%	0.0700%	0.0700%	0.0700%	0.0700%
XYLENE-O						
XYLENE-P						
H2S	0.0403%	0.0403%	0.0403%	0.0403%	0.0403%	0.0403%
VOC(HAP)-u						
GHG POLLUTANTS	T					
METHANE						
CO2	24.9601%	24.9601%	24.9601%	24.9601%	24.9601%	24.9601%
N2O						
TOTAL	100.0000%	100.0000%	100.0000%	100.0000%	100.0000%	100.0000%

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad PL-7-CERT Registration 3/11/2024 Tanks 1-SWF COMPANY: SITE: ACTION: DATE: WORKSHEET:

EMISSIONS TO ATMOSPHERE EMISSIONS	UNITS	TOTAL	TANK1	TANK2	TANK17	TANK3	TANK4	TANK5
NOx	PPH	TOTAL	TAINKI	TAINKZ	I AINKI /	TAINKS	1 ANK4	TAINK
CO	РРН							
02	РРН							
PM10	PPH							
PM2.5	PPH							
Pb	PPH							
VOC	PPH	0.263	0.042	0.042	0.054	0.042	0.042	0.042
HAP POLLUTANTS								
ENZENE	PPH	0.001	0.000	0.000	0.000	0.000	0.000	0.000
THYLBENZENE	PPH	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ORMALDEHYDE	PPH							
IEXANE-N	PPH	0.005	0.001	0.001	0.001	0.001	0.001	0.001
METHANOL	PPH							
OLUENE	PPH	0.001	0.000	0.000	0.000	0.000	0.000	0.000
YLENE-M	PPH	0.000	0.000	0.000	0.000	0.000	0.000	0.000
YLENE-O	PPH							
YLENE-P	PPH						İ	
	PPH							
	РРН							
12S	РРН	0.000	0.000	0.000	0.000	0.000	0.000	0.000
/OC(HAP)-u	РРН	0.000	0.000	0.000	0.000	0.000	0.000	0.000
GHG POLLUTANTS	rrn							
	ppy	1	1	1		1		1
METHANE	PPH	0.000	0.011	0.011	0.040	0.044	0.044	0.011
202	PPH	0.088	0.014	0.014	0.018	0.014	0.014	0.014
120	РРН							
	PPH							
	PPH							
TOTAL	PPH	0.351	0.056	0.056	0.071	0.056	0.056	0.056
EMISSIONS	UNITS	TOTAL	TANK1	TANK2	TANK17	TANK3	TANK4	TANK5
VOx	TPY							
CO	TPY							
O2	TPY							
PM10	TPY							
PM2.5	TPY							
Pb	TPY							
VOC.	TPY	1.153	0.184	0.184	0.234	0.184	0.184	0.184
HAP POLLUTANTS	** *	11100	0.101	0.10	0.23 .	0.10	0.101	0.10
BENZENE	TPY	0.003	0.000	0.000	0.001	0.000	0.000	0.000
THYLBENZENE	TPY	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ORMALDEHYDE	TPY	0.000	0.000	0.000	0.000	0.000	0.000	0.000
IEXANE-N	TPY	0.023	0.004	0.004	0.005	0.004	0.004	0.004
		0.023	0.004	0.004	0.005	0.004	0.004	0.004
METHANOL	TPY	0.000	0.000	0.000	0.004	0.000		0.000
OLUENE	TPY	0.003	0.000	0.000	0.001	0.000	0.000	0.000
YYLENE-M	TPY	0.001	0.000	0.000	0.000	0.000	0.000	0.000
YLENE-O	TPY							
YLENE-P	TPY							
	TPY							
	TPY							
I2S	TPY	0.001	0.000	0.000	0.000	0.000	0.000	0.000
OC(HAP)-u	TPY							
GHG POLLUTANTS	•		•	•	•		•	•
METHANE	TPY							
202	TPY	0.384	0.061	0.061	0.078	0.061	0.061	0.061
120	TPY	0.501	0.001	0.001	0.070	0.001	0.001	0.001
120	TPY							
	TPY						1	
OTAL	TPY	1.537	0.245	0.245	0.313	0.245	0.245	0.245

COMPANY: Ineos USA Oil & Gas LLC SITE: Corner S Ranch Mcm B Pad ACTION: PI-7-CERT Registration

DATE: 3/11/2024 WORKSHEET: Tanks 1-SWF

EXAMPLE CALCULATIONS: CALCULATE VOC EMISSIONS:

TANK1

AP-42, CHP. 7 EMISSIONS LBS/YR 489.687 AVE. ANNUAL EMISSION RATE AP-42, CHP. 7 EMISSIONS 122.422 MAX. EMISSION RATE LBS

RUN TIME HRS/YR 8,760.000 TANK FILLING RATE: GPH 2.461 TANK CAPACITY: GALLONS 16,800.000

GALLONS/YR TANK THROUGPHUT 21,557.813 TURN-OVERS: NO./YR

TANK THROUGHPUT, GAL/YR
TANK SIZE, GALLONS

TURN-OVERS: NO./YR 1.283

CONTROL DRE:

75.00% VAPOR VOC WT % %

EMISSIONS, LBS UN-CONTROLLED MAX. EMISSIONS PPH X VOC WT. % HRS/YR

UN-CONTROLLED MAX. EMISSIONS PPH 0.042

HOURLY RATE X (1 - DRE) UN-CONTROLLED MAX. EMISSIONS PPH 0.042

UN-CONTROLLED ANNUAL EMISSIONS LBS/YR 489.687 VOC WT. % 367.263 UN-CONTROLLED ANNUAL EMISSIONS 0.184

TPY ANNUAL RATE X (1 - DRE) CONTROLLED ANNUAL EMISSIONS TPY 0.184

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad PL-7-CERT Registration 3/11/2024 Tanks 2-SWF COMPANY: SITE: ACTION: DATE: WORKSHEET:

SOURCE DESCRIPTION		
FIN	EPN	DESCRIPTION
TANK6	TANK6	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK7	TANK7	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK8	TANK8	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK9	TANK9	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK10	TANK10	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK11	TANK11	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)

SOURCE OPERATING PARAMETERS									
FIN	EDN	TYPE	CONTENTS	SIZE	SIZE	THROUGHPUT	FILL RATE	TEMP.	RUN-TIME
FIIN	EFN	TIPE	CONTENTS	GALLONS	BBLS	BBLS/D	GPH	DEDG. F	HRS/YR
TANK6	TANK6	VFR	STABILIZED CRUD	16,800.0	400.0	1.41	2.461	90.108	8,760.0
TANK7	TANK7	VFR	STABILIZED CRUD	16,800.0	400.0	1.41	2.461	90.108	8,760.0
TANK8	TANK8	VFR	STABILIZED CRUD	16,800.0	400.0	1.41	2.461	90.108	8,760.0
TANK9	TANK9	VFR	STABILIZED CRUD	16,800.0	400.0	1.41	2.461	90.108	8,760.0
TANK10	TANK10	VFR	STABILIZED CRUD	16,800.0	400.0	1.41	2.461	90.108	8,760.0
TANK11	TANK11	VFR	STABILIZED CRUD	16,800.0	400.0	1.41	2.461	90.108	8,760.0

SOURCE STACK PARA	METERS								
FIN	EPN	ZONE	UTM E	UTM N	STACK DIA.	STACK HT.	EXH. TEMP	EXH. VEL.	
FIIN	EFIN	ZONE	UIME	UTMIN	FT.	FT.	DEG. F	FPS	
TANK6	TANK6	14R	528,720.0	3,162,010.6	0.500	21.000	90.1	0.00	
TANK7	TANK7	14R	528,720.0	3,162,010.6	0.500	21.000	90.1	0.00	
TANK8	TANK8	14R	528,720.0	3,162,010.6	0.500	21.000	90.1	0.00	
TANK9	TANK9	14R	528,720.0	3,162,010.6	0.500	21.000	90.1	0.00	
TANK10	TANK10	14R	528,720.0	3,162,010.6	0.500	21.000	90.1	0.00	
TANK11	TANK11	14R	528,720.0	3,162,010.6	0.500	21.000	90.1	0.00	

UN-CONTROLLED VAPO	DRS								
FIN	EPN	LBS/YR	MAX, LBS/MO.	LBS/OZ, SEA.	PRIMARY	P. C. DRE	SECONDARY	S.C. DRE	
THIN	EFIN	LB3/ 1 K	WAA. LBS/WO.	LBS/OZ. SEA.	CONTROL	%	CONTROL	%	
TANK6	TANK6	489.687	122.422	204.036	TO AIR		TO AIR		
TANK7	TANK7	489.687	122.422	204.036	TO AIR		TO AIR		
TANK8	TANK8	489.687	122.422	204.036	TO AIR		TO AIR		
TANK9	TANK9	489.687	122.422	204.036	TO AIR		TO AIR		
TANK10	TANK10	489.687	122.422	204.036	TO AIR		TO AIR		
TANK11	TANK11	489.687	122.422	204.036	TO AIR		TO AIR		

EMISSIONS TO ATMOSPHE	RE						
FIN	EPN		EMISSIONS	EMISSIONS			
1110	EIIV	MAX. PPH	AVE. PPH	TPY			
TANK6	TANK6	0.168	0.056	0.245			
TANK7	TANK7	0.168	0.056	0.245			
TANK8	TANK8	0.168	0.056	0.245			
TANK9	TANK9	0.168	0.056	0.245			
TANK10	TANK10	0.168	0.056	0.245			
TANK11	TANK11	0.168	0.056	0.245			

COMPANY: Ineos USA Oil & Gas LLC SITE: ACTION: DATE: WORKSHEET: Corner S Ranch Mcm B Pad PI-7-CERT Registration 3/11/2024 Tanks 2-SWF

EPN	TANK6	TANK7	TANK8	TANK9	TANK10	TANK11
CRITERIA POLLUTANTS	WT%	WT%	WT%	WT%	WT%	WT%
110						
NOx CO						
SO2						
PM10						-
PM2.5						
Pb						-
VOC	74.9996%	74.9996%	74.9996%	74.9996%	74.9996%	74.9996%
HAP POLLUTANTS	74.9996%	74.9990%	74.9990%	74.9990%	74.9990%	74.9990%
BENZENE	0.1752%	0.1752%	0.1752%	0.1752%	0.1752%	0.1752%
ETHYLBENZENE	0.0140%	0.0140%	0.0140%	0.0140%	0.0140%	0.0140%
FORMALDEHYDE	0.014070	0.0140%	0.0140%	0.0140%	0.014070	0.014070
HEXANE-N	1.4896%	1.4896%	1.4896%	1.4896%	1.4896%	1.4896%
METHANOL	1.467070	1.407070	1.40/0/0	1.407070	1.407070	1.40/0/0
TOLUENE	0.1702%	0.1702%	0.1702%	0.1702%	0.1702%	0.1702%
XYLENE-M	0.0700%	0.0700%	0.0700%	0.0700%	0.0700%	0.0700%
XYLENE-O	0.070070	0.070070	0.070070	0.070070	0.070070	0.070070
XYLENE-P						
H2S	0.0403%	0.0403%	0.0403%	0.0403%	0.0403%	0.0403%
VOC(HAP)-u						
GHG POLLUTANTS						
METHANE						
CO2	24.9601%	24.9601%	24.9601%	24.9601%	24.9601%	24.9601%
N2O						
TOTAL	100,0000%	100.0000%	100.0000%	100,0000%	100.0000%	100.0000%

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad PL-7-CERT Registration 3/11/2024 Tanks 2-SWF COMPANY: SITE: ACTION: DATE: WORKSHEET:

EMISSIONS TO ATMOSPHERE			1					
EMISSIONS	UNITS	TOTAL	TANK6	TANK7	TANK8	TANK9	TANK10	TANK11
VOx	PPH							
CO	PPH							
502	PPH							
PM10	PPH							
PM2.5	PPH							
W12.5	РРН							
		0.252	0.042	0.040	0.042	0.042	0.042	0.042
VOC	PPH	0.252	0.042	0.042	0.042	0.042	0.042	0.042
HAP POLLUTANTS							•	
BENZENE	PPH	0.001	0.000	0.000	0.000	0.000	0.000	0.000
ETHYLBENZENE	PPH	0.000	0.000	0.000	0.000	0.000	0.000	0.000
FORMALDEHYDE	PPH							
HEXANE-N	PPH	0.005	0.001	0.001	0.001	0.001	0.001	0.001
METHANOL	PPH							
OLUENE	PPH	0.001	0.000	0.000	0.000	0.000	0.000	0.000
XYLENE-M	PPH	0.000	0.000	0.000	0.000	0.000	0.000	0.000
XYLENE-O	PPH							
KYLENE-P	PPH							
<u> </u>	PPH							
	PPH							
H2S	PPH	0.000	0.000	0.000	0.000	0.000	0.000	0.000
VOC(HAP)-u	PPH	0.000	0.000	0.000	0.000	0.000	0.000	0.000
GHG POLLUTANTS	liii	1				1		-
	DDII							
METHANE	PPH							
CO2	PPH	0.084	0.014	0.014	0.014	0.014	0.014	0.014
N2O	PPH							
	PPH							
	PPH							
TOTAL	PPH	0.335	0.056	0.056	0.056	0.056	0.056	0.056
EMISSIONS	UNITS	TOTAL	TANK6	TANK7	TANK8	TANK9	TANK10	TANK11
		TOTAL	TAINNO	I AINK/	TAINNO	TAINN	TANKIU	TANKII
NOx	TPY							
00	TPY							
SO2	TPY							
PM10	TPY							
PM2.5	TPY							
Pb	TPY							
VOC	TPY	1.102	0.184	0.184	0.184	0.184	0.184	0.184
HAP POLLUTANTS	III I	1.102	0.104	0.164	0.104	0.164	0.164	0.164
	Import.	10.000	0.000	10.000	0.000	10.000	10.000	10.000
BENZENE	TPY	0.003	0.000	0.000	0.000	0.000	0.000	0.000
ETHYLBENZENE	TPY	0.000	0.000	0.000	0.000	0.000	0.000	0.000
FORMALDEHYDE	TPY							
HEXANE-N	TPY	0.022	0.004	0.004	0.004	0.004	0.004	0.004
METHANOL	TPY							
TOLUENE	TPY	0.003	0.000	0.000	0.000	0.000	0.000	0.000
XYLENE-M	TPY	0.003	0.000	0.000	0.000	0.000	0.000	0.000
		0.001	0.000	0.000	0.000	0.000	0.000	0.000
XYLENE-O	TPY							
XYLENE-P	TPY							
	TPY							
	TPY							
H2S	TPY	0.001	0.000	0.000	0.000	0.000	0.000	0.000
VOC(HAP)-u	TPY							
GHG POLLUTANTS	1111							
METHANE	TPY							
		0.065	0.061	0.051	0.061	0.051	0.051	0.051
CO2	TPY	0.367	0.061	0.061	0.061	0.061	0.061	0.061
			1		1	1	1	I
N2O	TPY							
	TPY TPY							
	TPY	1.469	0.245	0.245	0.245	0.245	0.245	0.245

COMPANY: Ineos USA Oil & Gas LLC SITE: Corner S Ranch Mcm B Pad ACTION: PI-7-CERT Registration

DATE: 3/11/2024 WORKSHEET: Tanks 2-SWF

EXAMPLE CALCULATIONS: CALCULATE VOC EMISSIONS:

TURN-OVERS:

TANK6

AP-42, CHP. 7 EMISSIONS LBS/YR 489.687 AVE. ANNUAL EMISSION RATE AP-42, CHP. 7 EMISSIONS 122.422 MAX. EMISSION RATE LBS

RUN TIME HRS/YR 8,760.000 TANK FILLING RATE: GPH 2.461 16,800.000 TANK CAPACITY: GALLONS GALLONS/YR TANK THROUGPHUT 21,557.813

TANK THROUGHPUT, GAL/YR
TANK SIZE, GALLONS NO./YR

1.283 TURN-OVERS: NO./YR CONTROL DRE:

75.00% VAPOR VOC WT % %

EMISSIONS, LBS UN-CONTROLLED MAX. EMISSIONS PPH X VOC WT. %

HRS/YR

UN-CONTROLLED MAX. EMISSIONS PPH 0.042 HOURLY RATE X (1 - DRE) UN-CONTROLLED MAX. EMISSIONS PPH 0.042

UN-CONTROLLED ANNUAL EMISSIONS LBS/YR 489.687 VOC WT. % 367.263

UN-CONTROLLED ANNUAL EMISSIONS 0.184 TPY

CONTROLLED ANNUAL EMISSIONS ANNUAL RATE X (1 - DRE) TPY 0.184

COMPANY: Ineos USA Oil & Gas LLC SITE: ACTION: DATE: WORKSHEET: Corner S Ranch Mcm B Pad PI-7-CERT Registration 3/11/2024 Tanks 3-SWF

SOURCE DESCRIPTION		
FIN	EPN	DESCRIPTION
TANK12	TANK12	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)
TANK13	TANK13	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)
TANK14	TANK14	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK15	TANK15	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)
TANK16	TANK16	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)

SOURCE OPERATING PARAMETE	RS								
FIN	EPN	TYPE	YPE CONTENTS SIZE		SIZE	THROUGHPUT	FILL RATE	TEMP.	RUN-TIME
1.114	EFIN	TIFE	CONTENTS	GALLONS	BBLS	BBLS/D	GPH	DEDG. F	HRS/YR
TANK12	TANK12	VFR	STABILIZED CRUD	16,800.0	400.0	1.41	2.461	90.108	8,760.0
TANK13	TANK13	VFR	STABILIZED CRUD	16,800.0	400.0	1.41	2.461	90.108	8,760.0
TANK14	TANK14	VFR	STABILIZED CRUD	16,800.0	400.0	1.41	2.461	90.108	8,760.0
TANK15	TANK15	VFR	STABILIZED CRUD	16,800.0	400.0	1.41	2.461	90.108	8,760.0
TANK16	TANK16	VFR	STABILIZED CRUD	116,800.0	400.0	1.41	2.461	90.108	8,760.0

SOURCE STACK PARAMI	ETERS								
FIN	EPN	ZONE	UTM E	UTM N	STACK DIA.	STACK HT.	EXH. TEMP	EXH. VEL.	
					FT.	FT.	DEG. F	FPS	
TANK12	TANK12	14R	528,720.0	3,162,010.6	0.500	21.000	90.1	0.00	
TANK13	TANK13	14R	528,720.0	3,162,010.6	0.500	21.000	90.1	0.00	
TANK14	TANK14	14R	528,720.0	3,162,010.6	0.500	21.000	90.1	0.00	
TANK15	TANK15	14R	528,720.0	3,162,010.6	0.500	21.000	90.1	0.00	
TANK16	TANK16	14R	528,720.0	3,162,010.6	0.500	21.000	90.1	0.00	

UN-CONTROLLED VAPORS	3								
FIN	EPN	LBS/YR	MAX. LBS/MO.	LBS/OZ, SEA.	PRIMARY	P. C. DRE	SECONDARY	S.C. DRE	
1114	EIN	EBS/ TR	MAA. LDS/MO.	LDS/OZ. SEA.	CONTROL	%	CONTROL	%	
TANK12	TANK12	489.687	122.422	204.036	TO AIR		TO AIR		
TANK13	TANK13	489.687	122.422	204.036	TO AIR		TO AIR		
TANK14	TANK14	489.687	122.422	204.036	TO AIR		TO AIR		
TANK15	TANK15	489.687	122.422	204.036	TO AIR		TO AIR		
TANK16	TANK16	489.687	122.422	204.036	TO AIR		TO AIR		

EMISSIONS TO ATMOSPHERE	EMISSIONS TO ATMOSPHERE										
FIN	EPN	EMISSIONS	EMISSIONS	EMISSIONS							
FIIN	EFN	MAX. PPH	AVE. PPH	TPY							
TANK12	TANK12	0.168	0.056	0.245							
TANK13	TANK13	0.168	0.056	0.245							
TANK14	TANK14	0.168	0.056	0.245							
TANK15	TANK15	0.168	0.056	0.245							
TANK16	TANK16	0.168	0.056	0.245							

COMPANY: Ineos USA Oil & Gas LLC SITE: ACTION: DATE: WORKSHEET: Corner S Ranch Mcm B Pad PI-7-CERT Registration 3/11/2024 Tanks 3-SWF

VAPOR PROPERTIES	m 13 777 4 0	Im	Im . x vvv			
EPN	TANK12	TANK13	TANK14	TANK15	TANK16	
CRITERIA POLLUTANTS	WT%	WT%	WT%	WT%	WT%	WT%
NOx						
CO						
SO2						
PM10						
PM2.5						
Pb						
VOC	74.9996%	74.9996%	74.9996%	74.9996%	74.9996%	
HAP POLLUTANTS						
BENZENE	0.1752%	0.1752%	0.1752%	0.1752%	0.1752%	
ETHYLBENZENE	0.0140%	0.0140%	0.0140%	0.0140%	0.0140%	
FORMALDEHYDE						
HEXANE-N	1.4896%	1.4896%	1.4896%	1.4896%	1.4896%	
METHANOL						
TOLUENE	0.1702%	0.1702%	0.1702%	0.1702%	0.1702%	
XYLENE-M	0.0700%	0.0700%	0.0700%	0.0700%	0.0700%	
XYLENE-O						
XYLENE-P						
H2S	0.0403%	0.0403%	0.0403%	0.0403%	0.0403%	
VOC(HAP)-u						
GHG POLLUTANTS	-	<u> </u>				
METHANE						
CO2	24.9601%	24.9601%	24.9601%	24.9601%	24.9601%	
N2O						
TOTAL	100.0000%	100.0000%	100.0000%	100.0000%	100.0000%	

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad PL-7-CERT Registration 3/11/2024 Tanks 3-SWF COMPANY: SITE: ACTION: DATE: WORKSHEET:

EMISSIONS TO ATMOSPHERE								
EMISSIONS	UNITS	TOTAL	TANK12	TANK13	TANK14	TANK15	TANK16	
NOx	PPH							
CO	PPH							
502	PPH	ĺ						
PM10	PPH							
PM2.5	PPH							
Pb	PPH							
VOC	PPH	0.210	0.042	0.042	0.042	0.042	0.042	
HAP POLLUTANTS	J1111	10.210	0.042	0.042	0.042	0.042	0.042	
BENZENE	РРН	0.000	0.000	0.000	0.000	0.000	0.000	1
	PPH	0.000	0.000	0.000	0.000	0.000	0.000	
ETHYLBENZENE		0.000	0.000	0.000	0.000	0.000	0.000	
FORMALDEHYDE	PPH	0.004	0.004	0.004	0.004	0.004	0.004	
HEXANE-N	PPH	0.004	0.001	0.001	0.001	0.001	0.001	
METHANOL	PPH							
OLUENE	PPH	0.000	0.000	0.000	0.000	0.000	0.000	
KYLENE-M	PPH	0.000	0.000	0.000	0.000	0.000	0.000	
YYLENE-O	PPH							
(YLENE-P	PPH							
	PPH							
	PPH			1	1			
H2S	PPH	0.000	0.000	0.000	0.000	0.000	0.000	
VOC(HAP)-u	PPH							
GHG POLLUTANTS	* * * *	1		1	1	1		
METHANE	PPH							
CO2	PPH	0.070	0.014	0.014	0.014	0.014	0.014	
V2O	РРН	0.070	0.014	0.014	0.014	0.014	0.014	+
N2U		_						
	PPH							
nom i v	PPH	0.000	0.071	0.054	0.054	0.054	0.054	
TOTAL	PPH	0.280	0.056	0.056	0.056	0.056	0.056	
EMISSIONS	UNITS	TOTAL	TANK12	TANK13	TANK14	TANK15	TANK16	
VOx	TPY							
00	TPY							
SO2	TPY							
PM10	TPY							
PM2.5	TPY	ĺ						
Ъ	TPY							
VOC	TPY	0.918	0.184	0.184	0.184	0.184	0.184	
HAP POLLUTANTS		100.00	101201	10000	10000	10000	10000	1
BENZENE	TPY	0.002	0.000	0.000	0.000	0.000	0.000	
ETHYLBENZENE	TPY	0.002	0.000	0.000	0.000	0.000	0.000	
FORMALDEHYDE	TPY	0.000	0.000	0.000	0.000	0.000	0.000	+
	TPY	0.010	0.004	0.004	0.004	0.004	0.004	
HEXANE-N		0.018	0.004	0.004	0.004	0.004	0.004	-
METHANOL	TPY			0.000	0.000	0.000		
TOLUENE	TPY	0.002	0.000	0.000	0.000	0.000	0.000	
XYLENE-M	TPY	0.001	0.000	0.000	0.000	0.000	0.000	
XYLENE-O	TPY							
XYLENE-P	TPY							
	TPY							
	TPY							
H2S	TPY	0.000	0.000	0.000	0.000	0.000	0.000	
VOC(HAP)-u	TPY							
GHG POLLUTANTS	** *			1	1	1	1	
METHANE	TPY							
CO2	TPY	0.306	0.061	0.061	0.061	0.061	0.061	_
		0.506	0.061	0.061	0.061	0.061	0.061	
N2O	TPY							
			1	1	1	I	1	1
	TPY							
	TPY							
OTAL		1.224	0.245	0.245	0.245	0.245	0.245	

COMPANY: Ineos USA Oil & Gas LLC SITE: Corner S Ranch Mcm B Pad ACTION: PI-7-CERT Registration

DATE: 3/11/2024 WORKSHEET: Tanks 3-SWF

EXAMPLE CALCULATIONS: CALCULATE VOC EMISSIONS:

TURN-OVERS:

CONTROL DRE:

TANK12

AP-42, CHP. 7 EMISSIONS LBS/YR 489.687 AVE. ANNUAL EMISSION RATE

RUN TIME HRS/YR 8,760.000 TANK FILLING RATE: GPH 2.461 TANK CAPACITY: GALLONS 16,800.000 GALLONS/YR TANK THROUGPHUT 21,557.813

TANK THROUGHPUT, GAL/YR
TANK SIZE, GALLONS NO./YR

TURN-OVERS:

1.283 NO./YR

75.00% VAPOR VOC WT % %

EMISSIONS, LBS UN-CONTROLLED MAX. EMISSIONS PPH X VOC WT. %

HRS/YR

UN-CONTROLLED MAX. EMISSIONS PPH 0.042

HOURLY RATE X (1 - DRE) UN-CONTROLLED MAX. EMISSIONS PPH 0.042

UN-CONTROLLED ANNUAL EMISSIONS LBS/YR 489.687 VOC WT. % 367.263

UN-CONTROLLED ANNUAL EMISSIONS 0.184 TPY

ANNUAL RATE X (1 - DRE) CONTROLLED ANNUAL EMISSIONS TPY 0.184

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad PL-7-CERT Registration 3/11/2024 Tanks 4-SWF COMPANY: SITE: ACTION: DATE: WORKSHEET:

SOURCE DESCRIPTION		
FIN	EPN	DESCRIPTION
TANK18	TANK18	PRODUCED WATER TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)
TANK19	TANK19	PRODUCED WATER TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK20	TANK20	PRODUCED WATER TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)

SOURCE OPERATING PARAMETERS											
FIN	EPN	TYPE	CONTENTS	SIZE	SIZE	THROUGHPUT	FILL RATE	TEMP.	RUN-TIME		
TIN		TIFE	CONTENTS	GALLONS	BBLS	BBLS/D	GPH	DEDG. F	HRS/YR		
TANK18	TANK18	VFR	PRODUCED WATER	16,800.0	400.0	2.81	4.922	90.108	8,760.0		
TANK19	TANK19	VFR	PRODUCED WATER	16,800.0	400.0	2.81	4.922	90.108	8,760.0		
TANK20	TANK20	VFR	PRODUCED WATER	16,800.0	400.0	2.81	4.922	90.108	8,760.0		

SOURCE STACK PARAME	OURCE STACK PARAMETERS										
FIN EP	FDN	ZONE	UTM E	UTM N	STACK DIA.	STACK HT.	EXH. TEMP	EXH. VEL.			
	ETIV	ZONE		OTMIN	FT.	FT.	DEG. F	FPS			
TANK18	TANK18	14R	528,720.0	3,162,010.6	0.500	21.000	90.1	0.00			
TANK19	TANK19	14R	528,720.0	3,162,010.6	0.500	21.000	90.1	0.00			
TANK20	TANK20	14R	528,720.0	3,162,010.6	0.500	21.000	90.1	0.00			

UN-CONTROLLED VAPORS	N-CONTROLLED VAPORS									
FIN	EPN	LBS/YR	MAX. LBS/MO.	LBS/OZ, SEA.	PRIMARY	P. C. DRE	SECONDARY	S.C. DRE		
TH	EFN	LBS/ TK	WAA. LB3/WO.	LBS/OZ. SEA.	CONTROL	%	CONTROL	%		
TANK18	TANK18	625.041	156.260	260.434	TO AIR		TO AIR			
TANK19	TANK19	625.041	156.260	260.434	TO AIR		TO AIR			
TANK20	TANK20	625.041	156.260	260.434	TO AIR		TO AIR			

EMISSIONS TO ATMOSPHERE	EMISSIONS TO ATMOSPHERE										
FIN	EPN	EMISSIONS	EMISSIONS	EMISSIONS							
	EPN	MAX. PPH	AVE. PPH	TPY							
TANK18	TANK18	21.406	0.071	0.313							
TANK19	TANK19	21.406	0.071	0.313							
TANK20	TANK20	21.406	0.071	0.313							

COMPANY: Ineos USA Oil & Gas LLC SITE: ACTION: DATE: WORKSHEET: Corner S Ranch Mcm B Pad PI-7-CERT Registration 3/11/2024 Tanks 4-SWF

VAPOR PROPERTIES						
EPN	TANK18	TANK19	TANK20			
CRITERIA POLLUTANTS	WT%	WT%	WT%	WT%	WT%	WT%
NOx						
CO						
SO2						
PM10						
PM2.5						
Pb						
VOC	74.9996%	74.9996%	74.9996%			
HAP POLLUTANTS						
BENZENE	0.1752%	0.1752%	0.1752%			
ETHYLBENZENE	0.0140%	0.0140%	0.0140%			
FORMALDEHYDE						
HEXANE-N	1.4896%	1.4896%	1.4896%			
METHANOL						
TOLUENE	0.1702%	0.1702%	0.1702%			
XYLENE-M	0.0700%	0.0700%	0.0700%			
XYLENE-O						
XYLENE-P						
H2S	0.0403%	0.0403%	0.0403%			
VOC(HAP)-u						
GHG POLLUTANTS						
METHANE						
CO2	24.9601%	24.9601%	24.9601%			
N2O						
TOTAL	100.0000%	100.0000%	100.0000%			

COMPANY: Ineos USA Oil & Gas LLC SITE: ACTION: DATE: WORKSHEET: Corner S Ranch Mcm B Pad PI-7-CERT Registration 3/11/2024 Tanks 4-SWF

EMISSIONS TO ATMOSPHERE EMISSIONS	UNITS	TOTAL	TANK18	TANK19	TANK20		
		TOTAL	TANK18	TANK19	TANK20		
NOx	PPH						
CO	PPH						
SO2	PPH						
PM10	PPH						
PM2.5	PPH						
Pb	PPH						
VOC	PPH	0.161	0.054	0.054	0.054		
HAP POLLUTANTS							
BENZENE	PPH	0.000	0.000	0.000	0.000		
ETHYLBENZENE	PPH	0.000	0.000	0.000	0.000		
FORMALDEHYDE	PPH						
HEXANE-N	PPH	0.003	0.001	0.001	0.001		
METHANOL	РРН	0.003	0.001	0.001	0.001		
TOLUENE	РРН	0.000	0.000	0.000	0.000		
	РРН	0.000	0.000	0.000	0.000		
XYLENE-M XYLENE-O	РРН	0.000	0.000	0.000	0.000	_	
						_	+
XYLENE-P	PPH						
	PPH						
	РРН						
H2S	PPH	0.000	0.000	0.000	0.000		
VOC(HAP)-u	PPH						
GHG POLLUTANTS							
METHANE	PPH						
CO2	PPH	0.053	0.018	0.018	0.018		
N2O	PPH						
	PPH						
	PPH						
TOTAL	PPH	0.214	0.071	0.071	0.071		
EMISSIONS	UNITS	TOTAL	TANK18	TANK19	TANK20		
NOx	TPY	TOTAL	TAINKIO	TAINKI	TAINKLU		
CO	TPY						
SO2	TPY						
PM10	TPY						
PM2.5	TPY						
Pb	TPY						
VOC	TPY	0.703	0.234	0.234	0.234		
HAP POLLUTANTS							
BENZENE	TPY	0.002	0.001	0.001	0.001		
ETHYLBENZENE	TPY	0.000	0.000	0.000	0.000		
FORMALDEHYDE	TPY						
HEXANE-N	TPY	0.014	0.005	0.005	0.005		
METHANOL	TPY						
TOLUENE	TPY	0.002	0.001	0.001	0.001		
XYLENE-M	TPY	0.002	0.000	0.000	0.000		
XYLENE-O	TPY	0.001	0.000	0.000	0.000	-	
XYLENE-P	TPY	- 					+
A LEDNE-L	TPY					-	-
TYPE	TPY	0.000	0.000	0.000	0.000		
H2S	TPY	0.000	0.000	0.000	0.000		
VOC(HAP)-u	TPY					1	
GHG POLLUTANTS							
METHANE	TPY						
		0.234	0.078	0.078	0.078		
CO2	TPY	0.234	0.070				
	TPY TPY	0.234	0.070				
CO2		0.234	0.070				
CO2	TPY TPY	0.234	0.070				
CO2	TPY	0.938	0.313	0.313	0.313		

COMPANY: Ineos USA Oil & Gas LLC SITE: Corner S Ranch Mcm B Pad ACTION: PI-7-CERT Registration

DATE: 3/11/2024 WORKSHEET: Tanks 4-SWF

EXAMPLE CALCULATIONS: CALCULATE VOC EMISSIONS:

CONTROL DRE:

TANK18

AP-42, CHP. 7 EMISSIONS LBS/YR 625.041 AVE. ANNUAL EMISSION RATE

RUN TIME HRS/YR 8,760.000 TANK FILLING RATE: GPH 4.922 TANK CAPACITY: GALLONS 16,800.000 GALLONS/YR TANK THROUGPHUT 43,115.625 TURN-OVERS:

TANK THROUGHPUT, GAL/YR
TANK SIZE, GALLONS NO./YR

0.054

TURN-OVERS:

2.566 NO./YR

75.00% VAPOR VOC WT % %

EMISSIONS, LBS UN-CONTROLLED MAX. EMISSIONS PPH X VOC WT. % HRS/YR

UN-CONTROLLED MAX. EMISSIONS PPH HOURLY RATE X (1 - DRE) UN-CONTROLLED MAX. EMISSIONS PPH 0.054

UN-CONTROLLED ANNUAL EMISSIONS LBS/YR 625.041 VOC WT. % 468.779 UN-CONTROLLED ANNUAL EMISSIONS 0.234 TPY

ANNUAL RATE X (1 - DRE) CONTROLLED ANNUAL EMISSIONS TPY 0.234
 COMPANY:
 Ineos USA Oil & Gas LLC

 SITE:
 Corner S Ranch Mcm B Pad

 ACTION:
 PI-7-CERT Registration

 DATE:
 3/11/2024

 WORKSHEET:
 LOADING 1

SOURCE DESCRIPTION	SOURCE DESCRIPTION							
FIN	EPN	DESCRIPTION						
C LOAD 1	C LOAD 1	CRUDE LOADING; VENTING TO ATMOSPHERE; 106.352(L)						
PW LOAD 1	PW LOAD 1	PRODUCED WATER LOADING; ASSUMED 1% CRUDE BY VOLUME; VENTING TO ATMOSPHERE; 106.352(L)						

SOURCE OPERATING PARAMETERS	SOURCE OPERATING PARAMETERS											
FIN	EPN	CONTENTS	THROUGHPUT	THROUGHPUT	VOC FRACTION	VOC FRACTION	LOADING RATE	OPERATING TIME	MAX. TEMP,			
THY			BBLS/D	GAL/YR		GAL/YR	GPM	HRS/YR	DEG. F			
C LOAD 1	C LOAD 1	STABILIZED CRUD	22.50	344,925.00	1.00	344,925.00	126.000	45.625	90.1			
PW LOAD 1	PW LOAD 1	PRODUCED WATER	11.25	172,462.50	0.01	1,724.63	126.000	22.813	90.1			

SOURCE OPERATING PARAMETERS								
FIN	EPN		VAPOR MOLE. WT. LBS/LB-MOLE	SATURATION FACTOR	EMISSION DATE	PRIMARY CONTROL	SECONDARY CONTROL	S.C. DRE %
C LOAD 1	C LOAD 1	8.746	38.143	0.6	4.53	TO AIR	TO AIR	
PW LOAD 1	PW LOAD 1	8.746	38.143	0.6	4.53	TO AIR	TO AIR	

SOURCE STACK PARAMI	ETERS								
FIN	EPN	ZONE	UTM E	UTM N	STACK DIA.	STACK HT.	EXH. TEMP	EXH. VEL.	
PIN	EFN	ZONE	UTME	UTWIN	FT.	FT.	DEG. F	FPS	
C LOAD 1	C LOAD 1	14R	528,720	3,162,011	0.500	8.000	90.1	0.23	
PW LOAD 1	PW LOAD 1	14R	528,720	3,162,011	0.500	8.000	90.1	0.00	

EMISSIONS TO ATMOSPHERE							
FIN	EPN	EMISSIONS	EMISSIONS	EMISSIONS			
THN	EFN	MAX. LBS/YR	MAX. PPH	TPY			
C LOAD 1	C LOAD 1	1,563.657	34.272	0.782			
PW LOAD 1	PW LOAD 1	7.818	0.343	0.004			

Ineos USA Oil & Gas LLC Comer S Ranch Mcm B Pad PL-7-CERT Registration 3/11/2024 LOADING 1 COMPANY: SITE: ACTION: DATE: WORKSHEET:

EPN	C LOAD 1	PW LOAD 1				
CRITERIA POLLUTANTS	WT%	WT%	WT%	WT%	WT%	WT%
NOx						
CO						
SO2						
PM10						
PM2.5						
Pb						
VOC	99.9993%	99.9993%				
HAP POLLUTANTS	•	•	•	·	•	•
BENZENE	0.0031%	0.0031%				
ETHYLBENZENE	0.0002%	0.0002%				
FORMALDEHYDE						
HEXANE-N	0.0266%	0.0266%				
METHANOL						
TOLUENE	0.0030%	0.0030%				
XYLENE-M	0.0012%	0.0012%				
XYLENE-O						
XYLENE-P						
H2S	0.0007%	0.0007%				
VOC(HAP)-u						
GHG POLLUTANTS						
METHANE						
CO2	· ·					
N2O						

Ineos USA Oil & Gas LLC Comer S Ranch Mcm B Pad PL-7-CERT Registration 3/11/2024 LOADING 1 COMPANY: SITE: ACTION: DATE: WORKSHEET:

EMISSIONS TO ATMOSPHERE								
EMISSIONS	UNITS	TOTAL	C LOAD 1	PW LOAD 1				
NOx	PPH							
CO	PPH							
SO2	PPH							
PM10	PPH				+	+		
PM2.5	PPH							
					_	+		
Pb	PPH	21.11	2125	0.040				
VOC	PPH	34.614	34.272	0.343				
HAP POLLUTANTS								
BENZENE	PPH	0.001	0.001	0.000				
ETHYLBENZENE	PPH	0.000	0.000	0.000				
FORMALDEHYDE	PPH							
HEXANE-N	PPH	0.009	0.009	0.000				
METHANOL	PPH							
TOLUENE	PPH	0.001	0.001	0.000				
XYLENE-M	PPH	0.000	0.000	0.000		1		1
XYLENE-O	PPH	0.000	0.000	3.000				+
XYLENE-P	PPH		+		+	+		1
A I DEINE-I	PPH							1
	PPH PPH					-	_	1
YAC .		0.000	0.000	0.000		1		1
H2S	PPH	0.000	0.000	0.000		-		
VOC(HAP)-u	PPH							
GHG POLLUTANTS								
METHANE	PPH							
CO2	PPH							
N2O	PPH							
	PPH						1	
	PPH							
TOTAL	PPH	34.615	34.272	0.343				
EMISSIONS	UNITS	TOTAL	C LOAD 1	PW LOAD 1				
NOx	TPY	TOTAL	C LOAD I	r w LOAD I				
	TPY							
CO								
SO2	TPY							
PM10	TPY							
PM2.5	TPY							
Pb	TPY							
VOC	TPY	0.786	0.782	0.004				
HAP POLLUTANTS								
BENZENE	TPY	0.000	0.000	0.000				
ETHYLBENZENE	TPY	0.000	0.000	0.000				
FORMALDEHYDE	TPY	0.000	0.000	5.000		1		
HEXANE-N	TPY	0.000	0.000	0.000				<u> </u>
METHANOL	TPY	0.000	0.000	0.000	1	1		+
	TPY	0.000	0.000	0.000	-	-		+
TOLUENE						1		1
XYLENE-M	TPY	0.000	0.000	0.000		-		
	Market V			1				
XYLENE-O	TPY							
XYLENE-O	TPY							
XYLENE-O	TPY TPY							
XYLENE-O	TPY							
XYLENE-O XYLENE-P	TPY TPY	0.000	0.000	0.000				
XYLENE-O XYLENE-P H2S	TPY TPY TPY TPY	0.000	0.000	0.000				
XYLENE-O XYLENE-P H2S VOC(HAP)-u	TPY TPY TPY	0.000	0.000	0.000				
XYLENE-O XYLENE-P H2S VOC(HAP)-u GHG POLLUTANTS	TPY TPY TPY TPY TPY	0.000	0.000	0.000				
XYLENE-O XYLENE-P H2S VOC(HAP)-u GHG POLLUTANTS METHANE	TPY TPY TPY TPY TPY TPY TPY	0.000	0.000	0.000				
XYLENE-O XYLENE-P H2S VOC(HAP)-u GHG POLLUTANTS METHANE CO2	TPY TPY TPY TPY TPY TPY TPY TPY	0.000	0.000	0.000				
XYLENE-O XYLENE-P H2S VOC(HAP)-u GHG POLLUTANTS	TPY	0.000	0.000	0.000				
XYLENE-O XYLENE-P H2S VOC(HAP)-u GHG POLLUTANTS METHANE CO2	TPY	0.000	0.000	0.000				
XYLENE-O XYLENE-P H2S VOC(HAP)-u GHG POLLUTANTS METHANE CO2	TPY	0.000	0.000	0.000				

COMPANY: Ineos USA Oil & Gas LLC SITE: Corner S Ranch Mcm B Pad ACTION: PI-7-CERT Registration

DATE: 3/11/2024 WORKSHEET: LOADING 1

EXAMPLE CALCULATIONS: CALCULATE VOC EMISSIONS:

EPN C LOAD 1
COMOUND NAME STABILIZED CRUDE

 VOC FRACTION
 1.000

 OPERATION
 HRS/YR
 45.625

 THROUGHPUT
 GALLONS/YR
 344,925.000

 THROUGHPUT (VOC FRACTION)
 GALLONS/YR
 344,925.000

 MAX. ANNUAL TEMPERATURE (T1)
 DEG. F
 90.108

 MAX. ANNUAL TEMPERATURE (T1)
 DEG. R
 550.108

 MAX. ANNUAL TEMPERATURE (T1)
 DEG. F
 90.108

 MAX. ANNUAL TEMPERATURE (T1)
 DEG. R
 550.108

 LIQ. V. P. @ MAX. TEMP.
 PSIA
 8.746

 SATURATION FACTOR (S, FROM AP-42, TABLE 5.2-1)
 0.600

 VAPOR VOC WT%
 %
 99.9993%

VAPOR MOL. WT. (FROM AP-42, TABLE 7.1-2, OR TANKS OUTPUT)

LBS/LB-MOLE 38.143

TO AIR CONTROL DRE %

UNCONTROLLED LOADING EMISSIONS

LBS/MGAL

12.46 X SAT. FAC. X MOL. WT. X MAX. V.P.

MAX. TEMP.

MAX. 1E

UN-CONTROLLED LOADING EMISSIONS
LBS/MGAL X THROUGHPUT, MGAL/YR X VOC FRACT. = 1,563.657
UN-CONTROLLED LOADING EMISSIONS
LBS/YR LBS/MGAL X THROUGHPUT, MGAL/YR X VOC FRACT. = 1,563.657
UN-CONTROLLED LOADING EMISSIONS
PPH [MAX. LBS/YR / HRS/YR] X VOC WT.% = 34.272
UN-CONTROLLED LOADING EMISSIONS
PY MAX. PPH X OPERATION, HRS/YR = 0,782

2,000 LBS/TON

CONTROLLED LOADING EMISSIONS PPH MAX. PPH X (1 - DRE) = 34.272 CONTROLLED LOADING EMISSIONS TPY MAX. TPY X (1 - DRE) = 0.782

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad PL-7-CERT Registration 3/11/2024 FLASH 1 COMPANY: SITE: ACTION: DATE: WORKSHEET:

SOURCE DESCRIPTION		
FIN	EPN	DESCRIPTION
HT1-FLASH	HT1-FLASH	HEATER-TREATER CRUDE FLASH VAPORS; VENTING TO ATMOSPHERE; 106.352(1)
HT2-FLASH	HT2-FLASH	HEATER-TREATER CRUDE FLASH VAPORS; VENTING TO ATMOSPHERE; 106.352(I)
HT3-FLASH	HT3-FLASH	HEATER-TREATER CRUDE FLASH VAPORS; VENTING TO ATMOSPHERE; 106.352(1)
HT4-FLASH	HT4-FLASH	HEATER-TREATER CRUDE FLASH VAPORS; VENTING TO ATMOSPHERE; 106.352(1)

SOURCE OPERATING PARAMETERS								
FIN	EPN	ICONTENTS	THROUGHPUT BBLS/D		VOC FRACTION BBLS/YR	HRS/YR	MAX. ANNUAL TEMP. DEG. F	OZONE SEA. MAX. TEMP. DEG. F
HT1-FLASH	HT1-FLASH	CRUDE/NATURAL (5.65	100.00%	2,063.39	8,760.00	79.800	104.200
HT2-FLASH	HT2-FLASH	CRUDE/NATURAL (5.65	100.00%	2,063.39	8,760.00	79.800	104.200
HT3-FLASH	HT3-FLASH	CRUDE/NATURAL (5.65	100.00%	2,063.39	8,760.00	79.800	104.200
HT4-FLASH	HT4-FLASH	CRUDE/NATURAL (5.65	100.00%	2,063.39	8,760.00	79.800	104.200

SOURCE OPERATING PARAM	IETERS								
FIN	EPN	DOWN STREAM PSIG	UPSTREAM PSIG	ESTIMATION METHOD	STOCK TANK API GRAVITY	FLASH VAPOR S.G.	VAPOR MOLE. WT. LBS/LB-MOLE	GOR SCF/BBL	
HT1-FLASH	HT1-FLASH	14.270	110.000	VASQUEZ-BEGGS	48.26	0.79	38.14		
HT2-FLASH	HT2-FLASH	14.270	110.000	VASQUEZ-BEGGS	48.26	0.79	38.14		
HT3-FLASH	HT3-FLASH	14.270	110.000	VASQUEZ-BEGGS	48.26	0.79	38.14		
HT4-FLASH	HT4-FLASH	14.270	110.000	VASQUEZ-BEGGS	48.26	0.79	38.14		

SOURCE OPERATING PARAMETERS								
FIN	EPN	EMISSION RATE		EMISSIONS TO ATMOSPHERE PPH	PRIMARY CONTROL	 SECONDARY CONTROL	S.C. DRE %	
HT1-FLASH	HT1-FLASH	7,531.42	0.860	1	TO ATMOSPHERE	TO ATMOSPHERE		
HT2-FLASH	HT2-FLASH	7,531.42	0.860	1	TO ATMOSPHERE	TO ATMOSPHERE		
HT3-FLASH	HT3-FLASH	7,531.42	0.860	1	TO ATMOSPHERE	TO ATMOSPHERE		
HT4-FLASH	HT4-FLASH	7,531.42	0.860	1	TO ATMOSPHERE	TO ATMOSPHERE		
_								

SOURCE STACK PARAMETERS								
FIN	EPN	ZONE	UTM E	UTM N	STACK DIA.	STACK HT.	EXH. TEMP	EXH. VEL.
THY	EFIN	ZONE	OTML	O I IVI IV	FT.	FT.	DEG. F	FPS
HT1-FLASH	HT1-FLASH	14R	528,720	3,162,011	1.000	30.000	79.800	2.44E-03
HT2-FLASH	HT2-FLASH	14R	528,720	3,162,011	1.000	30.000	79.800	2.44E-03
HT3-FLASH	HT3-FLASH	14R	528,720	3,162,011	1.000	30.000	79.800	2.44E-03
HT4-FLASH	HT4-FLASH	14R	528,720	3,162,011	1.000	30.000	79.800	2.44E-03

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad PL-7-CERT Registration 3/11/2024 FLASH 1 COMPANY: SITE: ACTION: DATE: WORKSHEET:

VAPOR PROPERTIES EPN	HT1-FLASH	HT2-FLASH	HT3-FLASH	HT4-FLASH		
EIII	IIII I E I III	III Z I LA ISII	III 5 I LAGII	111 + 1 12 1511		
CRITERIA POLLUTANTS	WT%	WT%	WT%	WT%	WT%	WT%
NOx						
CO						
SO2						
PM10						
PM2.5						
Pb						
VOC	74.9996%	74.9996%	74.9996%	74.9996%		
HAP POLLUTANTS						
BENZENE	0.1752%	0.1752%	0.1752%	0.1752%		
ETHYLBENZENE	0.0140%	0.0140%	0.0140%	0.0140%		
FORMALDEHYDE						
HEXANE-N	1.4896%	1.4896%	1.4896%	1.4896%		
METHANOL						
TOLUENE	0.1702%	0.1702%	0.1702%	0.1702%		
XYLENE-M	0.0700%	0.0700%	0.0700%	0.0700%		
XYLENE-O						
XYLENE-P						
H2S	0.0403%	0.0403%	0.0403%	0.0403%		
VOC(HAP)-u						
GHG POLLUTANTS						
METHANE						
CO2	24.9601%	24.9601%	24.9601%	24.9601%		
N2O						
TOTAL	100.0000%	100.0000%	100.0000%	100.0000%		

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad PL-7-CERT Registration 3/11/2024 FLASH 1 COMPANY: SITE: ACTION: DATE: WORKSHEET:

EMISSIONS TO ATMOSPHERE								
EMISSIONS	UNITS	TOTAL	HT1-FLASH	HT2-FLASH	HT3-FLASH	HT4-FLASH		
NOx	PPH							
CO	PPH							
SO2	РРН							
PM10	PPH							
PM2.5	PPH					-		
Pb	PPH							
VOC	PPH	2.579	0.645	0.645	0.645	0.645		
	PPH	2.579	0.045	0.645	0.645	0.045		
HAP POLLUTANTS	Inner	10.004	10.000	0.000	0.000	0.000		1
BENZENE	PPH	0.006	0.002	0.002	0.002	0.002		
ETHYLBENZENE	PPH	0.000	0.000	0.000	0.000	0.000		
FORMALDEHYDE	PPH							
HEXANE-N	PPH	0.051	0.013	0.013	0.013	0.013		
METHANOL	PPH							
TOLUENE	PPH	0.006	0.001	0.001	0.001	0.001		
XYLENE-M	PPH	0.002	0.001	0.001	0.001	0.001		
XYLENE-O	PPH							
XYLENE-P	PPH							
	PPH							
	PPH							
H2S	PPH	0.001	0.000	0.000	0.000	0.000		
VOC(HAP)-u	PPH							
GHG POLLUTANTS							1	
METHANE	PPH							
CO2	РРН	0.858	0.215	0.215	0.215	0.215		
N2O	PPH	0.050	0.213	0.213	0.213	0.213		
1420	PPH					-		
	PPH							
TOTAL	PPH	3.439	0.860	0.860	0.860	0.860		
EMISSIONS	UNITS	TOTAL	HT1-FLASH	HT2-FLASH	HT3-FLASH	HT4-FLASH		
NOx	TPY							
CO	TPY							
SO2	TPY							
PM10	TPY							
PM2.5	TPY							
Pb	TPY							
VOC	TPY	11.297	2.824	2.824	2.824	2.824		
HAP POLLUTANTS								
BENZENE	TPY	0.026	0.007	0.007	0.007	0.007		
ETHYLBENZENE	TPY	0.002	0.001	0.001	0.001	0.001		
FORMALDEHYDE	TPY							
HEXANE-N	TPY	0.224	0.056	0.056	0.056	0.056		
METHANOL	TPY							
TOLUENE	TPY	0.026	0.006	0.006	0.006	0.006		
XYLENE-M	TPY	0.011	0.003	0.003	0.003	0.003		İ
XYLENE-O	TPY	0.011	0.000	0.000	0.000	0.000		
XYLENE-P	TPY							
I I I I I I I I I I I I I I I I I I I	TPY							+
	TPY			_	_		+	+
H2S	TPY	0.006	0.002	0.002	0.002	0.002	-	-
		0.006	0.002	0.002	0.002	0.002	+	-
VOC(HAP)-u	TPY							
GHG POLLUTANTS	r							
METHANE	TPY							
CO2	TPY	3.760	0.940	0.940	0.940	0.940		
N2O	TPY							
	TPY							
	TPY							
TOTAL	TPY	15.063						

COMPANY: Ineos USA Oil & Gas LLC SITE: Corner S Ranch Mcm B Pad ACTION: PI-7-CERT Registration

DATE: 3/11/2024 FLASH 1 WORKSHEET:

EXAMPLE CALCULATIONS: CALCULATE VOC EMISSIONS:

COMOUND NAME CRUDE/NATURAL GAS

VOC CONTENT 100.0000% OPERATION HRS/YR 8,760.000 THROUGHPUT BBLS/YR 2,063.391

THROUGHPUT (VOC FRACTION) BBLS/YR THROUGHPUT, BBLS/YR X VOC CONTENT % 2,063.391

VAPOR VOC WT% SCF/MOLE MOLAR VOLUME 385.462 VAPOR MOL. WT. (FROM AP-42, TABLE 7.1-2, OR TANKS OUTPUT) LBS/LB-MOLE 38.143

SCF/BBL GOR

TO ATMOSPHERE CONTROL DRE

UNCONTROLLED EMISSIONS GOR, SCF/BBL X THROUGHPUT, BBLS/YR X MOL. WT., LSB/LB-MOLE X VOC WT.% LBS/YR

HT1-FLASH

MOLAR VOLUME, SCF/MOLE

UNCONTROLLED EMISSIONS PPH LBS/YR / OPERATION, HRS/YR = UNCONTROLLED EMISSIONS TPY LBS/YR / 2,000 LBS/TON

CONTROLLED EMISSIONS PPH MAX. PPH X (1 - DRE) 0.00 CONTROLLED EMISSIONS TPY MAX. TPY X (1 - DRE) 0.00

Ineos USA Oil & Gas LLC Comer S Ranch Mcm B Pad PL-7-CERT Registration 3/11/2024 BLOWDOWNS / MSS COMPANY: SITE: ACTION: DATE: WORKSHEET:

SOURCE DESCRIPTION		
FIN	EPN	DESCRIPTION
MSS 1	MSS 1	MSS ACTIVITY; VAPORS VENTED TO ATMOSPHERE DURING MSS ACTIVITIES; 106.359
MSS 2	MSS 2	MSS ACTIVITY; STORAGE TANK DE-GASSING DURING MAINTENANCE ACTIVITY; ASSUME DE-GASSING 1 TANK/YEAR; VENTS TO ATMOSPHERE; 106.359
MSS 3	MSS 3	MSS ACTIVITIES; MISC. ABRASIVE BLASTING/COATING ACTIVITIES; VENTS TO ATMOSPHERE; AREA SOURCE; 106.359
VENTING 1	VENTING 1	PNEUMATIC DEVICE; VENTING TO ATMOSPHERE; 106.352(I)

SOURCE OPERATING PARAMETER	S							
FIN	EPN	CONTENTS		RATE SCF/HR			VAPOR MOLE. WT. LBS/LB-MOLE	
MSS 1	MSS 1	NATURAL GAS	1,318.00	25.00	0.0075	300.00	1.52	
MSS 2	MSS 2	NATURAL GAS	1,318.00	5,620.00	0.0056	1.00	1.52	
MSS 3	MSS 3	BLASTING/COATIN	3,071.00	1,200.00	0.1152	96.00	88.41	
VENTING 1	VENTING 1	NATURAL GAS	1,318.00	2.25	0.0049	2,190.00	1.52	

SOURCE OPERATING PARAMETERS	S							
FIN	EPN	UN-CONTROLLED EMISSION RATE PPH	ATMOSPHERE	PRIMARY CONTROL	P. C. DRE %	SECONDARY CONTROL		
MSS 1	MSS 1	0.099	0.099	TO ATMOSPHERE	NONE	TO ATMOSPHERE		
MSS 2	MSS 2	22.211	22.203	TO ATMOSPHERE	NONE	TO ATMOSPHERE		
MSS 3	MSS 3	275.224	2.989	TO ATMOSPHERE	NONE	TO ATMOSPHERE		
VENTING 1	VENTING 1	0.009	0.009	TO ATMOSPHERE	NONE	TO ATMOSPHERE		

SOURCE STACK PARAMETERS									
FIN	EDN	ZONE	UTM E	UTM N	STACK DIA.	STACK HT.	EXH. TEMP	EXH. VEL.	
THY	EFN	ZONE	UTWLE		FT.	FT.	DEG. F	FPS	
MSS 1	MSS 1	14R	528,720	3,162,011	0.500	20.00	90.11	0.001	
MSS 2	MSS 2	14R	528,720	3,162,011	0.500	20.00	90.11	0.257	
MSS 3	MSS 3	14R	528,720	3,162,011	0.250	3.00	90.11	0.077	
VENTING 1	VENTING 1	14R	528,720	3,162,011	0.250	3.00	90.11	0.000	

Ineos USA Oil & Gas LLC Comer S Ranch Mcm B Pad PL-7-CERT Registration 3/11/2024 BLOWDOWNS / MSS COMPANY: SITE: ACTION: DATE: WORKSHEET:

VAPOR PROPERTIES EPN	MSS 1	MSS 2	MSS 3	VENTING 1		
EFIN	IVISS 1	IVISS 2	MSS 3	VENTING I		
CRITERIA POLLUTANTS	WT%	WT%	WT%	WT%	WT%	WT%
NOx						
CO						
SO2						
PM10			4.6874%			
PM2.5			4.6874%			
Pb						
VOC	74.9996%	74.9996%	99.9991%	74.9996%		
HAP POLLUTANTS						•
BENZENE	0.1752%	0.1752%	13.2529%	0.1752%		
ETHYLBENZENE	0.0140%	0.0140%	18.0122%	0.0140%		
FORMALDEHYDE						
HEXANE-N	1.4896%	1.4896%	14.6218%	1.4896%		
METHANOL						
TOLUENE	0.1702%	0.1702%	15.6317%	0.1702%		
XYLENE-M	0.0700%	0.0700%	18.0122%	0.0700%		
XYLENE-O						
XYLENE-P						
H2S	0.0403%	0.0403%	0.0009%	0.0403%		
VOC(HAP)-u						
GHG POLLUTANTS						
METHANE						
CO2						
N2O						
TOTAL	75,0399%	75.0399%	100.0000%	75.0399%		

Ineos USA Oil & Gas LLC Comer S Ranch Mcm B Pad PL-7-CERT Registration 3/11/2024 BLOWDOWNS / MSS COMPANY: SITE: ACTION: DATE: WORKSHEET:

EMISSIONS TO ATMOSPHERE	1	mor:	1.00-	D 40	2.60	V 1990 W		_
EMISSIONS	UNITS	TOTAL	MSS 1	MSS 2	MSS 3	VENTING 1		
NOx	PPH							
CO	PPH							
SO2	PPH							
PM10	PPH	0.062			0.062			
PM2.5	PPH	0.062			0.062			
Pb	PPH							
VOC	PPH	19.728	0.074	16.658	2.989	0.007		
HAP POLLUTANTS	<u> </u>	1-2-11-0	10.0.	1-01000	1-12-02		· ·	
BENZENE	PPH	0.506	0.000	0.039	0.467	0.000		
ETHYLBENZENE	PPH	0.470	0.000	0.003	0.467	0.000		
FORMALDEHYDE	PPH	0.470	0.000	0.003	0.407	0.000		
HEXANE-N	PPH	0.799	0.001	0.331	0.467	0.000		
METHANOL	PPH	0.799	0.001	0.551	0.407	0.000		
		0.505	0.000	0.020	0.467	0.000		
TOLUENE	PPH	0.505	0.000	0.038	0.467	0.000		
XYLENE-M	PPH	0.483	0.000	0.016	0.467	0.000		
XYLENE-O	PPH							
XYLENE-P	PPH							
	PPH							
	PPH							
H2S	PPH	0.000	0.000	0.000	0.000	0.000		
VOC(HAP)-u	PPH							
GHG POLLUTANTS								
METHANE	PPH							
CO2	PPH	5.571	0.025	5.544		0.002		
N2O	PPH	5.571	0.025	0.011		0.002		
1120	PPH							
	PPH							
TOTAL	PPH	25.299	0.099	22.203	2.989	0.009		
EMISSIONS	UNITS	TOTAL	MSS 1	MSS 2	MSS 3	VENTING 1		
		TOTAL	MSS 1	MSS 2	MSS 3	VENTING I		
NOx	TPY							
CO	TPY							
SO2	TPY							
PM10	TPY	0.003			0.003			
PM2.5	TPY	0.003			0.003			
Pb	TPY							
VOC	TPY	0.170	0.011	0.008	0.143	0.007		
HAP POLLUTANTS								
BENZENE	TPY	0.022	0.000	0.000	0.022	0.000		
ETHYLBENZENE	TPY	0.022	0.000	0.000	0.022	0.000		
FORMALDEHYDE	TPY			~~~~				
HEXANE-N	TPY	0.023	0.000	0.000	0.022	0.000	1	+
METHANOL	TPY	0.023	0.000	0.000	0.022	0.000	+	+
TOLUENE	TPY	0.022	0.000	0.000	0.022	0.000	+	+
XYLENE-M	TPY	0.022	0.000	0.000	0.022		+	+
		0.022	0.000	0.000	0.022	0.000	_	+
XYLENE-O	TPY							
XYLENE-P	TPY							
	TPY							
	TPY							
H2S	TPY	0.000	0.000	0.000	0.000	0.000		
VOC(HAP)-u	TPY							
GHG POLLUTANTS	·							
	TPY							
METHANE		0.000	0.004	0.003	1	0.002	1	
	TPY	10.009	10.004					
CO2	TPY	0.009	0.004	0.003		0.002		
	TPY	0.009	0.004	0.003		0.002		
CO2	TPY TPY	0.009	0.004	0.003		0.002		
CO2	TPY	0.179	0.015	0.011	0.143	0.010		

COMPANY: Ineos USA Oil & Gas LLC SITE: Corner S Ranch Mcm B Pad PI-7-CERT Registration ACTION:

DATE: 3/11/2024

WORKSHEET: BLOWDOWNS / MSS

EXAMPLE CALCULATIONS: CALCULATE VOC EMISSIONS:

MSS 1 BLOWDOWN RATE SCF/HR 25.000 BLOWDOWN RATE MMSCF/YR 0.008 DURATION HRS/YR 300.000 VAPOR MOLE. WT. LBS/LB-MOLE 1.523 MOLAR VOLUME SCF/MOLE 385.462 VAPOR VOC CONTENT WT% 75.000% PRIMARY CONTROL DRE NONE %

BLOWDOWN RATE, SCF/HR X MOL. WT, LBS/LB-MOLE X VOC WT% MOLAR VOLUME, SCF/MOLE UN-CONTROLLED EMISSIONS PPH 0.074

PPH X OPERATION, HRS/YR 2,000 LBS/TON UN-CONTROLLED EMISSIONS TPY 0.011

 $\begin{array}{lll} MAX.\,PPH & X & (1-DRE) \\ MAX.\,TPY & X & (1-DRE) \end{array}$ CONTROLLED EMISSIONS PPH #VALUE! CONTROLLED EMISSIONS TPY #VALUE!
 COMPANY:
 Ineos USA Oil & Gas LLC

 SITE:
 Corner S Ranch Mcm B Pad

 ACTION:
 PI-7-CERT Registration

 DATE:
 3/11/2024

 WORKSHEET:
 FUGITIVES 1 - 3

SOURCE DESCRIPTION / OPERATING	PARAMETERS					
FIN	EPN	DESCRIPTION	SOURCE TYPE	TEMP	DURATION HRS/YR	
FUG	FUG	SITE FUGITIVE EMISSIONS; 106.352(1)	OIL & GAS	90.11	8,760.00	

SOURCE STACK PARAMETERS									
FIN	EDN	ZONE	UTM E	UTM N	FUG. LENGTH	FUG. WIDTH	FUG. HEIGHT		
TIN	EPN ZONE		UTWIE	UTWIN	FT	FT	FT		
FUG	FUG	14R	528,720	3,162,011	300.00	300.00	3.00		

EPN	SERVICE	LDAR PROGRAM	EPN	SERVICE	LDAR PROGRAM	EPN	SERVICE	LDAR PROGRAM
FUG	LIGHT-LIQUID COMPONENTS	NONE			NONE			NONE
COMPONENT	COUNT	EMISS. FACTOR	COMPONENT	COUNT	EMISS. FACTOR	COMPONENT	COUNT	EMISS. FACTOR
TYPE	COUNT	PPH/UNIT	TYPE	COUNT	PPH/UNIT	TYPE	COUNT	PPH/UNIT
CONNECTORS-LIGHT LIQUID	108	0.000463						
FLANGES-LIGHT LIQUID	72	0.000243						
PUMPS-LIGHT LIQUID	4	0.028660						
RELIEF VALVES-LIGHT LIQUID	4	0.016500						
VALVES-LIGHT LIQUID	72	0.005500						
EPN	EMISSIONS	EMISSIONS	EPN	EMISSIONS	EMISSIONS	EPN	EMISSIONS	EMISSIONS
EFIN	PPH	TPY	LFIN	PPH	TPY	EFIN	PPH	TPY
FUG	0.644	2.821						

EPN	SERVICE	LDAR PROGRAM	EPN	SERVICE	LDAR PROGRAM	EPN	SERVICE	LDAR PROGRAM
FUG	NATURAL GAS COMPONENTS	NONE		LIGHT-LIQUID COM	NONE		LIGHT-LIQUID CON	NONE
COMPONENT	COUNT	EMISS. FACTOR	COMPONENT	COUNT	EMISS. FACTOR	COMPONENT	COUNT	EMISS. FACTOR
TYPE	COCIVI	PPH/UNIT	TYPE	COONI	PPH/UNIT	TYPE	COONT	PPH/UNIT
CONNECTORS-GAS	108	0.000440						
FLANGES-GAS	72	0.000860						
RELIEF VALVES-GAS	12	0.019400						
VALVES -GAS	72	0.009920						
COMPRESSORS-GAS		0.019400						
EPN	EMISSIONS	EMISSIONS	EPN	EMISSIONS	EMISSIONS	EPN	EMISSIONS	EMISSIONS
EFIN	PPH	TPY	EFIN	PPH	TPY	EFIN	PPH	TPY
FUG	1.056	4.627						

EPN	SERVICE	LDAR PROGRAM	EPN	SERVICE	LDAR PROGRAM	EPN	SERVICE	LDAR PROGRAM
FUG		NONE			NONE			NONE
COMPONENT	COUNT	EMISS. FACTOR	COMPONENT	COUNT	EMISS. FACTOR	COMPONENT	COUNT	EMISS. FACTOR
TYPE	COUNT	PPH/UNIT	TYPE	COUNT	PPH/UNIT	TYPE	COUNT	PPH/UNIT
EPN		EMISSIONS	IFPN		EMISSIONS	EPN		EMISSIONS
	PPH	TPY	LITT	PPH	TPY	LI IV	PPH	TPY
FUG								

COMPANY: Ineos USA Oil & Gas LLC SITE: ACTION: DATE: WORKSHEET: Corner S Ranch Mcm B Pad PI-7-CERT Registration 3/11/2024 FUGITIVES 1

VAPOR PROPERTIES / EMISS	SIONS								
EPN	FUG								
SERVICE	LIGHT-LIQUID COMPON	ENTS		NATURAL GAS	COMPONENTS				
CRITERIA POLLUTANTS	WT%	EMISSIONS	EMISSIONS	WT%	EMISSIONS	EMISSIONS	WT%	EMISSIONS	EMISSIONS
		PPH	TPY		PPH	TPY		PPH	TPY
NOx									
CO									
SO2									
PM10									
PM2.5									
Pb									
VOC	99.9993%		0.644	99.9993%	1.056	4.627			
HAP POLLUTANTS	-								
BENZENE	0.0031%		0.000	0.0031%	0.000	0.000			
ETHYLBENZENE	0.0002%		0.000	0.0002%	0.000	0.000			
FORMALDEHYDE									
HEXANE-N	0.0266%		0.000	0.0266%	0.000	0.001			
METHANOL									
FOLUENE	0.0030%		0.000	0.0030%	0.000	0.000			
XYLENE-M	0.0012%		0.000	0.0012%	0.000	0.000			
XYLENE-O									
XYLENE-P									
H2S	0.0007%		0.000	0.0007%	0.000	0.000			
VOC(HAP)-u									
GHG POLLUTANTS									-
METHANE									
CO2									
N2O									
TOTALS	100.0000%		0.644	100.0000%	1.056	4.627			

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad PL-7-CERT Registration 3/11/2024 FUGITIVES 1 COMPANY: SITE: ACTION: DATE: WORKSHEET:

EPN	FUG	PPH	TPY
NOx			
CO			
SO2			
PM10			
PM2.5			
ъ			
VOC		1.056	5.271
HAP POLLUTANTS		-	•
BENZENE		0.000	0.000
ETHYLBENZENE		0.000	0.000
FORMALDEHYDE			
HEXANE-N		0.000	0.001
METHANOL			
FOLUENE		0.000	0.000
XYLENE-M		0.000	0.000
KYLENE-O			
XYLENE-P			
H2S		0.000	0.000
VOC(HAP)-u			
GHG POLLUTANTS			
METHANE			
202			
V2O			
		1.056	5.272
ΓOTAL		1.057	5.273

 COMPANY:
 Ineos USA Oil & Gas LLC

 SITE:
 Corner S Ranch Mcm B Pad

 ACTION:
 PI-7-CERT Registration

 DATE:
 3/11/2024

 WORKSHEET:
 DIESEL ENGINES 1

WORKSHEET.	DIESEL ENGINES I

SOURCE DESCRIPTION		
FIN	EPN	DESCRIPTION
ENG3	ENG3	GASOLINE FIRED PUMP ENGINE; 106.512; UN-MODIFIED
ENG4	ENG4	GASOLINE FIRED PUMP ENGINE; 106.512; UN-MODIFIED
ENG5	ENG5	GASOLINE FIRED PUMP ENGINE; 106.512; UN-MODIFIED
ENG6	ENG6	GASOLINE FIRED PUMP ENGINE; 106.512; UN-MODIFIED

SOURCE OPERATING PARAMETERS									
FIN	EPN	MAKE	MODEL	ENGINE TYPE	FUEL TYPE				
ENG3	ENG3	HONDA	GX160	4S-RB	GASOLINE				
ENG4	ENG4	HONDA	GX160	4S-RB	GASOLINE				
ENG5	ENG5	HONDA	GX160	4S-RB	GASOLINE				
ENG6	ENG6	HONDA	GX160	4S-RB	GASOLINE				
					· ·				
					· ·				

SOURCE OPERATING PARA	METERS								
FIN EPN	EDN	RATING	RUN-TIME	FUEL USE	FUEL HEAT	FUEL USE	FUEL USE	HEAT INPUT	HEAT INPUT
	BHP	HRS/YR	BTU/HP-HR	BTU/GAL	GAL/HR	GAL/YR	MMBTU/HR	MMBTU/YR	
ENG3	ENG3	4.800	8,760.0	7,000.000	132,000.000	0.255	2,229.818	0.034	294.336
ENG4	ENG4	4.800	8,760.0	7,000.000	132,000.000	0.255	2,229.818	0.034	294.336
ENG5	ENG5	4.800	8,760.0	7,000.000	132,000.000	0.255	2,229.818	0.034	294.336
ENG6	ENG6	4.800	8,760.0	7,000.000	132,000.000	0.255	2,229.818	0.034	294.336

SOURCE STACK PARAMETERS									
FIN EPN	EDN	ZONE	UTM E	UTM N	STACK DIA.	STACK HT.	EXH. TEMP	EXH. VEL.	
	EFIN	ZONE	UTWLE	UTWIN	FT.	FT.	DEG. F	FPS	
ENG3	ENG3	14R	528,720.0	3,162,010.6	0.083	2.000	1,200.000	3,080.361	
ENG4	ENG4	14R	528,720.0	3,162,010.6	0.083	2.000	1,200.000	3,080.361	
ENG5	ENG5	14R	528,720.0	3,162,010.6	0.083	2.000	1,200.000	2,373.398	
ENG6	ENG6	14R	528,720.0	3,162,010.6	0.083	2.000	1,200.000	2,373.398	

 COMPANY:
 Ineos USA Oil & Gas LLC

 SITE:
 Corner S Ranch Mcm B Pad

 ACTION:
 P1-7-CERT Registration

 DATE:
 3/11/2024

 WORKSHEET:
 DIESEL ENGINES 1

EMISSION FACTORS	UNITS	TOTAL	ENG3	ENG4	ENG5	ENG6		
NOx	G/HP-HR		6.615	6.615	6.615	6.615		
CO	G/HP-HR		267.435	267.435	267.435	267.435		
SO2	G/HP-HR		0.267	0.267	0.267	0.267		
PM10	G/HP-HR		0.318	0.318	0.318	0.318		
PM2.5	G/HP-HR							
Pb	G/HP-HR							
VOC	G/HP-HR		6.600	6.600	6.600	6.600		
HAP POLLUTANTS								
BENZENE	G/HP-HR		0.003	0.003	0.003	0.003		
ETHYLBENZENE	G/HP-HR							
FORMALDEHYDE	G/HP-HR		1.890	1.890	1.890	1.890		
HEXANE-N	G/HP-HR							
METHANOL	G/HP-HR							
TOLUENE	G/HP-HR		0.001	0.001	0.001	0.001		
XYLENE-M	G/HP-HR		0.001	0.001	0.001	0.001		
XYLENE-O	G/HP-HR							
XYLENE-P	G/HP-HR							
	G/HP-HR							
	G/HP-HR							
	G/HP-HR							
VOC(HAP)-u	G/HP-HR							
GHG POLLUTANTS	<u>.</u>	•		•	•		•	•
METHANE	G/HP-HR		0.000	0.000	0.000	0.000		
CO2	G/HP-HR		488.981	488.981	488.981	488.981		
N2O	G/HP-HR							
	G/HP-HR							
	G/HP-HR							

NOTES:

^{1.} AP-42 EMISSION FACTORS IN LBS/MMBTU CONVERTED TO GRAMS/HP-HR AS FOLLOWS (USING NOX AS AN EXAMPLE):
NOTE: THIS IS AN EXAMPLE CALCULATION; THE ACTUAL NOX E.F. USED MAY HAVE BEEN PROVIDED BY THE MANUFACTURER IN GRAMS/HP-HR,

	4S-RB	
%	0.00%	
LBS/MMBTU	1.630	PRE-CONTROL
LBS/MMBTU	1.630	POST-CONTROL
BTU/HP-HR	7,000.000	
GRAMS/LB	453.600	
	LBS/MMBTU LBS/MMBTU BTU/HP-HR	% 0.00% LBS/MMBTU 1.630 LBS/MMBTU 1.630 BTU/HP-HR 7,000.000

| LBS TO GRAMS CONVERSION | GRAMS/LB | 453.600 | AP-42 NOX E.F. | GRAMS/HP-HR | = | AP-42 E.F., LBS/MMBTU | X | ENGINE FUEL USE, BTU/HP-HR | X | 453.6 GRAMS/LB |

| 1,000,000 BTU/MMBTU | 1,000,000 BTU/MMBTU | 1,000,000 BTU/MMBTU | 1,000,000 BTU/MMBTU | 1,000,000 BTU/MMBTU | 1,000,000 BTU/MMBTU | 1,000,000 BTU/MMBTU | 1,000,000 BTU/MMBTU | 2,000,000 BTU/MBTU | 2,000,000 BTU/M

 COMPANY:
 Ineos USA Oil & Gas LLC

 SITE:
 Corner S Ranch Mcm B Pad

 ACTION:
 PI-7-CERT Registration

 DATE:
 3/11/2024

 WORKSHEET:
 DIESEL ENGINES 1

EMISSIONS TO ATMOSPHERE								
EMISSIONS EMISSIONS	UNITS	TOTAL	ENG3	ENG4	ENG5	ENG6		
NOx	PPH	0.280	0.070	0.070	0.070	0.070	 	
CO	PPH	11.320	2.830	2.830	2.830	2.830		
SO2	PPH	0.011	0.003	0.003	0.003	0.003		
PM10	PPH	0.011	0.003	0.003	0.003	0.003		
PM2.5	PPH	0.013	0.003	0.003	0.003	0.003		
Pb	PPH		-					
VOC	PPH	0.279	0.070	0.070	0.070	0.070		
HAP POLLUTANTS	rrn	0.279	10.070	0.070	0.070	0.070	l l	
	ppu	0.000	0.000	0.000	10,000	0.000		
BENZENE ETHYLBENZENE	PPH PPH	0.000	0.000	0.000	0.000	0.000		
FORMALDEHYDE	PPH PPH	0.080	0.020	0.020	0.020	0.020		
		0.080	0.020	0.020	0.020	0.020		
HEXANE-N	PPH							
METHANOL	PPH	0.000		0.000	0.000	0.000		
TOLUENE	PPH	0.000	0.000	0.000	0.000	0.000		
XYLENE-M	PPH	0.000	0.000	0.000	0.000	0.000		
XYLENE-O	PPH							
XYLENE-P	PPH							
	PPH							
	PPH							
	PPH							
VOC(HAP)-u	PPH							
GHG POLLUTANTS								
METHANE	PPH	0.000	0.000	0.000	0.000	0.000		
CO2	PPH	20.698	5.174	5.174	5.174	5.174		
N2O	PPH							
	PPH							
	PPH							
TOTALS	PPH	4,000.000	1,000.000	1,000.000	1,000.000	1,000.000		
EMISSIONS	UNITS	TOTAL	ENG3	ENG4	ENG5	ENG6		
EMISSIONS NOx	UNITS TPY	TOTAL 1.226	ENG3 0.307	ENG4 0.307	ENG5 0.307	ENG6 0.307		
EMISSIONS NOx CO	UNITS TPY TPY	TOTAL 1.226 49.582	ENG3 0.307 12.395	ENG4 0.307 12.395	ENG5 0.307 12.395	ENG6 0.307 12.395		
EMISSIONS NOx CO SO2	UNITS TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049	ENG3 0.307 12.395 0.012	ENG4 0.307 12.395 0.012	ENG5 0.307 12.395 0.012	ENG6 0.307 12.395 0.012		
EMISSIONS NOx CO SO2 PM10	UNITS TPY TPY TPY TPY TPY	TOTAL 1.226 49.582	ENG3 0.307 12.395	ENG4 0.307 12.395	ENG5 0.307 12.395	ENG6 0.307 12.395		
EMISSIONS NOX CO SO2 PM10 PM2.5	UNITS TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049	ENG3 0.307 12.395 0.012	ENG4 0.307 12.395 0.012	ENG5 0.307 12.395 0.012	ENG6 0.307 12.395 0.012		
EMISSIONS NOX CO SO2 PM10 PM2.5 Pb	UNITS TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049 0.059	ENG3 0.307 12.395 0.012 0.015	ENG4 0.307 12.395 0.012 0.015	ENG5 0.307 12.395 0.012 0.015	ENG6 0.307 12.395 0.012 0.015		
EMISSIONS NOx CO SO2 PM10 PM2.5 Pb VOC	UNITS TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049	ENG3 0.307 12.395 0.012	ENG4 0.307 12.395 0.012	ENG5 0.307 12.395 0.012	ENG6 0.307 12.395 0.012		
EMISSIONS NOX CO SO2 PM10 PM2.5 Pb VOC HAP POLLUTANTS	UNITS TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049 0.059	ENG3 0.307 12.395 0.012 0.015	ENG4 0.307 12.395 0.012 0.015	ENG5 0.307 12.395 0.012 0.015	ENG6 0.307 12.395 0.012 0.015		
EMISSIONS NOx CO SO2 PM10 PM2.5 Pb VOC HAP POLLUTANTS BENZENE	UNITS TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049 0.059	ENG3 0.307 12.395 0.012 0.015	ENG4 0.307 12.395 0.012 0.015	ENG5 0.307 12.395 0.012 0.015	ENG6 0.307 12.395 0.012 0.015		
EMISSIONS NOx CO SO2 PM10 PM2.5 Pb VOC HAP POLLUTANTS BENZENE ETHYLBENZENE	UNITS TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049 0.059 1.224	ENG3 0.307 12.395 0.012 0.015 0.306	ENG4 0.307 12.395 0.012 0.015 0.306	ENG5 0.307 12.395 0.012 0.015 0.306	ENG6 0.307 12.395 0.012 0.015 0.306		
EMISSIONS NOx CO SO2 PM10 PM2.5 Pb VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE	UNITS TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049 0.059	ENG3 0.307 12.395 0.012 0.015	ENG4 0.307 12.395 0.012 0.015	ENG5 0.307 12.395 0.012 0.015	ENG6 0.307 12.395 0.012 0.015		
EMISSIONS NOx CO SO2 PM10 PM2.5 Pb VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N	UNITS TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049 0.059 1.224	ENG3 0.307 12.395 0.012 0.015 0.306	ENG4 0.307 12.395 0.012 0.015 0.306	ENG5 0.307 12.395 0.012 0.015 0.306	ENG6 0.307 12.395 0.012 0.015 0.306		
EMISSIONS NOx CO SO2 PM10 PM2.5 Pb VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL	UNITS TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049 0.059 1.224 0.001	ENG3 0.307 12.395 0.012 0.015 0.306	ENG4 0.307 12.395 0.012 0.015 0.306	ENG5 0.307 12.395 0.012 0.015 0.306	ENG6 0.307 12.395 0.012 0.015 0.306		
EMISSIONS NOx CO SO2 PM10 PM2.5 Pb VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N	UNITS TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049 0.059 1.224	ENG3 0.307 12.395 0.012 0.015 0.306	ENG4 0.307 12.395 0.012 0.015 0.306	ENG5 0.307 12.395 0.012 0.015 0.306	ENG6 0.307 12.395 0.012 0.015 0.306		
EMISSIONS NOx CO SO2 PM10 PM2.5 Pb VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL	UNITS TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049 0.059 1.224 0.001	ENG3 0.307 12.395 0.012 0.015 0.306	ENG4 0.307 12.395 0.012 0.015 0.306	ENG5 0.307 12.395 0.012 0.015 0.306	ENG6 0.307 12.395 0.012 0.015 0.306		
EMISSIONS NOx CO SO2 PM10 PM2.5 Pb VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE	UNITS TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049 0.059 1.224 0.001 0.350	ENG3 0.307 12.395 0.012 0.015 0.306 0.000	ENG4 0.307 12.395 0.012 0.015 0.306 0.000	ENG5 0.307 12.395 0.012 0.015 0.306 0.000	ENG6 0.307 12.395 0.012 0.015 0.306 0.000 0.088		
EMISSIONS NOx CO SO2 PM10 PM2.5 Pb VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M	UNITS TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049 0.059 1.224 0.001 0.350	ENG3 0.307 12.395 0.012 0.015 0.306 0.000	ENG4 0.307 12.395 0.012 0.015 0.306 0.000	ENG5 0.307 12.395 0.012 0.015 0.306 0.000	ENG6 0.307 12.395 0.012 0.015 0.306 0.000 0.088		
EMISSIONS NOx CO SO2 PM10 PM2.5 Pb VOC HAP POLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-O	UNITS TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049 0.059 1.224 0.001 0.350	ENG3 0.307 12.395 0.012 0.015 0.306 0.000	ENG4 0.307 12.395 0.012 0.015 0.306 0.000	ENG5 0.307 12.395 0.012 0.015 0.306 0.000	ENG6 0.307 12.395 0.012 0.015 0.306 0.000 0.088		
EMISSIONS NOx CO SO2 PM10 PM2.5 Pb VOC HAP POLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-O	UNITS TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049 0.059 1.224 0.001 0.350	ENG3 0.307 12.395 0.012 0.015 0.306 0.000	ENG4 0.307 12.395 0.012 0.015 0.306 0.000	ENG5 0.307 12.395 0.012 0.015 0.306 0.000	ENG6 0.307 12.395 0.012 0.015 0.306 0.000 0.088		
EMISSIONS NOx CO SO2 PM10 PM2.5 Pb VOC HAP POLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-O	UNITS TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049 0.059 1.224 0.001 0.350	ENG3 0.307 12.395 0.012 0.015 0.306 0.000	ENG4 0.307 12.395 0.012 0.015 0.306 0.000	ENG5 0.307 12.395 0.012 0.015 0.306 0.000	ENG6 0.307 12.395 0.012 0.015 0.306 0.000 0.088		
EMISSIONS NOX CO SO2 PM10 PM2.5 Pb VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-O XYLENE-P	UNITS TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049 0.059 1.224 0.001 0.350	ENG3 0.307 12.395 0.012 0.015 0.306 0.000	ENG4 0.307 12.395 0.012 0.015 0.306 0.000	ENG5 0.307 12.395 0.012 0.015 0.306 0.000	ENG6 0.307 12.395 0.012 0.015 0.306 0.000 0.088		
EMISSIONS NOX CO SO2 PMI0 PM2.5 Pb VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-O XYLENE-P VOC(HAP)-u	UNITS TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049 0.059 1.224 0.001 0.350	ENG3 0.307 12.395 0.012 0.015 0.306 0.000	ENG4 0.307 12.395 0.012 0.015 0.306 0.000	ENG5 0.307 12.395 0.012 0.015 0.306 0.000	ENG6 0.307 12.395 0.012 0.015 0.306 0.000 0.088		
EMISSIONS NOx CO SO2 PM10 PM2.5 Pb VOC HAP POLLUTANTS BENZENE ETHYLBENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-M XYLENE-O XYLENE-P VOC(HAP)-u GHG POLLUTANTS	UNITS TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049 0.059 1.224 0.001 0.350 0.000	ENG3 0.307 12.395 0.012 0.015 0.306 0.000 0.088	ENG4 0.307 12.395 0.012 0.015 0.306 0.000 0.088	ENG5 0.307 12.395 0.012 0.015 0.306 0.000 0.088	ENG6 0.307 12.395 0.012 0.015 0.306 0.000 0.088		
EMISSIONS NOx CO SO2 PM10 PM2.5 Pb VOC HAP POLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-O XYLENE-P VOC(HAP)-u GHG POLLUTANTS METHANE METHANE	UNITS TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049 0.059 1.224 0.001 0.350 0.000 0.000	ENG3 0.307 12.395 0.012 0.015 0.306 0.000 0.088	ENG4 0.307 12.395 0.012 0.015 0.306 0.000 0.088	ENG5 0.307 12.395 0.012 0.015 0.306 0.000 0.088	ENG6 0.307 12.395 0.012 0.015 0.306 0.000 0.088		
EMISSIONS NOX CO SO2 PM10 PM2.5 Pb VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HATANOL TOLUENE XYLENE-M XYLENE-D XYLENE-D VOC(HAP)-u GHG POLLUTANTS	UNITS TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049 0.059 1.224 0.001 0.350 0.000	ENG3 0.307 12.395 0.012 0.015 0.306 0.000 0.088	ENG4 0.307 12.395 0.012 0.015 0.306 0.000 0.088	ENG5 0.307 12.395 0.012 0.015 0.306 0.000 0.088	ENG6 0.307 12.395 0.012 0.015 0.306 0.000 0.088		
EMISSIONS NOx CO SO2 PM10 PM2.5 Pb VOC HAP POLLUTANTS BENZENE ETHYLBENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-M XYLENE-O XYLENE-P VOC(HAP)-u GHG POLLUTANTS	UNITS	TOTAL 1.226 49.582 0.049 0.059 1.224 0.001 0.350 0.000 0.000	ENG3 0.307 12.395 0.012 0.015 0.306 0.000 0.088	ENG4 0.307 12.395 0.012 0.015 0.306 0.000 0.088	ENG5 0.307 12.395 0.012 0.015 0.306 0.000 0.088	ENG6 0.307 12.395 0.012 0.015 0.306 0.000 0.088		
EMISSIONS NOx CO SO2 PM10 PM2.5 Pb VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-D XYLENE-P VOC(HAP)-u GHG POLLUTANTS METHANE CO2	UNITS TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL 1.226 49.582 0.049 0.059 1.224 0.001 0.350 0.000 0.000	ENG3 0.307 12.395 0.012 0.015 0.306 0.000 0.088	ENG4 0.307 12.395 0.012 0.015 0.306 0.000 0.088	ENG5 0.307 12.395 0.012 0.015 0.306 0.000 0.088	ENG6 0.307 12.395 0.012 0.015 0.306 0.000 0.088		
EMISSIONS NOx CO SO2 PM10 PM2.5 Pb VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-D XYLENE-P VOC(HAP)-u GHG POLLUTANTS METHANE CO2	UNITS	TOTAL 1.226 49.582 0.049 0.059 1.224 0.001 0.350 0.000 0.000	ENG3 0.307 12.395 0.012 0.015 0.306 0.000 0.088	ENG4 0.307 12.395 0.012 0.015 0.306 0.000 0.088	ENG5 0.307 12.395 0.012 0.015 0.306 0.000 0.088	ENG6 0.307 12.395 0.012 0.015 0.306 0.000 0.088		

COMPANY: Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad PI-7-CERT Registration SITE: ACTION: 3/11/2024 DIESEL ENGINES 1 DATE: WORKSHEET:

EXAMPLE CALCULATIONS: CALCULATE NOX EMISSIONS:

HP RATING BHP FUEL USE BTU/HP-HR

4.800 7,000.000 FUEL HEAT CONTENT BTU/SCF 132,000.000 RUN TIME HRS/YR 8,760.000 LBS TO GRAMS CONVERSION GRAMS/LB 453.600 NOX E.F. GRAMS/HP-HR 6.615

ENGINE RATING, HP X NOX E.F., GRAMS/HP-HR 453.6 GRAMS/LB NOX EMISSIONS= PPH

ENG3

NOX EMISSIONS= PPH 0.070

NOX EMISSIONS= TPY NOX EMISSIONS, PPH X RUN TIME, HRS/YR

2,000 LBS/TON

NOX EMISSIONS= TPY 0.307

COMPANY: SITE: ACTION: DATE: WORKSHEET:	Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad PI-7-CERT Registration 3/11/2024 COMBUSTION CONTROL 1 - 6										
SOURCE DESCRIPTION											
FIN	EPN	DESCRIPTION									
FLARE1	FLARE1										
OURCE OPERATING PA	RAMETERS										
						ASSIST FUEL	PILOT FUEL	WASTE GAS	TOTAL		
FIN	EPN	TYPE	DRE C1 - C3	DRE C4+	DRE H2S	HEAT INPUT MMBTU/HR	HEAT INPUT MMBTU/HR	HEAT INPUT MMBTU/HR	HEAT INPUT MMBTU/HR		
TIN FLARE1	EPN FLARE1	TYPE COMBUSTOR	DRE C1 - C3	DRE C4+	DRE H2S						
			DRE C1 - C3	DRE C4+	DRE H2S						
			DRE C1 - C3	DRE C4+	DRE H2S						
			DRE C1 - C3	DRE C4+	DRE H2S						
			DRE C1 - C3	DRE C4+	DRE H2S						

SOURCE OPERATING PARAMETERS						
FIN	EPN	HDS/VD	HEAT CONTENT	COMBINED HEAT CONTENT BTU/SCF		
FLARE1	FLARE1					

SOURCE STACK PARAMETERS										
FIN	EPN	ZONE	UTM E	UTM N	STACK DIA. FT.			VELOCITY FPS		
FLARE1	FLARE1									
			1	1	1					

EMISSION FACTORS	UNITS	FLARE1		
NOx	LBS/MMBTU	0.064		
CO	LBS/MMBTU	0.550		
SO2	LBS/MMBTU			
PM10	LBS/MMBTU			
PM2.5	LBS/MMBTU			

NOTES:

AP-42 EMISSION FACTORS ADJUSTED FOR FUEL/VAPOR HEAT CONTENT.

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad Pl-7-CERT Registration 3/11/2024 COMBUSTION CONTROL 1 - 6 COMPANY: SITE: ACTION: DATE: WORKSHEET:

COMBINED ASSIST/FUEL/WASTE GAS INPUT							
VAPOR INPUT	UNITS	TOTAL	FLARE1				
NOx	PPH						
CO	PPH						
SO2	PPH						
PM10	PPH						
PM2.5	PPH						
H2S	PPH						
VOC	PPH						
HAP POLLUTANTS	•	•	•	•	*	•	
BENZENE	PPH						
ETHYLBENZENE	PPH						
FORMALDEHYDE	PPH						
HEXANE-N	PPH						
METHANOL	PPH						
TOLUENE	PPH						
XYLENE-M	PPH						
XYLENE-O	PPH						
XYLENE-P	PPH						
	PPH						
	PPH						
H2S	PPH						
VOC(HAP)-u	PPH						
GHG POLLUTANTS							
METHANE	PPH						
CO2	PPH						
N2O	PPH						
	PPH						
	PPH						
TOTALS	PPH						

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad Pl-7-CERT Registration 3/11/2024 COMBUSTION CONTROL 1 - 6 COMPANY: SITE: ACTION: DATE: WORKSHEET:

EMISSIONS TO ATMOSPHERE	UNITS	TOTAL	FLARE1					
NOx	PPH			ļ				
CO	PPH							
SO2	PPH							
PM10	PPH							
PM2.5	PPH							
H2S	PPH							
VOC	PPH							
HAP POLLUTANTS								
BENZENE	PPH							
ETHYLBENZENE	PPH							
FORMALDEHYDE	PPH			Î				
HEXANE-N	PPH							
METHANOL	PPH							
TOLUENE	PPH							
XYLENE-M	PPH							
XYLENE-O	PPH		+	1				
XYLENE-P	PPH		+	+				
ATEME I	PPH		+					
	PPH		+	1		 		1
	PPH	+	+	+	-			
VOC(HAD)	PPH PPH	+	+					
VOC(HAP)-u GHG POLLUTANTS	rrn		_1	1	1	l	I	l
	PDIT	1			1	ı	ı	ı
METHANE	PPH							
CO2	PPH							
N2O	PPH			ļ				
	PPH							
	PPH							
TOTALS	PPH							
EMISSIONS TO ATMOSPHERE	UNITS	TOTAL	FLARE1					
NOx	TPY							
CO	TPY							
SO2	TPY							
PM10	TPY							
PM2.5	TPY							
H2S	TPY							
VOC	TPY							
VOC	TPY							
VOC HAP POLLUTANTS								
VOC HAP POLLUTANTS BENZENE ETHYLBENZENE	TPY TPY TPY							
VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE	TPY TPY TPY TPY							
VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N	TPY TPY TPY TPY TPY TPY							
VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL	TPY TPY TPY TPY TPY TPY TPY							
VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE	TPY TPY TPY TPY TPY TPY TPY TPY							
VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY							
VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-O	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY							
VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY							
VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-O	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY							
VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-O	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY							
VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-D XYLENE-P	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY							
VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-D XYLENE-P	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY							
VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-O XYLENE-P VOC(HAP)-u GHG POLLUTANTS	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY							
VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-O XYLENE-P VOC(HAP)-u GHG POLLUTANTS METHANE	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY							
VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-M XYLENE-P VOC(HAP)-u GHG POLLUTANTS METHANE CO2	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY							
VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-O XYLENE-P VOC(HAP)-u GHG POLLUTANTS METHANE	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY							
VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-O XYLENE-P VOC(HAP)-u GHG POLLUTANTS METHANE CO2	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY							
VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-M XYLENE-P VOC(HAP)-u GHG POLLUTANTS METHANE CO2	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY							

COMPANY: Ineos USA Oil & Gas LLC SITE: Corner S Ranch Mcm B Pad ACTION: PI-7-CERT Registration

DATE: 3/11/2024

COMBUSTION CONTROL 1 - 6 WORKSHEET:

EXAMPLE CALCULATIONS:

AS AN EXAMPLE, CALCULATE THE NOX EMISSIONS FROM THE COMBUSTION OF THE COMBINED GAS STREAM.

USE THE AP-42 NOX EMISSION FACTOR FOR NATURAL GAS COMBUSTION

FLARE1 0.064

NOX EMISSION FACTOR

LBS/MMBTU

HEAT INPUT

MMBTU/HR

OPERATION

HRS/YR

NOX EMISSIONS

PPH

NOX E.F., LBS/MMBTU X HEAT INPUT, MMBTU/HR

NOX EMISSIONS

PPH

NOX EMISSIONS

TPY

NOX EMISSIONS, PPH X OPERATION, HRS/YR 2,000 LBS/TON

NOX EMISSIONS

TPY

AS AN EXAMPLE, CALCULATE BENZENE EMISSIONS FROM THE COMBUSTION OF THE COMBINED GAS STREAM:

BENZENE INPUT

FLARE1

CONTROL DRE

PPH

%

BENZENE EMISSIONS

PPH

BENZENE INPUT, PPH X (1 - DRE,%)

BENZENE EMISSIONS

PPH

BENZENE EMISSIONS

TPY

BENZENE EMISSIONS, PPH X OPERATION, HRS/YR 2,000 LBS/TON

BENZENE EMISSIONS

TPY

2.5 NAAQS Review

NAAQS modeling not required

2.6 Regulatory Analysis

The Corner S Ranch Mcm B Pad facility as presented in this documentation meets the TCEQ requirements for each PBR referenced in **Section 2.1.** Checklists have been provided in **Section 2.9**.

• The site will comply with all rules and regulations of the TCEQ and with the intent of the Texas Clean Air Act (TCAA), including protection of public health and property. All emissions control equipment will be maintained in good condition and properly operated during plant operation; and,

The following state/federal regulations are applicable:

Regulation	Description	Applicable	Reason
		TITLE V APPLICABI	
30 TAC 122	Title V Site	NO	Not applicable. Emissions below Title V major
			source status.
	AP	PLICABLE NSPS (40	CFR 60)
NSPS 60.18	Flares	NO	Not applicable. No on-site flares.
NSPS GG	Turbines	NO	Not applicable. No on-site turbines.
NSPS JJJJ	Engines	YES	Applicable. Engines will comply with MACT ZZZZ.
NSPS KKKK	Turbines	NO	Not applicable. No on-site turbines.
NSPS OOOOa	Tanks	YES	Applicable. VOC <6.0 tpy; comply with
			record-keeping.
	APF	PLICABLE MACT (40) CFR 63)
MACT HH	TEG Unit	NO	Not applicable. No on-site TEG units
MACT ZZZZ	Engines	YES	Applicable. Engines will comply with MACT ZZZZ.

2.7 Analytical Data

Representative analytical sampling was used to evaluate emissions in this document. Analytical samples were taken from the same area and geological formation as this facility.

LAB ANALYSES

Certificate of Analysis Number: 1030-23070954-002A **Houston Laboratories** 8820 Interchange Drive Houston, TX 77054 Phone 713-660-0901

Eric Knape INEOS USA Oil & Gas LLC 1164 FM 2361

Sampled By: Sample Of:

Sample Date: 07/27/2023 11:00 Sample Conditions: 134 psig, @ 94.1 °F Method: GPA 2286

Aug. 03, 2023

Carrizo Springs, TX 78834 Station Name: Snowmass HC1 DIM A 2H

Sample Point: Gas Meter Cylinder No: 4030-003659

Analyzed: 07/31/2023 20:47:08 by EKK

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.696 psia			
Nitrogen	0.178	0.225		GPM TOTAL C2+	6.854	
Methane	74.756	54.155		GPM TOTAL C3+	3.235	
Carbon Dioxide	0.864	1.717		GPM TOTAL iC5+	0.588	
Ethane	13.513	18.348	3.619			
Propane	6.393	12.730	1.764			
Iso-Butane	0.843	2.213	0.276			
n-Butane	1.923	5.047	0.607			
Iso-Pentane	0.424	1.381	0.155			
n-Pentane	0.458	1.492	0.166			
Hexanes	0.337	1.325	0.139			
Heptanes Plus	0.311	1.367	0.128			
	100.000	100.000	6.854			

Calculated Physical Properties	Total	C7+
Relative Density Real Gas	0.7673	3.4074
Calculated Molecular Weight	22.15	98.69
Compressibility Factor	0.9960	
GPA 2172 Calculation:		
Calculated Cross BTII nov 63 @ 14 6	06 mais 9 60°E	

Calculated Gross BTU per ft³ @ 14.696 psia & 60°F Real Gas Dry BTU 1318

5254 Water Sat. Gas Base BTU 1295 5162

Comments: Hydrogen Sulfide Field Analysis by Stain Tube = 12 ppm(v).

Data reviewed by: Patrick Weber, Analyst

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality **Quality Assurance:**

assurance, unless otherwise stated.

Powered By SURECHEM

Page 5 of 8

LAB ANALYSES (CONTINUED)

Certificate of Analysis

Number: 1030-23070954-002A

Houston Laboratories 8820 Interchange Drive Houston, TX 77054 Phone 713-660-0901

Eric Knape INEOS USA Oil & Gas LLC 1164 FM 2361 Carrizo Springs, TX 78834

Station Name: Snowmass HC1 DIM A 2H

Sample Point: Gas Meter Cylinder No: 4030-003659

07/31/2023 20:47:08 by EKK Analyzed:

Sampled By: Sample Of:

Spot Sample Date: 07/27/2023 11:00 Sample Conditions: 134 psig, @ 94.1 °F Method: GPA 2286

Aug. 03, 2023

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.696 psia			
Nitrogen	0.178	0.225		GPM TOTAL C2+	6.854	
Methane	74.756	54.155				
Carbon Dioxide	0.864	1.717				
Ethane	13.513	18.348	3.619			
Propane	6.393	12.730	1.764			
Iso-Butane	0.843	2.213	0.276			
n-Butane	1.923	5.047	0.607			
Iso-Pentane	0.424	1.381	0.155			
n-Pentane	0.458	1.492	0.166			
i-Hexanes	0.206	0.795	0.084			
n-Hexane	0.131	0.530	0.055			
Benzene	0.017	0.060	0.005			
Cyclohexane	0.028	0.106	0.010			
i-Heptanes	0.115	0.480	0.047			
n-Heptane	0.035	0.158	0.016			
Toluene	0.014	0.059	0.005			
i-Octanes	0.062	0.287	0.027			
n-Octane	0.008	0.043	0.004			
Ethylbenzene	0.001	0.007	NIL			
Xylenes	0.005	0.030	0.002			
i-Nonanes	0.014	0.067	0.006			
n-Nonane	0.002	0.014	0.001			
i-Decanes	0.007	0.036	0.003			
n-Decane	0.001	0.004	NIL			
Undecanes	0.002	0.016	0.002			
Dodecanes	NIL	NIL	NIL			
Tridecanes	NIL	NIL	NIL			
Tetradecanes Plus	NIL	NIL	NIL			
	100.000	100.000	6.854			

2.8 Maps

21 WATERWAY AVENUE

THE WOODLANDS, TX 77380

TEL: 832-244-2486

WEBSITE: WWW.ENTECHSERVICE.COM

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad PI-7-CERT Registration

DATE: 3/11/2024

SITE LOCATION MAP

21 WATERWAY AVENUE SUITE 300

THE WOODLANDS, TX 77380

TEL: 832-244-2486

WEBSITE: WWW.ENTECHSERVICE.COM

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad

PI-7-CERT Registration

DATE: 3/11/2024

SITE PLOT PLAN

2.9 Checklists/Tables

Texas Commission on Environmental Quality Permit by Rule Applicability Checklist Title 30 Texas Administrative Code 106.4 Corner S Ranch Mcm B Pad

The following checklist was developed by the Texas Commission on Environmental Quality (TCEQ), **Air Permits Division**, to assist applicants in determining whether or not a facility meets all of the applicable requirements. Before claiming a specific Permit by Rule (PBR), a facility must first meet all of the requirements of **Title 30 Texas Administrative Code § 106.4** (30 TAC § 106.4), "Requirements for Permitting by Rule." Only then can the applicant proceed with addressing requirements of the specific Permit by Rule being claimed.

The use of this checklist is not mandatory; however, it is the responsibility of each applicant to show how a facility being claimed under a PBR meets the general requirements of 30 TAC § 106.4 and also the specific requirements of the PBR being claimed. If all PBR requirements cannot be met, a facility will not be allowed to operate under the PBR and an application for a construction permit may be required under 30 TAC § 116.110(a).

Registration of a facility under a PBR can be performed by completing **Form PI-7** (Registration for Permits by Rule) or **Form PI-7-CERT** (Certification and Registration for Permits by Rule). The appropriate checklist should accompany the registration form. Check the most appropriate answer and include any additional information in the spaces provided. If additional space is needed, please include an extra page and reference the question number. The PBR forms, tables, checklists, and guidance documents are available from the TCEQ, Air Permits Division Web site at: www.tceq.texas.gov/permitting/air/nav/air_pbr.html.

List	missions i	n TPY for	each facility (add additio	nal pages or t	able if neede	d.								
OTE 1		0.060	PM10=	0.192	VOC=	24.895	NOX=	2.944	CO=	51.024	HAI	P=	0.8	88	
OTE 2	SO2=		PM10=		VOC=	-	NOX=	-	CO=		– HAl	P=	_		
	SO2=		PM10=		VOC=	1	NOX=		CO=		– HAI	P=	_		
TOT	AL	0.060		0.192		24.895	<u> </u>	2.944		51.024	_		0.8	88	
OTE 1:	THIS 106.:	512 REGIS	TRATION		— NOT	E 2: OTHER	— R NON-REG	STERED 10	06.352 SO	URCES	_				
• Are t	he SO2 Pl	M10 VOC	, or other air o	contaminant	emissions cla	nimed for ea	ch facility in	this PRR sul	hmittal less	s than 25 tny	,	X	YES	Г	NO
									omitter res	s than 25 tpy	· 				
Are t	he NOx an	d CO emis	sions claimed	l for each fa	cility in this F	BR submitta	ıl less than 25	60 tpy?				X	YES		NO
	answer to	both is "Y	es," continue	to the quest	ion below. If	the answer to	either quest	ion is "No,"	a PBR ca	nnot					
			perty had pub								t		1		
_			loes not inclu- operating per	-	tice for volun	tary emission	n reduction p	ermits, gran	dfathered 6	existing			YES	X	NO
If "Y	es," skip to	Section 2.	. If "No," con	tinue to the	questions bel	ow.									
If the	site has h	ad no publi	c notice, plea	se answer th	e following;										
• Are t	he SO2, Pl	M10, VOC	, or other emi	ssions claim	ed for all fac	ilities in this	PBR submitt	al less than 2	25 tpy?			X	YES		NO
• Are t	he NOx an	d CO emis	sions claimed	l for all facil	ities in this P	BR submitta	l less than 25	0 tpy?				X	YES		NO
If the	answer to	both quest	tions is "Yes".	, continue to	Section 2.										4
If the	answer to	either que	stions is "No	", a PBR ca	nnot be claim	ned . A perm	it will be req	uired under	Chapter 1	16.					
. 30 T	AC 106.4(a)(2): Nor	nattainment o	check											
A mo 4			med under th					t county?					YES	X	NO
			ers, Fort Bend					er counties.					HGB	-	
If "Ye											-	Н	1		
If "Yo) - Collin, l	Dalla, Den	ton, Ellis, Joh	nson, Kaufn	nan, Parker, F	Rockwall, Ta	rrant and Wis	se counties.					DFW		

TCEQ - 10149 (APDG 4999v14, Revised 02/18) 106.4 Checklist for PBR General Requirements This form for use by facilities subject to air quality permits requirements and may be revised periodically.

• Does this project trigger a nonattainment review? To determine the answer, review the information below:		YES		NO			
 Is the project's potential to emit (PTE) for emissions of VOC or NOx increasing by 100 tpy or more? 		YES		NO			
PTE is the maximum capacity of a stationary source to emit any air pollutant under its worst-case physical and operational design unless limited by a permit, rule, or made federally enforceable by a certification.							
Is the site an existing major nonattainment site and are the emissions of VOC or NOx increasing by 40 tpy or more?		YES		NO			
If needed, attach contemporaneous netting calculations per nonattainment guidance.	<u> </u>		_	ı			
Additional information can be found at:							
www.tceq.state.tx.us/permitting/air/forms/newsourcereview/tables/nsr_table8.html							
www.tceq.state.tx.us/permitting/air/nav/air_docs_newsource.html If "Yes," to any of the above, the project is a major source or a major modification and a PBR may not be used. A Nonattainment I authorize this project. If "No," continue to Section 3.	Permit r	eview mi	ıst be	completed to			
3. 30 TAC 106.4(a)(3): Prevention of Significant Deterioration (PSD) check							
Does this project trigger a review under PSD? To determine the answer, review the information below:							
• Are emissions of any regulated criteria pollutant increasing by 100 tpy of any criteria pollutant at a named source?		YES	X	NO			
• Are emissions of any criteria pollutant increasing by 250 tpy of any criteria pollutant at an unnamed source?		YES	X	NO			
• Are emissions increasing above significance levels at an existing major site?		YES	X	NO			
PSD information can be found at:		_					
www.tceq.state.tx.us/permitting/air/forms/newsourcereview/tables/nsr_table9.html www.tceq.state.tx.us/permitting/air/nav/air_docs_newsource.html If "Yes," to any of the above, a PBR may not be used. A PSD Permit review must be completed to authorize this project. If "No," continue to Section 4.							
4. 30 TAC 106.4(a)(6): Federal Requirements		_					
• Will all facilities under this PBR meet applicable requirements of Title 40 Code of Federal Regulations (40 CFR) Part 60, New Source Performance Standards (NSPS)? If "Yes," which Subparts are applicable?:	X	YES		NO N/A			
NSPS: NSPS 60.18 NSPS GG X NSPS JJJJ NSPS KKKK X NSPS OOOOa REFER TO TEXT F	OR API	PLICABI	LITY	DESCRIPTION.			
Will all facilities under this PBR meet applicable requirements of 40 CFR Part 63, Hazardous Air Pollutants Maximum • Achievable Control Technology (MACT)? If "Yes," which Subparts are applicable?:	X	YES		NO N/A			
MACT: MACT HH X MACT ZZZZ REFER TO TEXT F	OR API	PLICABI	LITY	DESCRIPTION.			
Will all facilities under this PBR meet applicable requirements of 40 CFR Part 61, National Emissions Standards fokr Hazardous Air Pollutants (NESHAP)? If "Yes," which Subparts are applicable?:		YES		NO X N/A			
NESHAP:			_	<u> </u>			
If "Yes" to any of the above, please attach a discussion of how the facilities will meet any applicable standards.							
5. 30 TAC 106.4(a)(7): PBR prohibition check							
• Are there any permits at the site containing conditions which prohibit or restric the use of PBRs?		YES	X	NO			
If "Yes", PBRs may not be used or their use must meet th restrictions of the permit. A new permit or permit amendment may be requ	ired.			-			
List permit number(s):							

TCEQ - 10149 (APDG 4999v14, Revised 02/18) 106.4 Checklist for PBR General Requirements This form for use by facilities subject to air quality permits requirements and may be revised periodically.

Page 2 of 3

6.	30 TAC 106.4(a)(8): NOX Cap and Trade				
	• Is the facility located in Harris, Brazoria, Chambers, Fort Bend, Galveston, Liberty, Montgomery, or Waller County?		YES	X	NO
	If "Yes," answer the question below. If "No," continue to Section 7.				
	• Will the proposed facility or group of facilities obtain required allowances for NOx if they are subject to 30 TAC Chapter 101, Subchapter H, Division 3 (relating to the Mass Emissions Cap and Trade Program)?		YES		NO
7.	Highly Reactive Volatile Organic Compounds (HRVOC) check				2
	• Is the facility located in Harris County? If "Yes," answer the next question. If "No," skip to the box below.		YES	X	NO
	• Will the project be constructed after June 1, 2006? If "Yes," answer the next question. If "No," skip to the box below.		YES		NO
	• Will one or more of the following HRVOC be emitted as a part of thhis project?		YES		NO
If	"Yes," complete the information below:			-	
		lbs	/hr		tpy
	- 1,3 -butadiene				
١.	all isomers kof butene (eg. Isobutene [2-methylpropene or isobutylene])				
	alpha-butylene (ehtylethylene)				
	beta-butylene (dimethylene, including both cis- and trans-isomers)				
	- ethylene				
	- propylene				
	• Is the facility located in Brazoria, Chambers, Fort Bend, Galveston, Liberty, Montgomery, or Waller County? If "Yes," answer the next question. If "No," the checklist is complete.		YES	X	NO
	Will the project be constructed after June 1, 2006? If "Yes," answer the next question. If "No," the checklist is complete.		YES		NO
	• Will one or more of the following HRVOC be emitted as a part of this project?		YES		NO
	If "Yes", complete the information below:				_
		lbs	/hr		tpy
	- ethylene				
	- propylene				

Oil and Gas Handling and Production Facilities Title 30 Texas Administrative Code 106.352(l) www.TexasOilandGasHelp.org

Check the most appropriate answer and include any technical information in the spaces provided. If additional space is needed, please include an extra page that references this checklist. The forms, checklists, and guidance documents are available from the Texas Commission on Environmental Quality (TCEQ), Air Permits Division Web site at: www.tceq.texas.gov/permitting/air/permitbyrule/subchapter-o/oil_and_gas.html.

If you have any questions, or need additional assistance, please contact the Air Permits Division at (512) 239-1250.

The facility can register by submitting this application and any supporting documentation. Below is a checklist to ensure you have provided all appropriate documentation. For sites that require registration or if the company chooses to register the site with the TCEQ, a Core Data Form (TCEQ - 10400) is required with this checklist.

This c	hecklist is for use by the operator to ensure a complete application.					
Have y	ou included each of the following items in the application?					
X	Process description					
X	Plot plan or area map.					
X	TCEQ Oil and Gas Emission Calculation Spreadsheet (or equivalent).					
X	Detailed summary of maximum emissions estimates with supporting reports from any emission estimation computer p	rogram	1.			
X	Gas and Liquid analyses. If a site-specific a representative site was used.					
X	Technical documents (manufacturer's specification sheet, operational design sheets)					
X	State and Federal applicability					
X	Core Data Form (for new sites that have never been registered with TCEQ).					
Gener	al Information and Questions/Descriptions					
COI	the project located in one of the Barnett Shale counties and did the start of astruction or modification begins on or after April 1, 2011?		Yes	X	No	
Но	Note: Counties included in the Barnett Shale area: Cooke, Dallas, Denton, Ellis, Erath, Hill, Hood, Jack, Johnson, Montague, Palo Pinto, Parker, Somervell, Tarrant, and Wise counties.					
-	For what is considered start of construction see: www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/factsheet-const.pdf					
rec ar	"Yes," do not complete this checklist. The project is subject to the quirements of §106.352(a)-(k). Additional information for Barnett Shale ea projects can be found: ww.tceq.texas.gov/permitting/air/permitbyrule/subchaptero/oil_and_gas.html.					

TCEQ 10128 (Revised 02/13) 106.352(l) Registration Checklist This form for use by facilities subject to air quality permits requirements and may be revised periodically. (APDG 5026v8)

Oil and Gas Handling and Production Facilities

Title 30 Texas Administrative Code 106.352(l)

www. Texas Oil and Gas Help.org

G	eneral Information and Questions/Descriptions (continued)		
2.	Are the total site-wide emissions from all facilities claimed under §106.352 less than 25 tpy VOC, 250 tpy NOX , 250 tpy CO, 25 tpy SO2 , 25 tpy PM, 15 tpy PM10 , 10 tpy PM2.5 , and 25 tpy of any other air contaminant?	X Yes	s No
3.	Are there flares, engines, or turbines at the site?	X Yes	s No
	If "Yes," attach supporting documentation to demonstrate compliance with the requirements.		
	Additional information and checklists can be found at: \$106.492 Flares: www.tceq.texas.gov/permitting/air/permitbyrule/subchapter-v/flares.html \$106.512 Stationary Engines and turbines: www.tceq.texas.gov/permitting/air/permitbyrule/subchapterw/stationary_eng_turb.html		
4.	Does any facility at the site handle a stream with more than 24 ppm hydrogen sulfide (H ₂ S)? If "Yes," proceed to question (4)(a) and (4)(b) and then proceed to questions 5 and 6. If "No," skip questions 5 through 6.	Yes	s X No
4a	. What is the actual H2S content of the stream?	18.000	ppm
4t	. Indicate the actual distance from the nearest emissions point to the nearest offsite receptor:	>3,000	ft.
	ote: An offsite receptor includes any recreational area, residence, or other structure not occupied or used solely by the facility handling sour gas must be located at least 1/4 mile from the nearest offsite receptor.	e owner or operator	r of the facility.
5.	Indicate the total actual emission rate of sulfur compounds, excluding sulfur oxides, from all vents		lb/hr
6.	Does the height of all vents at the site emitting sulfur compounds meet the minimum required height based on the emission rate in 106.352(1)(4)?	H2S	feet
N	ote: Truck loading and fugitive sources are not considered vents.		

Recordkeeping: To demonstrate compliance with the requirements of the PBR, sufficient records must be maintained at all times. The records must be made available immediately upon request to the commission or any air pollution control program having jurisdiction. If you have any questions about the recordkeeping requirements, contact the Air Permits Division or the Air Program in the TCEQ Regional Office for the region in which the site is located.

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad RN NO.: RN106501851 03/11/2024

DATE:

Check the most appropriate answer and include any additional information in the spaces provided. If additional space is needed, please include an extra page and reference the question number. The PBR forms, tables, checklists, and guidance documents are available from the TCEQ, Air Permits Division Web site at: $\underline{www.tceq.state.tx.us/permitting/air/nav/air_pbr.html}.$

This PBR (§ 106.512) requires registration with the commission's Office of Permitting, Remediation, and Registration in Austin before construction if the horsepower (hp) of the facility is greater than 240 hp. Registration of the facility can be performed by completing a Form PI-7, "Registration for Permits by Rule," or Form PI-7-CERT, "Certification and Registration for Permits by Rule." This checklist should accompany the registration form.

Definitions:

The following words and terms, when used in this section, shall have the following meanings, unless the context clearly indicates otherwise.

- A. Rich-burn Engine: A rich-burn engine is a gas-fired, spark-ignited engine that is operated with an exhaust oxygen content less than four percent by volume.
- B. Lean-burn Engine: A lean-burn engine is a gas-fired, spark-ignited engine that is operated with an exhaust oxygen content of four percent by volume, or greater.
- C. Rated Engine Horsepower: Engine rated horsepower shall be based on the engine manufacturer's maximum continuous load rating at the lesser of the engine or driven equipment's maximum published continuous speed.
- D. Turbine Horsepower: Turbine rated horsepower shall be based on turbine base load, fuel power heating value, and International Standards Organization Standard Day Conditions of 59 degrees Fahrenheit, 1.0 atmosphere pressure, and 60 percent relative humidity.

	CHECK THE MOST APPROPRIATE ANSWERS AND	FILL IN THE BLANKS	
Rule	Questions/Descriptions	Information	Response
	Will the engine or turbine be used as a replacement at an oil and gas site and does it meet all the requirements of the policy memo entitled, "Replacement of All Engine and Turbine Components for Oil and Gas Production?" If "YES," registration is not required for like-kind replacements of engine or turbine components. If "NO," please continue.	EPN ENG3 ENG4 ENG5 ENG6	YES NO X X X X X X X X X X X X X X X X X X
(1)	Is the engine or turbine rated less than 240 hp? If "YES," then registration is not required, but the facility must comply with conditions (5) and (6) of this rule. If "NO," then registration is required and the facility must be registered by submitting a completed Form P1-7 and Table 29 or Table 31, as applicable, within 10 days after construction begins.	EPN ENG3 ENG4 ENG5 ENG6	YES NO X X X X
(1)	Indicate the type of equipment (pick one): If an engine, go to Question (2). If a turbine, go to Question (3).	EPN ENGINE TURBINE ENG3 ENG4 ENG5 ENG6	YES NO

TCEQ 10146 (Revised 05/07) PBR Checklist 106.512 - Stationary Engines and Turbines This form is used by sources subject to air quality permit standards and may be revised periodically. (APDG 5042 v6).

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad RN NO.: RN106501851 DATE: 03/11/2024

	Title 30 Texas Administrative Code § 106.512 CHECK THE MOST APPROPRIATE ANSWERS AND FILL IN THE BLANKS								
Rule	Questions/Descriptions	Information	Response						
	Is the engine rated at 500 hp or greater?	EPN ENG3 ENG4	YES X NO YES X NO						
(2)	If "NO," the engine is between 240 hp and 500 hp. The engine must be registered by submitting a completed Form PI-7 and a Table 29 within 10 days after construction begins and must comply with conditions (5) and (6) of this rule.	ENG5 ENG6	YES X NO YES X NO YES NO						
	If "YES," in addition to registration, the engine must operate in compliance with the following nitrogen (NOx) emission limit(s). Check the limit(s) applicable to this engine by answering the following:		YES NO						
(2)(A)(i)	The engine is a gas-fired, rich-burn engine and will not exceed 2.0 grams per horsepower hour (g/hp-hr) under all operating conditions.	EPN NO _X G/HP-HR ENG3 ENG4 ENG5 ENG6	YES						
(2)(A)(ii)	The engine is a spark-ignited, gas-fired, lean-burn engine or any compression-ignited, dual fuel-fired engine manufactured new after June 18, 1992, and will not exceed 2.0 g/hp-hr NOx at manufacturer's rated full load and speed at all times; except, the engine will not exceed 5.0 g/hp-hr NOx under reduced speed and 80% and 100% of full torque conditions.	ENG5	YES						
(2)(A)(iii)	The engine is any spark-ignited, lean-burn two-cycle or four-cycle engine or any compression-ignited, dual fuel-fired engine rated 825 hp or greater and manufactured between September 23, 1982 and June 18, 1992, and will not exceed 5.0 g/hp-hr NOx under all operating conditions.	EPN NO _X G/HP-HR ENG3 ENG4 ENG5 ENG6	YES						
(2)(A)(iv)	The engine is any spark-ignited, gas-fired, lean-burn, four-cycle engine or compression-ignited, dual-fuel-fired engine that was manufactured before June 18, 1992, and is rated less than 825 hp, or was manufactured before September 23, 1982, and will not exceed 5.0 g/hp-hr NOx at manufacturer's rated full load and speed at all times; except, the engine will not exceed 8.0 g/hp-hr NOx under reduced speed and 80% and 100% of full torque conditions.	EPN NO _X G/HP-HR ENG3 ENG4 ENG5 ENG6	YES						
(2)(A)(v)	The engine is any spark-ignited, gas-fired, two-cycle, lean-burn engine that was manufactured before June 18, 1992, and is rated less than 825 hp, or was manufactured before September 23, 1982, and will not exceed 8.0 g/hp-hr NOx under all operating conditions.	EPN NO _X G/HP-HR ENG3 ENG4 ENG5 ENG6	YES X NO YES X NO YES X NO YES X NO YES X NO YES NO YES NO						
(2)(A)(vi)	The engine is any compression-ignited, liquid-fired engine and will not exceed 11.0 g/hp-hr NOx under all operating conditions.	EPN NO _X G/HP-HR ENG3 ENG4 ENG5 ENG6	YES X NO YES X NO YES X NO YES X NO YES X NO YES NO YES NO						
(2)(B)	Does the engine require an automatic air-fuel ratio controller to meet the NOx limit(s) above?	EPN ENG3 ENG4 ENG5 ENG6	YES X NO YES X NO YES X NO YES X NO YES X NO YES NO YES NO YES NO						
(2)(B)	For spark-ignited gas-fired or compression-ignited dual fuel-fired engines, is the engine required to have an automatic air-fuel ratio controller under condition (2)(B) of the PBR?	EPN ENG3 ENG4 ENG5 ENG6	YES X NO YES X NO YES X NO YES X NO YES NO YES NO YES NO						

Ineos USA Oil & Gas LLC
Corner S Ranch Mcm B Pad
RN NO.: RN106501851
DATE: 03/11/2024

Title 30 Texas Administrative Code § 106.512 CHECK THE MOST APPROPRIATE ANSWERS AND FILL IN THE BLANKS							
Rule	Questions/Descriptions	Information	Response				
(2)(C)	Are you aware of and accept responsibility for the record and testing requirements as specified in (2)(C) of the PBR?		X YES NO				
(3)	Is the turbine rated 500 hp or more? If "NO," the turbine is between 240 hp and 500 hp. The engine only needs to be registered by submitting a completed Form P1-7 and a Table 31 within 10 days after construction begins. If "YES," in addition to registration, the turbine must operate in compliance with the following emission limit(s).	EPN	YES NO YES NO YES NO YES NO YES NO YES NO YES NO				
(3)(A)	Will the emissions of NOx exceed 3.0 g/hp-hr for gas-firing?	EPN	YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO				
(3)(B)	Will the turbine meet all applicable NOx and sulfur dioxide (or fuel sulfur) emission limitations, monitoring requirements, and reporting requirements of 40 CFR Part 60, NSPS Subpart GG?	EPN	YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO				
(4)	Is the engine or turbine rated less than 500 hp or used for temporary replacement purposes? If "NO," go to Question (5). If "YES," the equipment does not have to meet the emission limits of (2) and (3). However, the temporary replacement equipment can only remain in service for a maximum of 90 days.	EPN ENG3 ENG4 ENG5 ENG6	X				
(5)	What type of fuel will be used and will the fuel meet the requirements of the PBR? Indicate the fuel(s) used.	EPN FUEL ENG3 GASOLINE ENG4 GASOLINE ENG5 GASOLINE ENG6 GASOLINE	X YES				
(6)	Does the installation comply with the National Ambient Air Quality Standards (NAAQS)? Note: Indicate which method is used and attach the modeling report and/or calculations and diagrams to support the selected method.	X MODELING STACK HEIGHT FACILITY EMISSIONS & PROPERTY LINE DISTANCE	X YES NO				
(6)	Have you included a modeling report and/or calculations and diagrams to support the selected NAAQS compliance determination method?		X YES NO				
	For the following questions, please refer to the Electric Generators under Permit by Rule policy memo from October 2006.						
(7)	Is the engine or turbine used to generate electricity? If "NO," the following do not apply.	EPN ENG3 ENG4 ENG5 ENG6	YES X NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO				

Ineos USA Oil & Gas LLC
Corner S Ranch Mcm B Pad
RN NO.: RN106501851
DATE: 03/11/2024

Title 30 Texas Administrative Code § 106.512 CHECK THE MOST APPROPRIATE ANSWERS AND FILL IN THE BLANKS						
n 1			n .			
Rule	Questions/Descriptions	Information	Response			
		EPN	l — — I			
	Will the engine or turbine be used to generate electricity to operate facilities	ENG3	YES NO			
	authorized by a New Source Review Permit?	ENG4	YES NO			
(7)	, in the second	ENG5	YES NO			
(*)	If "YES," the engine or turbine does not qualify for this PBR and authorization	ENG6	YES NO			
	must be obtained through a permit amendment.	ENGO	. — — .			
	musi be obtained inrough a permit amenament.		YES NO			
			YES NO			
		EPN				
	The state of the s	ENG3	YES NO			
	If the engine or turbine is used to generate electricity, will it be exclusively for on-	ENG4	YES NO			
	site use at locations which cannot be connected to an electric grid?	ENG5	YES NO			
(7)	REFER TO PROCESS DESCRIPTION IN APPLICATION.	ENG6	YES NO			
(*)		21.00	YES NO			
	If "YES," describe why access to the electric grid is not available.		YES NO			
	If "NO," the engine or turbine does not qualify for this PBR.		L IES LINU			
	Has an Electric Generating Unit Standard Permit been issued for one of the	EPN	l — — I			
	following activities for which the engine or turbine will only be used to generate	ENG3	YES NO			
	electricity?	ENG4	YES NO			
		ENG5	YES NO			
	Engines or turbines used to provide power for the operation of	ENG6	YES NO			
		2100	. — — .			
	facilities registered under the Air Quality Standard Permit for		YES NO			
	Concrete Batch Plants.		YES NO			
(7)	Engines or turbines satisfying the conditions for facilities permitted					
	by rule under 30 TAC 106, Subchapter E (relating to Aggregate and					
	Pavement).					
	Engines or turbines used exclusively to provide power to electric					
	pumps used for irrigating crops.					
	If "NO," the engine or turbine does not qualify for this PBR.					
	1 111					
Rule	Other Applicable Rules and Regulations	Why or Why Not?	Response			
		EPN				
	If the analysis of the state of	ENG3 SEE NOTE	YES X NO			
	If the engine or turbine is located in the Houston/Galveston nonattainment area, is the site subject to the Mass Emission Cap and Trade Program?	ENG4 SEE NOTE	YES X NO			
		THE NOTE				
1	the site subject to the iviass Emission Cap and Trade Program:	ENG5 SEE NOTE	YES X NO			
			. — — .			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION	ENGS SEE NOTE ENG6 SEE NOTE	YES X NO			
			YES X NO YES NO			
		ENG6 SEE NOTE	YES X NO			
		EPN SEE NOTE	YES X NO YES NO YES NO			
		EPN ENG3 SEE NOTE	YES X NO YES NO YES NO YES X NO			
		EPN SEE NOTE	YES X NO YES NO YES NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION	EPN ENG3 SEE NOTE	YES X NO YES NO YES NO YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION	EPN ENG3 EPN ENG4 SEE NOTE ENG4	YES X NO YES NO YES NO YES X NO YES X NO YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115?	EPN ENG3 SEE NOTE ENG4 ENG5 SEE NOTE ENG5 SEE NOTE	YES X NO YES NO YES NO YES X NO YES X NO YES X NO YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115?	EPN ENG3 SEE NOTE ENG4 ENG5 SEE NOTE ENG5 SEE NOTE	YES X NO YES NO YES NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115?	ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE	YES X NO YES NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115?	EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE	YES X NO YES NO YES NO YES X NO YES X NO YES X NO YES X NO YES X NO YES NO YES NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION	EPN ENG3 EPN ENG3 ENG4 ENG4 ENG5 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE	YES X NO YES NO YES NO YES X NO YES X NO YES X NO YES X NO YES X NO YES NO YES NO YES NO YES NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115?	ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG3 SEE NOTE SEE NOTE ENG4 SEE NOTE	YES X NO YES NO YES NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES NO YES NO YES NO YES NO YES NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter §§ 117.201-223?	ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE	YES X NO YES NO YES NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES NO YES NO YES NO YES NO YES NO YES NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION	ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG3 SEE NOTE SEE NOTE ENG4 SEE NOTE	YES X NO YES NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES NO YES NO YES NO YES NO YES X NO YES NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter §§ 117.201-223?	ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE	YES X NO YES NO YES NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES NO YES NO YES NO YES NO YES NO YES NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter §§ 117.201-223?	ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE	YES X NO YES NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES NO YES NO YES NO YES NO YES X NO YES NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter §§ 117.201-223?	ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE	YES X NO YES NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES NO YES NO YES NO YES NO YES X NO YES NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter §§ 117.201-223?	ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE	YES X NO YES NO YES X NO YES X NO YES X NO YES X NO YES X NO YES NO YES NO YES NO YES NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter §§ 117.201-223? NOTE: REFER TO APPLICATION TEXT/DISCUSSION	ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE	YES X NO YES NO YES NO YES X NO YES X NO YES X NO YES X NO YES X NO YES NO YES NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter §§ 117.201-223?	ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE	YES X NO YES NO YES NO YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter §§ 117.201-223? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 40 CFR Part 60, NSPS Subpart D?	ENG SEE NOTE EPN SEE NOTE ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE EPN ENG6 EPN SEE NOTE ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE	YES X NO YES NO YES NO YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter §§ 117.201-223? NOTE: REFER TO APPLICATION TEXT/DISCUSSION	ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE	YES X NO YES NO YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter §§ 117.201-223? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 40 CFR Part 60, NSPS Subpart D?	ENG SEE NOTE EPN SEE NOTE ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE EPN ENG6 EPN SEE NOTE ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE	YES X NO YES NO YES NO YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter §§ 117.201-223? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 40 CFR Part 60, NSPS Subpart D?	ENG SEE NOTE EPN SEE NOTE ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE EPN ENG6 EPN SEE NOTE ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE	YES X NO YES NO YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter §§ 117.201-223? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 40 CFR Part 60, NSPS Subpart D?	ENG SEE NOTE EPN SEE NOTE ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE EPN ENG6 EPN SEE NOTE ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE	YES X NO YES NO YES X NO YES X NO YES X NO YES X NO YES X NO YES NO YES NO YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter §§ 117.201-223? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 40 CFR Part 60, NSPS Subpart D?	EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE EPN ENG5 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE	YES X NO YES NO YES NO YES X NO			
	Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter §\$ 117.201-223? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 40 CFR Part 60, NSPS Subpart D? NOTE: REFER TO APPLICATION TEXT/DISCUSSION	ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG4 SEE NOTE EPN ENG5 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE	YES X NO YES NO YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter §§ 117.201-223? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 40 CFR Part 60, NSPS Subpart D?	EPN ENG3 EPN ENG4 ENG5 ENG6 ENG6 ENG6 ENG6 ENG6 ENG6 ENG6 ENG6	YES X NO YES NO YES X NO			
	Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter §\$ 117.201-223? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 40 CFR Part 60, NSPS Subpart D? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 40 CFR Part 60, NSPS Subpart D?	EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG6 SEE NOTE ENG5 SEE NOTE	YES			
	Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter §\$ 117.201-223? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 40 CFR Part 60, NSPS Subpart D? NOTE: REFER TO APPLICATION TEXT/DISCUSSION	EPN ENG3 EPN ENG4 ENG5 ENG6 ENG6 ENG6 ENG6 ENG6 ENG6 ENG6 ENG6	YES			
	Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter §\$ 117.201-223? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 40 CFR Part 60, NSPS Subpart D? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 40 CFR Part 60, NSPS Subpart D?	EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG6 SEE NOTE ENG5 SEE NOTE	YES X NO YES NO YES X NO			
	Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 30 TAC Chapter §\$ 117.201-223? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 40 CFR Part 60, NSPS Subpart D? NOTE: REFER TO APPLICATION TEXT/DISCUSSION Is the facility subject to 40 CFR Part 60, NSPS Subpart D?	EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG4 SEE NOTE ENG4 SEE NOTE ENG5 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG6 SEE NOTE EPN ENG3 SEE NOTE ENG6 SEE NOTE ENG5 SEE NOTE	YES			

Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad RN NO.: RN106501851 DATE: 03/11/2024

	THE 30 Texas Administrative Code § 106.512 CHECK THE MOST APPROPRIATE ANSWERS AND FILL IN THE BLANKS						
Rule	Other Applicable Rules and Regulations	W	hy or Why Not?	Response			
		EPN					
		ENG3	SEE NOTE	YES X NO			
	Is the facility subject to 40 CFR Part 60, NSPS Subpart Db?	ENG4	SEE NOTE	YES X NO			
		ENG5	SEE NOTE	YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION	ENG6	SEE NOTE	YES X NO			
				YES NO			
				YES NO			
		EPN					
		ENG3	SEE NOTE	YES X NO			
	Is the facility subject to 40 CFR Part 60, NSPS Subpart Dc?	ENG4	SEE NOTE	YES X NO			
		ENG5	SEE NOTE	YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION	ENG6	SEE NOTE	YES X NO			
				YES NO			
				YES NO			
		EPN					
		ENG3	SEE NOTE	YES X NO			
ĺ	Is the facility subject to 40 CFR Part 60, NSPS Subpart GG?	ENG4	SEE NOTE	YES X NO			
		ENG5	SEE NOTE	YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION	ENG6	SEE NOTE	YES X NO			
				YES NO			
				YES NO			
		EPN					
		ENG3	SEE NOTE	YES X NO			
	Is the facility subject to 40 CFR Part 60, NSPS Subpart IIII?	ENG4	SEE NOTE	YES X NO			
		ENG5	SEE NOTE	YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION	ENG6	SEE NOTE	YES X NO			
				YES NO			
				YES NO			
		EPN					
		ENG3	SEE NOTE	X YES NO			
	Is the facility subject to 40 CFR Part 60, NSPS Subpart JJJJ?	ENG4	SEE NOTE	X YES NO			
		ENG5	SEE NOTE	X YES NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION	ENG6	SEE NOTE	X YES NO			
				YES NO			
				YES NO			
		EPN					
		ENG3	SEE NOTE	YES X NO			
	Is the facility subject to 40 CFR Part 63, MACT Subpart YYYY?	ENG4	SEE NOTE	YES X NO			
		ENG5	SEE NOTE	YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION	ENG6	SEE NOTE	YES X NO			
				YES NO			
				YES NO			
		EPN					
		ENG3	SEE NOTE	X YES NO			
	Is the facility subject to 40 CFR Part 63, MACT Subpart ZZZZ?	ENG4	SEE NOTE	X YES NO			
		ENG5	SEE NOTE	X YES NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION	ENG6	SEE NOTE	X YES NO			
				YES NO			
				YES NO			
		EPN					
		ENG3	SEE NOTE	YES X NO			
	Is the facility subject to 40 CFR Part 63, MACT Subpart PPPPP?	ENG4	SEE NOTE	YES X NO			
		ENG5	SEE NOTE	YES X NO			
	NOTE: REFER TO APPLICATION TEXT/DISCUSSION	ENG6	SEE NOTE	YES X NO			
				YES NO			
				YES NO			

Record Keeping: In order to demonstrate compliance with the general and specific requirements of this PBR, sufficient records must be maintained to demonstrate that all requirements are met at all times. If the engine or turbine is rated greater than 500 horsepower, all records must be maintained as required by 30 TAC § 106.512(2)(C). The registrant should also become familiar with the additional record keeping requirements in 30 TAC § 106.8. The records must be made available immediately upon request to the commission or any air pollution control program having jurisdiction. If you have any questions about the type of records that should be maintained or testing requirements, contact the Air Program in the TCEQ Regional Office for the region in which the site is located.

Recommended Calculation Method: In order to demonstrate compliance with this PBR, emission factors for each air contaminant from the EPA Compilation of Air Pollutant Emission Factors (AP-42), Fifth Edition, Volume 1, Section 3.1: Stationary Gas Turbines for Electricity Generation at: www.epa.gov/ttn/chief/ap42/index.html should be used, including, the specific air contaminant's emission limit listed on the table below.

Title 30 Texas Administrative Code § 106.512 Air Permits by Rule (PBR) Checklist Stationary Engines and Turbines

		After 6/18/92	>500*	Reduced 80-100%		2.0 5.0 5.0	5.0 11.0	3.0	Yes Biennial				
		After	*	Full		2.0 2.0 2.0	2.0	3.0	Yes Biennial				
		9/23/82 to 6/18/92	>825	NA		2.0 5.0 5.0	5.0	3.0	Yes Biennial				
			9/23/82 to 6/18/9:	9/23/82 to 6/18/9	500-824*	Reduced 80-100%		2.0 8.0 8.0	8.0	3.0	Yes Biennial		
					3/6	6/5	6/23	9/2	2/6	2005	Full		2.0 5.0 8.0
		NO x g/hp-hr Emission Limits NA Before 9/23/82	Before 9/23/82	//23/82	9/23/82	*(Reduced 80-100%		2.0 8.0 8.0	8.0	3.0	Yes Biennial	
eneral Guidelines	mits			*005<	Full NA		2.0 5.0 8.0	5.0	3.0	Yes Biennial			
TCEQ Exemption 30 TAC 106.512 General Guidelines	NO x g/hp-hr Emission Limits		>240	NA		NA NA NA	NA NA NA	NA	Yes Biennial				
TCEQ Exe		NA	<240	NA		NA NA NA	NA NA NA	NA	°N °N				
	nufacture	nufacture	nufacture	sepower	pad.e	Engine Combustion Design	Rich Bum ++ Lean Bum** 2-Cycle	Dual Fuel Liquid Fuel	Turbines+	ation sting			
		Date Original Manufacture	Mfg. Rate Horsepower	Operating Speed Operating Torque	Ignition Type	Spark	Compression		PL-7 Registration Emission Testing				

Notes:

TCEQ 10146 (Revised 05/07) PBR Checklist 106.512 - Stationary Engines and Turbines.
This form is used by sources subject to air quality permit standards and may be revised periodically. (APDG 5042 v6).

Page 6 of 6

 $^{^*}$ Lower emission rates apply to lean-burn engine operationg: Full Speed & Any Torque or Any Speed & <80% or >100% Torque

⁺ Turbine emissions are also regulated by EPA NSPS Standards for NOx and SO2

^{**} Lean-Burn > 4% exhaust O₂

⁺⁺ Rich-Burn <= 4% exhaust O2

		AIR CONTAMINANT DATA	-		
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamin	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
HTI	нті	; MAKE: UNKNOWN; MODEL: UNKNOWN; NATURAL GAS; 1.000 MMBTU/HR; 8,760.000 HRS/YR; UNCONTROLLED; HEATER-TREATER; VENTING TO ATMOSPHERE; 106.352(L)	NOX	0.098	0.429
			CO	0.082	0.361
			SO2	0.001	0.003
			PM10	0.007	0.033
			PM2.5	0.007	0.033
-			H2S	0.000	0.000
			Lead	0.000	0.000
			VOC-total	0.005	0.024
			VOC-u	0.005	0.02
			700 1		
			VOC-HAP-total	0.002	0.008
			ACETALDEHYDE	0.002	0.000
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE	0.000	0.000
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE	0.000	0.000
			HEXANE-N	0.002	0.008
			METHANOL	0.002	0.000
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O	0.000	0.000
			XYLENE-P	0.000	0.000
			VOC(HAP)-u		
			METHANE	0.002	0.010
			ETHANE	0.003	0.013
			CO2	117.647	515.294
DM Posterior D 1	nt Number; FIN = Facility Ide	1 Section Number	CG2	117.857	516.215

		AIR CONTAMINANT DATA	_		
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamin	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
HT2	HT2	; MAKE: UNKNOWN; MODEL: UNKNOWN; NATURAL GAS; 1.000 MMBTU/HR; 8,760.000 HRS/YR; UNCONTROLLED; HEATER-TREATER; VENTING TO ATMOSPHERE; 106.352(L)	NOX	0.098	0.429
			CO	0.082	0.361
			SO2	0.001	0.003
			PM10	0.007	0.033
			PM2.5	0.007	0.033
			H2S	0.000	0.000
			Lead	0.000	0.000
			VOC-total	0.005	0.024
			VOC-u		
			VOC-HAP-total	0.002	0.008
			ACETALDEHYDE		
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE	0.000	0.000
			ETHYLBENZENE		
			FORMALDEHYDE	0.000	0.000
			HEXANE-N	0.002	0.008
			METHANOL		
			TOLUENE	0.000	0.000
			XYLENE-M		
			XYLENE-O	0.000	0.000
			XYLENE-P		
			VOC(HAP)-u		
			METHANE	0.002	0.010
			ETHANE	0.003	0.013
	t Number; FIN = Facility Ider		CO2	117.647 117.857	515.294 516.215

		AIR CONTAMINANT DATA			
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamin	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
НТЗ	НТ3	; MAKE: UNKNOWN; MODEL: UNKNOWN; NATURAL GAS; 1.000 MMBTU/HR; 8,760.000 HRS/YR; UNCONTROLLED; HEATER-TREATER; VENTING TO ATMOSPHERE; 106.352(L)	NOX	0.098	0.429
			CO	0.082	0.361
			SO2	0.001	0.003
			PM10	0.007	0.033
			PM2.5	0.007	0.033
			H2S	0.000	0.000
			Lead	0.000	0.000
			VOC-total	0.005	0.024
			VOC-u		
			VOC-HAP-total	0.002	0.008
			ACETALDEHYDE		
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE	0.000	0.000
			ETHYLBENZENE		
			FORMALDEHYDE	0.000	0.000
			HEXANE-N	0.002	0.008
			METHANOL		
			TOLUENE	0.000	0.000
			XYLENE-M		
			XYLENE-O	0.000	0.000
			XYLENE-P		
			VOC(HAP)-u		
				ļ	
				1	
			METHANE	0.002	0.010
			ETHANE	0.003	0.013
	t Number; FIN = Facility Idea		CO2	117.647 117.857	515.294 516.215

EPN (A)	FIN	1. Emission Point	2. Component or Air	3. Air Contamina			
		1. Emission Point Contaminant Name					
(A)		NAME		PPH	TPY		
_	(B)	(C)		(A)	(B)		
T4	НТ4	; MAKE: UNKNOWN; MODEL: UNKNOWN; NATURAL GAS; 1.000 MMBTU/HR; 8,760.000 HRS/YR; UNCONTROLLED; HEATER-TREATER; VENTING TO ATMOSPHERE; 106.352(L)	NOX	0.098	0.429		
			CO	0.082	0.361		
			SO2	0.001	0.003		
			PM10	0.007	0.033		
			PM2.5	0.007	0.033		
			H2S	0.000	0.000		
			Lead	0.000	0.000		
			VOC-total	0.005	0.024		
			VOC-u				
			VOC-HAP-total	0.002	0.008		
			ACETALDEHYDE				
			ACROLEIN				
			BENZENE	0.000	0.000		
			DICHLOROBENZENE	0.000	0.000		
			ETHYLBENZENE				
			FORMALDEHYDE	0.000	0.000		
			HEXANE-N	0.002	0.008		
			METHANOL				
			TOLUENE	0.000	0.000		
			XYLENE-M				
-			XYLENE-O	0.000	0.000		
			XYLENE-P				
			VOC(HAP)-u				
		1	, , ,				
		1					
					<u> </u>		
			METHANE	0.002	0.010		
			ETHANE	0.003	0.013		
			CO2	117.647	515.294		

		AIR CONTAMINANT DATA	2. Component or Air	1	
		1. Emission Point	Contaminant Name	3. Air Contaminant Emissio	
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
ANKI	TANKI	: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)	NOX		
			CO		
			SO2		
			PM10		
			PM2.5		
			H2S	0.000	0.000
			Lead		
			VOC-total	0.042	0.184
			VOC-u	0.001	0.003
			VOC-HAP-total	0.001	0.005
			ACETALDEHYDE		
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE		
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE		
			HEXANE-N	0.001	0.004
			METHANOL		
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
			METHANE		
			ETHANE		
			CO2	0.014	0.061

		AIR CONTAMINANT DATA			
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contaminant Emission	
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
ANK2	TANK2	: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			CO		
			SO2		
			PM10		
-			PM2.5		
-			H2S	0.000	0.000
			Lead		
			VOC-total	0.042	0.184
-			VOC-u	0.001	0.003
				0.000	
			VOC-HAP-total	0.001	0.005
			ACETALDEHYDE	***************************************	
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE		
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE		
			HEXANE-N	0.001	0.004
			METHANOL		
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
			METHANE		
			ETHANE		
			CO2	0.014	0.061

		AIR CONTAMINANT DATA			
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contaminant Emission	
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
ANK17	TANK17	: PRODUCED WATER @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 0.026 TURN-OVERS/YR; 0.028 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: PRODUCED WATER TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)	NOX		
			CO		
			SO2		
			PM10	1	İ
			PM2.5		
			H2S	0.000	0.000
			Lead		
-			VOC-total	0.054	0.234
-			VOC-u	0.001	0.003
			VOC-HAP-total	0.001	0.006
			ACETALDEHYDE	*****	0.000
			ACROLEIN		
			BENZENE	0.000	0.001
			DICHLOROBENZENE		
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE		
			HEXANE-N	0.001	0.005
			METHANOL		
			TOLUENE	0.000	0.001
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
			METHANE		
			ETHANE		
			CO2	0.018	0.078

		AIR CONTAMINANT DATA			
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contaminant Emission I	
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
ANK3	TANK3	: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)	NOX		
			CO		
			SO2		
			PM10		
			PM2.5		
-			H2S	0.000	0.000
			Lead		
			VOC-total	0.042	0.184
			VOC-u	0.001	0.003
			VOC-HAP-total	0.001	0.005
			ACETALDEHYDE		
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE		
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE		
			HEXANE-N	0.001	0.004
			METHANOL		
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
	-				
	-				
			METHANE		
			ETHANE		
	Number; FIN = Facility Id		CO2	0.014	0.061 0.257

		AIR CONTAMINANT DATA			
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contaminant Emission	
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
ANK4	TANK4	: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)	NOX		
			CO		
			SO2		
			PM10		
-			PM2.5		
-			H2S	0.000	0.000
			Lead		
			VOC-total	0.042	0.184
-			VOC-u	0.001	0.003
				0.000	
			VOC-HAP-total	0.001	0.005
			ACETALDEHYDE	***************************************	
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE		
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE		
			HEXANE-N	0.001	0.004
			METHANOL		
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
			METHANE		
			ETHANE		
			CO2	0.014	0.061

AIR CONTAMINANT DATA 2. Component or Air 2. Air Contaminant Data					
1. Emission Foint Contaminant Name			3. Air Contaminant Emission Rate		
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
TANK5	TANK5	: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			СО		
			SO2		
			PM10		
			PM2.5		
			H2S	0.000	0.000
			Lead		
			VOC-total	0.042	0.184
			VOC-u	0.001	0.003
			VOC-HAP-total	0.001	0.005
			ACETALDEHYDE		
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE		
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE		
			HEXANE-N	0.001	0.004
			METHANOL		
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
			METHANE		
			ETHANE		
			CO2	0.014	0.061

AIR CONTAMINANT DATA					
1. Emission Point 2. Component or Air Contaminant Name			3. Air Contamin	ant Emission Rate	
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
TANK6	TANK6	TANK 7: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			CO		
			SO2	1	
			PM10		
			PM2.5		
			H2S	0.000	0.000
			Lead	0.000	0.000
			VOC-total	0.042	0.184
			VOC-u	0.001	0.003
			V 0C-u	0.001	0.003
			VOC-HAP-total	0.001	0.005
			ACETALDEHYDE	0.001	0.003
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE	0.000	0.000
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE	0.000	0.000
			HEXANE-N	0.001	0.004
			METHANOL	0.001	0.004
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O	0.000	0.000
			XYLENE-P	+	
			VOC(HAP)-u	+	
			VOC(FIAF)-u	+	
				+	
				+	
				+	
				+	
				+	
			METHANE	+	
			ETHANE	+	
			CO2	0.014	0.061
	: Number; FIN = Facility Id		CO2	0.014	0.061

AIR CONTAMINANT DATA					
Contaminant Name			3. Air Contamin	3. Air Contaminant Emission Rate	
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
TANK7	TANK7	TANK 8: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			CO		
		1	SO2		
			PM10		
			PM2.5		
			H2S	0.000	0.000
			Lead		
			VOC-total	0.042	0.184
			VOC-u	0.001	0.003
			, , , ,	0.001	0.005
			VOC-HAP-total	0.001	0.005
			ACETALDEHYDE	***************************************	0.000
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE		
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE		
			HEXANE-N	0.001	0.004
			METHANOL		
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
			METHANE		
			ETHANE		
			CO2	0.014	0.061

AIR CONTAMINANT DATA					
1. Emission Point 2. Component or Air Contaminant Name			3. Air Contaminant Emission Rate		
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
TANK8	TANK8	TANK 9: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			CO		
			SO2		
			PM10		
			PM2.5		
			H2S	0.000	0.000
			Lead	0.000	0.000
			VOC-total	0.042	0.184
			VOC-u	0.001	0.003
			, oc u	0.001	0.003
			VOC-HAP-total	0.001	0.005
			ACETALDEHYDE	0.001	0.003
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE	0.000	0.000
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE	0.000	0.000
			HEXANE-N	0.001	0.004
			METHANOL	0.001	0.001
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O	0.000	0.000
			XYLENE-P		
			VOC(HAP)-u		
			(/		
			METHANE		
			ETHANE		
			CO2	0.014	0.061

AIR CONTAMINANT DATA					
Contaminant Name			3. Air Contamin	3. Air Contaminant Emission Rate	
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
TANK9	TANK9	TANK 10: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)	NOX		
			CO		
			SO2		
			PM10		İ
			PM2.5		
-			H2S	0.000	0.000
			Lead		
			VOC-total	0.042	0.184
-			VOC-u	0.001	0.003
			VOC-HAP-total	0.001	0.005
			ACETALDEHYDE		
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE		
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE		
			HEXANE-N	0.001	0.004
			METHANOL		
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
			METHANE		
			ETHANE		
			CO2	0.014	0.061

AIR CONTAMINANT DATA						
Contaminant Name			3. Air Contamin	3. Air Contaminant Emission Rate		
EPN	FIN	NAME		PPH	TPY	
(A)	(B)	(C)		(A)	(B)	
TANK10	TANK10	TANK 11: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)	NOX			
			CO			
			SO2			
			PM10		İ	
			PM2.5			
			H2S	0.000	0.000	
			Lead			
			VOC-total	0.042	0.184	
			VOC-u	0.001	0.003	
			VOC-HAP-total	0.001	0.005	
			ACETALDEHYDE			
			ACROLEIN			
			BENZENE	0.000	0.000	
			DICHLOROBENZENE			
			ETHYLBENZENE	0.000	0.000	
			FORMALDEHYDE			
			HEXANE-N	0.001	0.004	
			METHANOL			
			TOLUENE	0.000	0.000	
			XYLENE-M	0.000	0.000	
			XYLENE-O			
			XYLENE-P			
			VOC(HAP)-u			
			METHANE			
			ETHANE			
			CO2	0.014	0.061	

		AIR CONTAMINANT DATA	2 C Ai	1	
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamina	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
TANK11	TANKI1	TANK 12: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			CO		
			SO2	1	
			PM10		
		1	PM2.5	+	
			H2S	0.000	0.000
			Lead	0.000	0.000
			VOC-total	0.042	0.184
			VOC-u	0.001	0.003
			V 0C-u	0.001	0.003
			VOC-HAP-total	0.001	0.005
			ACETALDEHYDE	0.001	0.003
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE	0.000	0.000
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE	0.000	0.000
			HEXANE-N	0.001	0.004
			METHANOL	0.001	0.004
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O	0.000	0.000
			XYLENE-P	+	
			VOC(HAP)-u	+	
			VOC(IIAI)-u	+	
-				+	
				+	
				+	
		1		+	
		1		+	
			METHANE	+	
			ETHANE	+	
		1	CO2	0.014	0.061
DN E : : 5 :	t Number; FIN = Facility Id		CO2	0.014	0.257

		AIR CONTAMINANT DATA	2 G	1	
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamina	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
TANK12	TANK12	TANK 13: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)	NOX		
			CO		
			SO2	1	
			PM10	1	
			PM2.5	1	
			H2S	0.000	0.000
			Lead		
			VOC-total	0.042	0.184
			VOC-u	0.001	0.003
			700 0	0.001	0.003
			VOC-HAP-total	0.001	0.005
			ACETALDEHYDE	0.001	0.003
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE	0.000	0.000
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE	0.000	0.000
			HEXANE-N	0.001	0.004
			METHANOL	0.001	0.004
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O	0.000	0.000
			XYLENE-P		
			VOC(HAP)-u	1	
				+	<u> </u>
				+	
				1	
				 	
				 	
			METHANE	+	
			METHANE ETHANE	1	
				0.014	0.061
	Number; FIN = Facility Id	L	CO2	0.014 0.059	0.061 0.257

		AIR CONTAMINANT DATA			
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamin	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
TANK13	TANK13	TANK 14: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			CO		
			SO2	+	
			PM10	+	
			PM2.5	+	
				0.000	0.000
			H2S	0.000	0.000
			Lead		
			VOC-total	0.042	0.184
			VOC-u	0.001	0.003
			VOC-HAP-total	0.001	0.005
			ACETALDEHYDE		
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE		
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE		
			HEXANE-N	0.001	0.004
			METHANOL		
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P	1	
			VOC(HAP)-u	†	
			(-1111) u		
		1		+	
				+	
				+	
	+			+	
		+		1	
		+	METHANE	1	
			ETHANE	+	
			CO2	0.014	0.061
	Number; FIN = Facility Id		CO2	0.014	0.061

		AIR CONTAMINANT DATA	2. Component or Air		
		1. Emission Point	Contaminant Name	3. Air Contamin	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
TANK14	TANK14	TANK 15: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			CO		
			SO2	1	
		1	PM10	1	
			PM2.5		
			H2S	0.000	0.000
			Lead		0.000
			VOC-total	0.042	0.184
			VOC-u	0.001	0.003
			700 %	0.001	0.005
			VOC-HAP-total	0.001	0.005
			ACETALDEHYDE	0.001	0.005
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE	0.000	0.000
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE	0.000	0.000
			HEXANE-N	0.001	0.004
			METHANOL	0.001	0.004
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O	0.000	0.000
			XYLENE-P		
		1	VOC(HAP)-u		
		1			
				†	
		1		1	
		1		1	
		1		1	
				1	
			METHANE	1	
			ETHANE	1	
			CO2	0.014	0.061

		AIR CONTAMINANT DATA	2. Component or Air	T	
		1. Emission Point	Contaminant Name	3. Air Contamin	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
TANK15	TANK15	TANK 16: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			CO		
			SO2	1	
			PM10		
			PM2.5	+	
			H2S	0.000	0.000
			Lead	0.000	0.000
			VOC-total	0.042	0.184
			VOC-u	0.001	0.003
			700 0	0.001	0.003
			VOC-HAP-total	0.001	0.005
			ACETALDEHYDE	0.001	0.005
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE	0.000	0.000
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE	0.000	0.000
			HEXANE-N	0.001	0.004
			METHANOL	0.001	0.001
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O		0.000
			XYLENE-P		
			VOC(HAP)-u		
		1	-	1	
				1	
				1	
			METHANE		
			ETHANE		
-			CO2	0.014	0.061

		AIR CONTAMINANT DATA			
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamin	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
TANK16	TANK16	TANK 17: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)	NOX		
			CO		
			SO2		
		1	PM10	1	
			PM2.5		
			H2S	0.000	0.000
			Lead		0.000
			VOC-total	0.042	0.184
			VOC-u	0.001	0.003
			, , , ,	0.001	0.005
			VOC-HAP-total	0.001	0.005
			ACETALDEHYDE	0.001	0.002
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE	0.000	0.000
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE	0.000	0.000
			HEXANE-N	0.001	0.004
			METHANOL	0.001	0.001
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P		
		1	VOC(HAP)-u	1	
		1	, .	1	
			METHANE		
			ETHANE		
			CO2	0.014	0.061

		AIR CONTAMINANT DATA	2. Component or Air		
		1. Emission Point	Contaminant Name		ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
TANK18	TANK18	TANK 19: PRODUCED WATER @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 0.026 TURN-OVERS/YR; 0.028 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: PRODUCED WATER TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			CO		
			SO2	1	
			PM10	+	
			PM2.5	+	
	+		H2S	0.000	0.000
			Lead	0.000	0.000
			VOC-total	0.054	0.234
-			VOC-total VOC-u	0.001	0.003
			VOC-u	0.001	0.003
				+	
				+	
			VOC-HAP-total	0.001	0.006
			ACETALDEHYDE	0.001	0.006
			ACROLEIN BENZENE	0.000	0.001
				0.000	0.001
			DICHLOROBENZENE	0.000	0.000
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE	0.004	0.005
			HEXANE-N	0.001	0.005
			METHANOL		
			TOLUENE	0.000	0.001
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u	ļ	
				1	
				ļ	
			METHANE		
			ETHANE		
			CO2	0.018	0.078

		AIR CONTAMINANT DATA			
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamin	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
TANK19	TANK19	TANK 20: PRODUCED WATER @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 0.026 TURN-OVERS/YR; 0.028 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: PRODUCED WATER TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			CO		
			SO2	1	İ
		1	PM10	1	1
			PM2.5		
-			H2S	0.000	0.000
			Lead		
			VOC-total	0.054	0.234
			VOC-u	0.001	0.003
					0.000
			VOC-HAP-total	0.001	0.006
			ACETALDEHYDE	0.001	0.000
			ACROLEIN		
			BENZENE	0.000	0.001
			DICHLOROBENZENE		0.002
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE		0.000
			HEXANE-N	0.001	0.005
			METHANOL	*****	0.000
			TOLUENE	0.000	0.001
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P		
		1	VOC(HAP)-u	1	1
		1	-	1	1
				1	
				1	
			METHANE		
			ETHANE		
			CO2	0.018	0.078

		AIR CONTAMINANT DATA	2 G	1	
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamin	
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
TANK20	TANK20	TANK 21: PRODUCED WATER @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 0.026 TURN-OVERS/YR; 0.028 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: PRODUCED WATER TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			CO		
			SO2	1	
			PM10	†	
			PM2.5		
			H2S	0.000	0.000
			Lead	0.000	0.000
			VOC-total	0.054	0.234
			VOC-total VOC-u	0.001	0.003
			V 0C-u	0.001	0.003
			VOC-HAP-total	0.001	0.006
			ACETALDEHYDE	0.001	0.000
			ACROLEIN		
			BENZENE	0.000	0.001
			DICHLOROBENZENE	0.000	0.001
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE	0.000	0.000
			HEXANE-N	0.001	0.005
			METHANOL	0.001	0.003
			TOLUENE	0.000	0.001
			XYLENE-M	0.000	0.000
			XYLENE-M XYLENE-O	0.000	0.000
			XYLENE-O XYLENE-P	+	
			VOC(HAP)-u	 	
			VOC(nar)-u	 	
				+	
				+	
				-	
				 	
				 	
			METHANE	1	
			METHANE ETHANE	1	
				0.010	0.070
	Number; FIN = Facility Id		CO2	0.018 0.075	0.078 0.328

		AIR CONTAMINANT DATA 1. Emission Point	2. Component or Air	3. Air Contamin	ant Emission Date
			Contaminant Name		
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
C LOAD I	C LOAD 1	LOADING 1: STABILIZED CRUDE @ 8.74553752 PSIA; THROUGHPUT: 344,925.000 GALLONS/YR; 22.500 BBLS/D; 45.625 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; COMMENTS: CRUDE LOADING; VENTING TO ATMOSPHERE; 106.352(L)	NOX		
			CO		
			SO2		
			PM10		
			PM2.5		
			H2S	0.000	0.000
			Lead	0.000	0.000
			VOC-total	34.272	0.782
-			VOC-u	0.006	0.000
			VOC-u	0.000	0.000
			VOC-HAP-total	0.012	0.000
				0.012	0.000
			ACETALDEHYDE		
			ACROLEIN BENZENE	0.001	0.000
			DICHLOROBENZENE	0.001	0.000
			ETHYLBENZENE	0.000	0.000
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE HEXANE-N	0.009	0.000
				0.009	0.000
			METHANOL	0.001	0.000
			TOLUENE	0.001	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
			METHANE		
			ETHANE		
	Number; FIN = Facility Io		CO2	34.302	0.783

		AIR CONTAMINANT DATA	2. Component or Air		
		1. Emission Point	Contaminant Name	3. Air Contamina	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
PW LOAD I	PW LOAD 1	LOADING 2: PRODUCED WATER @ 8.74553752 PSIA; THROUGHPUT: 172,462.500 GALLONS/YR; 11.250 BBLS/D; 22.813 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; COMMENTS: PRODUCED WATER LOADING; ASSUMED 1% CRUDE BY VOLUME; VENTING TO ATMOSPHERE; 106.352(L)	NOX		
			CO		
			SO2		
			PM10		
			PM2.5		
			H2S	0.000	0.000
			Lead	0.000	0.000
			VOC-total	0.343	0.004
			VOC-u	0.000	0.000
			7 GC u	0.000	0.000
			VOC-HAP-total	0.000	0.000
			ACETALDEHYDE	0.000	0.000
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE	0.000	0.000
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE	0.000	0.000
			HEXANE-N	0.000	0.000
			METHANOL	0.000	0.000
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O	0.000	0.000
			XYLENE-P		
			VOC(HAP)-u		
			/		
			METHANE		
			ETHANE		
			CO2	1	İ

		AIR CONTAMINANT DATA		1	
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamina	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
HT1-FLASH	HT1-FLASH	FLASH 1: CRUDE/NATURAL GAS; THROUGHPUT: 2,063.391 BBLS/YR; 5.653 BBLS/D; FLASHING FROM 110.000 PSIG TO 14.270 PSIG; PRIMARY/SECONDARY CONTROLS: TO ATMOSPHERE / TO ATMOSPHERE; COMMENTS: HEATER-TREATER CRUDE FLASH VAPORS; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			CO		
			SO2		
	_		PM10	+	
			PM2.5		
			H2S	0.000	0.002
			Lead		
			VOC-total	0.645	2.824
			VOC-u	0.009	0.040
			VOC-HAP-total	0.016	0.072
			ACETALDEHYDE		
			ACROLEIN		
			BENZENE	0.002	0.007
			DICHLOROBENZENE	0.002	0.007
			ETHYLBENZENE	0.000	0.001
			FORMALDEHYDE	0.000	0.001
			HEXANE-N	0.013	0.056
			METHANOL	0.013	0.030
			TOLUENE	0.001	0.006
			XYLENE-M	0.001	0.003
			XYLENE-O	0.001	0.003
			XYLENE-O XYLENE-P		
			VOC(HAP)-u		
			ļ		
			METHANE		
			ETHANE		
			CO2	0.215	0.940

		AIR CONTAMINANT DATA			
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamina	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
HT2-FLASH	HT2-FLASH	FLASH 2: CRUDE/NATURAL GAS; THROUGHPUT: 2,063.391 BBLS/YR; 5.653 BBLS/D; FLASHING FROM 110.000 PSIG TO 14.270 PSIG; PRIMARY/SECONDARY CONTROLS: TO ATMOSPHERE / TO ATMOSPHERE; COMMENTS: HEATER-TREATER CRUDE FLASH VAPORS; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			CO		
	+		SO2	+	
	_		PM10	-	
				+	
			PM2.5		
			H2S	0.000	0.002
			Lead		
			VOC-total	0.645	2.824
			VOC-u	0.009	0.040
			VOC-HAP-total	0.016	0.072
			ACETALDEHYDE		
			ACROLEIN		
			BENZENE	0.002	0.007
			DICHLOROBENZENE		
			ETHYLBENZENE	0.000	0.001
			FORMALDEHYDE	0.000	0.001
			HEXANE-N	0.013	0.056
			METHANOL	0.013	0.030
			TOLUENE	0.001	0.006
	+		XYLENE-M	0.001	0.003
			XYLENE-O	0.001	0.003
			XYLENE-P		
			VOC(HAP)-u	+	
	_		VOC(HAP)-u	-	
	_			+	
	_			+	
				1	
				1	
	_			+	
			2.65007.4.2.55		
			METHANE		
			ETHANE		
	Number; FIN = Facility Id		CO2	0.215 0.902	0.940 3.950

		AIR CONTAMINANT DATA			
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamin	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
HT3-FLASH	HT3-FLASH	FLASH 3: CRUDE/NATURAL GAS; THROUGHPUT: 2,063.391 BBLS/YR; 5.653 BBLS/D; FLASHING FROM 110.000 PSIG TO 14.270 PSIG; PRIMARY/SECONDARY CONTROLS: TO ATMOSPHERE / TO ATMOSPHERE; COMMENTS: HEATER-TREATER CRUDE FLASH VAPORS; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			CO		
			SO2	+	
	_		PM10	+	
				+	ļ
			PM2.5		
			H2S	0.000	0.002
			Lead		
			VOC-total	0.645	2.824
			VOC-u	0.009	0.040
			VOC-HAP-total	0.016	0.072
			ACETALDEHYDE		
			ACROLEIN		
			BENZENE	0.002	0.007
			DICHLOROBENZENE	0.002	0.007
			ETHYLBENZENE	0.000	0.001
			FORMALDEHYDE	0.000	0.001
			HEXANE-N	0.013	0.056
			METHANOL	0.013	0.030
			TOLUENE	0.001	0.006
			XYLENE-M	0.001	0.003
				0.001	0.003
			XYLENE-O	1	
			XYLENE-P		
			VOC(HAP)-u		
				ļ	
			METHANE		
			ETHANE	1	
			CO2	0.215	0.940

		AIR CONTAMINANT DATA			
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamin	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
HT4-FLASH	HT4-FLASH	FLASH 4: CRUDE/NATURAL GAS; THROUGHPUT: 2,063.391 BBLS/YR; 5.653 BBLS/D; FLASHING FROM 110.000 PSIG TO 14.270 PSIG; PRIMARY/SECONDARY CONTROLS: TO ATMOSPHERE / TO ATMOSPHERE; COMMENTS: HEATER-TREATER CRUDE FLASH VAPORS; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			CO		
			SO2	+	
				+	
			PM10	ļ	
			PM2.5		
			H2S	0.000	0.002
			Lead		
			VOC-total	0.645	2.824
			VOC-u	0.009	0.040
			WOO HAR I	0.016	0.070
			VOC-HAP-total	0.016	0.072
			ACETALDEHYDE		
			ACROLEIN		
			BENZENE	0.002	0.007
			DICHLOROBENZENE		
			ETHYLBENZENE	0.000	0.001
			FORMALDEHYDE		
			HEXANE-N	0.013	0.056
			METHANOL	0.020	0.000
			TOLUENE	0.001	0.006
			XYLENE-M	0.001	0.003
			XYLENE-O	0.001	0.003
				+	
			XYLENE-P		
			VOC(HAP)-u	<u> </u>	
				<u> </u>	
.					
			METHANE		
			ETHANE	1	
			CO2	0.215	0.940
	I Number; FIN = Facility Id		CO2	0.902	3.950

		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamina	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
UG	FUG	FUGITIVES 1; LIGHT-LIQUID COMPONENTS / NATURAL GAS COMPONENTS /: 8,760.000 HRS/YR; MONITORING PROGRAM: ///; COMMENTS: SITE FUGITIVE EMISSIONS; 106.352(I)	NOX		
			CO		
	+			+	
			SO2		
			PM10		
			PM2.5		
			H2S	0.000	0.000
			Lead		
			VOC-total	1.701	7.449
			VOC-u	0.000	0.001
			VOC-HAP-total	0.001	0.003
			ACETALDEHYDE	0.001	0.005
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE	0.000	0.000
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE	0.000	0.000
			HEXANE-N	0.000	0.002
	+			0.000	0.002
	+		METHANOL TOLUENE	0.000	0.000
	+		XYLENE-M	0.000	0.000
			AYLENE-M	0.000	0.000
			XYLENE-O		
	ļ		XYLENE-P		
			VOC(HAP)-u		
			METHANE		
			ETHANE		
			CO2		

		AIR CONTAMINANT DATA								
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamina	ant Emission Rate					
EPN	FIN	NAME		PPH	TPY					
(A)	(B)	(C)		(A)	(B)					
ISS 1	MSS 1	BLOW DOWNS 1: THROUGHPUT: 25.000 SCF/BLOWDOWN @ 25.00 BLOWDOWNS/MONTH; 0.008 MMSCF/YR; 300.000 HRS/YR; COMMENTS: MSS ACTIVITY; VAPORS VENTED TO ATMOSPHERE DURING MSS ACTIVITIES; 106.359	NOX							
			CO							
		1	SO2							
		+	PM10							
-			PM2.5							
-			H2S	0.000	0.000					
			Lead	0.000	0.000					
			VOC-total	0.074	0.011					
			VOC-total VOC-u	0.001	0.000					
			VOC-u	0.001	0.000					
			VOC-HAP-total	0.002	0.000					
			ACETALDEHYDE							
			ACROLEIN							
			BENZENE	0.000	0.000					
			DICHLOROBENZENE							
			ETHYLBENZENE	0.000	0.000					
			FORMALDEHYDE							
			HEXANE-N	0.001	0.000					
			METHANOL							
			TOLUENE	0.000	0.000					
			XYLENE-M	0.000	0.000					
			XYLENE-O							
			XYLENE-P							
			VOC(HAP)-u							
			i í							
			METHANE							
			ETHANE							
			CO2	0.025	0.004					

		AIR CONTAMINANT DATA		1	
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamina	
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
ISS 2	MSS 2	BLOW DOWNS 2: THROUGHPUT: 5,620.000 SCF/BLOWDOWN @ 0.08 BLOWDOWNS/MONTH; 0.006 MMSCF/YR; 1.000 HRS/YR; COMMENTS: MSS ACTIVITY; STORAGE TANK DE-GASSING DURING MAINTENANCE ACTIVITY; ASSUME DE-GASSING 1 TANK/YEAR; VENTS TO ATMOSPHERE; 106.359	NOX		
			CO		
			SO2		
			PM10		
-			PM2.5		
-			H2S	0.000	0.000
			Lead		
			VOC-total	16.658	0.008
-			VOC-u	0.234	0.000
			VOC-HAP-total	0.426	0.000
			ACETALDEHYDE	0.1.20	0.000
			ACROLEIN		
			BENZENE	0.039	0.000
			DICHLOROBENZENE		
			ETHYLBENZENE	0.003	0.000
			FORMALDEHYDE		
			HEXANE-N	0.331	0.000
			METHANOL		
			TOLUENE	0.038	0.000
			XYLENE-M	0.016	0.000
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
			METHANE		
			ETHANE		
			CO2	5.544	0.003 0.012

		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamina	
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
MSS 3	MSS 3	BLOW DOWNS 3: THROUGHPUT: 1,200.000 SCF/BLOWDOWN @ 1.00 BLOWDOWNS/MONTH; 0.115 MMSCF/YR; 96.000 HRS/YR; COMMENTS: MSS ACTIVITIES; MISC. ABRASIVE BLASTING/COATING ACTIVITIES; VENTS TO ATMOSPHERE; AREA SOURCE; 106.359	NOX		
			CO		
			SO2		
			PM10	0.062	0.003
			PM2.5	0.062	0.003
			H2S	0.000	0.000
			Lead	0.000	0.000
			VOC-total	2.989	0.143
			VOC-u	2.707	0.145
			700 0		
			VOC-HAP-total	2.335	0.112
			ACETALDEHYDE		
			ACROLEIN		
			BENZENE	0.467	0.022
			DICHLOROBENZENE		
			ETHYLBENZENE	0.467	0.022
			FORMALDEHYDE		
			HEXANE-N	0.467	0.022
			METHANOL		
			TOLUENE	0.467	0.022
			XYLENE-M	0.467	0.022
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
				1	
				ļ	
			METHANE		
			ETHANE		
			CO2		

		AIR CONTAMINANT DATA		•	
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamina	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
VENTING I	VENTING 1	BLOW DOWNS 4: THROUGHPUT: 2.250 SCF/BLOWDOWN @ 182.50 BLOWDOWNS/MONTH; 0.005 MMSCF/YR; 2,190.000 HRS/YR; COMMENTS: PNEUMATIC DEVICE; VENTING TO ATMOSPHERE; 106.352(l)	NOX		
			CO		
			SO2	1	
			PM10	1	
			PM2.5	1	
			H2S	0.000	0.000
			Lead	0.000	
			VOC-total	0.007	0.007
			VOC-u	0.000	0.000
			700 0	0.000	0.000
			VOC-HAP-total	0.000	0.000
			ACETALDEHYDE	0.000	0.000
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE	0.000	0.000
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE	0.000	0.000
			HEXANE-N	0.000	0.000
			METHANOL	0.000	0.000
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O	0.000	0.000
			XYLENE-P	+	
			VOC(HAP)-u	+	
			, oc(11/11)-u	+	
				+	
				+	
				+	
				+	
				+	
	+		METHANE	+	
	+		ETHANE	+	
			CO2	0.002	0.002
DN E ' ' D ' '	umber; FIN = Facility Ident		1002	0.002	0.002

		AIR CONTAMINANT DATA 1. Emission Point	2. Component or Air	3 Air Contomin	ant Emission Rate
			Contaminant Name		
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
ENG3	ENG3	LQUID FUEL ENGINE 1: HONDA GX160; SERIAL NO.: GCBPT-1482761; 4.8 HP; FUEL: GASOLINE; 4S-RB; CONTROL: NONE; 8,760.000 HRS/YR; PERMIT STATUS: UN-MODIFIED; COMMENTS: GASOLINE FIRED PUMP ENGINE; 106.512; UN-MODIFIED	NOX	0.070	0.307
			CO	2.830	12.395
		1	SO2	0.003	0.012
			PM10	0.003	0.015
			PM2.5		
			H2S	0.000	0.000
			Lead		
			VOC-total	0.070	0.306
			VOC-u		
			VOC-HAP-total	0.020	0.088
			ACETALDEHYDE	0.000	0.000
			ACROLEIN	0.000	0.000
			BENZENE	0.000	0.000
			DICHLOROBENZENE	0.000	0.000
			ETHYLBENZENE		
			FORMALDEHYDE	0.020	0.088
			HEXANE-N	0.020	0.000
			METHANOL		
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O	0.000	0.000
		1	XYLENE-P	+	
			VOC(HAP)-u		
		1	, octini j-u	+	
		1		+	
		1		+	
				+	
				+	
		1		+	
		1	METHANE	0.000	0.000
		1	ETHANE	0.000	0.000
			CO2	5.174	22.664
	t Number; FIN = Facility Id		CO2	8.191	35.875

		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamina	
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
ENG4	ENG4	LQUID FUEL ENGINE 2: HONDA GX160; SERIAL NO.: GCBPT-1482912; 4.8 HP; FUEL: GASOLINE; 4S-RB; CONTROL: NONE; 8,760.000 HRS/YR; PERMIT STATUS: UN-MODIFIED; COMMENTS: GASOLINE FIRED PUMP ENGINE; 106.512; UN-MODIFIED	NOX	0.070	0.307
			CO	2.830	12.395
			SO2	0.003	0.012
			PM10	0.003	0.012
			PM2.5	0.005	0.015
			H2S	0.000	0.000
			Lead	0.000	0.000
			VOC-total	0.070	0.306
			VOC-u	0.070	0.500
			VOC-u		
			VOC-HAP-total	0.020	0.088
			ACETALDEHYDE	0.000	0.000
			ACROLEIN	0.000	0.000
			BENZENE	0.000	0.000
			DICHLOROBENZENE		
			ETHYLBENZENE		
			FORMALDEHYDE	0.020	0.088
			HEXANE-N		
			METHANOL		
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
			METHANE	0.000	0.000
			ETHANE	0.000	0.000
	İ		CO2	5.174	22.664

		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamina	
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
ENG5	ENG5	LQUID FUEL ENGINE 3: HONDA GX160; SERIAL NO.: GCBPT-1482762; 4.8 HP; FUEL: GASOLINE; 4S-RB; CONTROL: NONE; 8,760.000 HRS/YR; PERMIT STATUS: UN-MODIFIED; COMMENTS: GASOLINE FIRED PUMP ENGINE; 106.512; UN-MODIFIED	NOX	0.070	0.307
			CO	2.830	12.395
			SO2	0.003	0.012
			PM10	0.003	0.012
			PM2.5	0.005	0.015
-			H2S	0.000	0.000
			Lead	0.000	0.000
			VOC-total	0.070	0.306
			VOC-u	0.070	0.500
			VOC-u		
			VOC-HAP-total	0.020	0.088
			ACETALDEHYDE	0.000	0.000
			ACROLEIN	0.000	0.000
			BENZENE	0.000	0.000
			DICHLOROBENZENE		
			ETHYLBENZENE		
			FORMALDEHYDE	0.020	0.088
			HEXANE-N		
			METHANOL		
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
			METHANE	0.000	0.000
			ETHANE	0.000	0.000
-	1		CO2	5.174	22.664

		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamina	
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
ENG6	ENG6	LQUID FUEL ENGINE 4: HONDA GX160; SERIAL NO.: GCBPT-1482911; 4.8 HP; FUEL: GASOLINE; 4S-RB; CONTROL: NONE; 8,760.000 HRS/YR; PERMIT STATUS: UN-MODIFIED; COMMENTS: GASOLINE FIRED PUMP ENGINE; 106.512; UN-MODIFIED	NOX	0.070	0.307
			CO	2.830	12.395
			SO2	0.003	0.012
			PM10	0.003	0.012
			PM2.5	0.005	0.015
			H2S	0.000	0.000
			Lead	0.000	0.000
			VOC-total	0.070	0.306
			VOC-u	0.070	0.500
			VOC-u		
			VOC-HAP-total	0.020	0.088
			ACETALDEHYDE	0.000	0.000
			ACROLEIN	0.000	0.000
			BENZENE	0.000	0.000
			DICHLOROBENZENE		
			ETHYLBENZENE		
			FORMALDEHYDE	0.020	0.088
			HEXANE-N		
			METHANOL		
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
			METHANE	0.000	0.000
			ETHANE	0.000	0.000
-			CO2	5.174	22.664

		AIR CONTAMINANT DATA	2. Component or Air	T	
		1. Emission Point	Contaminant Name		ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
ITE-WIDE TOTAL	SITE-WIDE TOTAL	SITE-WIDE TOTAL	NOX	0.672	2.944
			CO SO2	11.649 0.014	51.024 0.060
-			PM10	0.106	0.192
			PM2.5	0.092	0.134
			H2S	0.002	0.008
			Lead	0.002	0.000
			VOC-total	59.808	24.895
			VOC-u	0.291	0.215
			V 0C-u	0.271	0.213
			VOC-HAP-total	2.952	0.888
			ACETALDEHYDE	0.000	0.000
			ACROLEIN	0.000	0.000
			BENZENE	0.515	0.059
			DICHLOROBENZENE	0.000	0.000
			ETHYLBENZENE	0.471	0.025
			FORMALDEHYDE	0.080	0.352
			HEXANE-N	0.885	0.357
			METHANOL		
			TOLUENE	0.514	0.057
			XYLENE-M	0.486	0.037
			XYLENE-O	0.000	0.000
			XYLENE-P		
			VOC(HAP)-u		
			· · ·		
			METHANE	0.009	0.040
			ETHANE	0.012	0.053
·			CO2	498.010	2,156.890

Note:

Permit Number:	PI-7-CERT Registration RN		RN Number:	RN106501851	Date:	3/11/2024
Company Name:		Ineos USA Oil & Gas LLC	2			

review of applications		ts will be expedited by supplying all necessary information requester CONTAMINANT DATA	on una rau]	EMISSION I	POINT DISC	HARGE PA	RAMETER	S			
		1. Emission Point	4. UTM Co	ordinates of	Emission Point				Source				
						5.					7. Fugitives		
EPN (A)	FIN (B)	NAME (C)	Zone	East (Meters)	North (Meters)	Ht. AGL (Feet)	Dia. (Feet) (A)	Velocity (fps) (B)	Temp. (f) (C)	Len. (ft.) (A)	Wid. (ft.) (B)	Axis Degrees (C)	
нті	нті	; MAKE: UNKNOWN; MODEL: UNKNOWN; NATURAL GAS; 1.000 MMBTU/HR; 8,760.000 HRS/YR; UNCONTROLLED; HEATER-TREATER; VENTING TO ATMOSPHERE; 106.352(L)		528,720	3,162,011	20.00	1.00	8.94	850				
HT2	HT2	; MAKE: UNKNOWN; MODEL: UNKNOWN; NATURAL GAS; 1.000 MMBTU/HR; 8,760.000 HRS/YR; UNCONTROLLED; HEATER-TREATER; VENTING TO ATMOSPHERE; 106.352(L)		528,720	3,162,011	20.00	1.00	8.94	850				
НТ3	НТ3	; MAKE: UNKNOWN; MODEL: UNKNOWN; NATURAL GAS; 1.000 MMBTU/HR; 8,760.000 HRS/YR; UNCONTROLLED; HEATER-TREATER; VENTING TO ATMOSPHERE; 106.352(L)		528,720	3,162,011	20.00	1.00	8.94	850				

Note:

Permit Number:	PI-7-CERT Registration		RN Number:	RN106501851	Date:	3/11/2024
Company Name:		Ineos USA Oil & Gas LLC			•	•

<u> </u>												
Review of applications		its will be expedited by supplying all necessary information requeste	d on this Tabl	le.								
	AIR	CONTAMINANT DATA]	EMISSION I	POINT DISC	HARGE PA	RAMETER	<u>s</u>		
		1. Emission Point	4. UTM Co	ordinates of	Emission Point		Source					
			l			5. 6. Stack Exit Data			7. Fugitives			
EPN (A)	FIN (B)	NAME (C)	Zone	East (Meters)	North (Meters)	Ht. AGL (Feet)	Dia. (Feet) (A)	Velocity (fps) (B)	Temp. (f) (C)	Len. (ft.) (A)	Wid. (ft.) (B)	Axis Degrees (C)
НТ4	НТ4	; MAKE: UNKNOWN; MODEL: UNKNOWN; NATURAL GAS; 1.000 MMBTU/HR; 8,760.000 HRS/YR; UNCONTROLLED; HEATER-TREATER; VENTING TO ATMOSPHERE; 106.352(L)		528,720	3,162,011	20.00	1.00	8.94	850			
TANKI	TANKI	: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)	14R	528,720	3,162,011	21.00	0.50	0.00	90			
TANK2	TANK2	: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)	14R	528,720	3,162,011	21.00	0.50	0.00	90			

Note:

Permit Number:	PI-7-CERT Registration RN		RN Number:	RN106501851	Date:	3/11/2024
Company Name:		Ineos USA Oil & Gas LLC			•	

Review of applications		its will be expedited by supplying all necessary information requeste CONTAMINANT DATA	d on this Tabl	c.		EMISSION I	POINT DISC	HARGE PA	RAMETER	S		
		1. Emission Point	4. UTM Co	ordinates of	Emission Point				Source			
						5.	5. 6. Stack Exit Data			7. Fugitives		
EPN (A)	FIN (B)	NAME (C)	Zone	East (Meters)	North (Meters)	Ht. AGL (Feet)	Dia. (Feet) (A)	Velocity (fps) (B)	Temp. (f) (C)	Len. (ft.) (A)	Wid. (ft.) (B)	Axis Degrees (C)
TANK17	TANK17	: PRODUCED WATER @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 0.026 TURN-OVERS/YR; 0.028 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: PRODUCED WATER TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	14R	528,720	3,162,011	21.00	0.50	0.00	90			
TANK3	TANK3	: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)	14R	528,720	3,162,011	21.00	0.50	0.00	90			
TANK4	TANK4	: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	14R	528,720	3,162,011	21.00	0.50	0.00	90			

Note:

Permit Number:	PI-7-CERT Registration R		RN Number:	RN106501851	Date:	3/11/2024
Company Name:		Ineos USA Oil & Gas LLC	2			

Review of application		its will be expedited by supplying all necessary information requested CONTAMINANT DATA	d on this Tab	ie.		EMISSION I	POINT DISC	HARGE PA	RAMETER	S		
		1. Emission Point	4. UTM Co	oordinates of	Emission Point	:			Source			
EPN (A)	FIN (B)	NAME (C)	Zone	Zone East North (Meters) (Meters)			6. Stack Exit Data Dia. Velocity Temp. (Feet) (fps) (f)			Len. (ft.)	7. Fugitive Wid. (ft.)	Axis Degrees
TANK5	TANK5	: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	14R	528,720	3,162,011	21.00	0.50	(B)	90	(A)	(B)	(C)
TANK6	TANK6	TANK 7: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)	14R	528,720	3,162,011	21.00	0.50	0.00	90			
TANK7	TANK7	TANK 8: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	14R	528,720	3,162,011	21.00	0.50	0.00	90			

Note:

Permit Number:	PI-7-CERT Registration RN		RN Number:	RN106501851	Date:	3/11/2024
Company Name:		Ineos USA Oil & Gas LLC			•	

Review of application		aits will be expedited by supplying all necessary information requested CONTAMINANT DATA	d on this Tabl	le.	1	EMISSION I	POINT DISC	HARGE PA	RAMETER	S		
		1. Emission Point	4. UTM Co	ordinates of	Emission Point				Source	<u>~</u>		
						5.				7. Fugitives		
EPN (A)	FIN (B)	NAME (C)	Zone	East (Meters)	North (Meters)	Ht. AGL (Feet)	Dia. (Feet) (A)	Velocity (fps) (B)	Temp. (f) (C)	Len. (ft.) (A)	Wid. (ft.) (B)	Axis Degrees (C)
TANK8	TANK8	TANK 9: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	14R	528,720	3,162,011	21.00	0.50	0.00	90			
TANK9	TANK9	TANK 10: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	14R	528,720	3,162,011	21.00	0.50	0.00	90			
TANK10	TANK10	TANK 11: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)	14R	528,720	3,162,011	21.00	0.50	0.00	90			

Note:

Permit Number:	PI-7-CERT Registration		RN Number:	RN106501851	Date:	3/11/2024
Company Name:		Ineos USA Oil & Gas LLC			•	•

**		mits will be expedited by supplying all necessary information requeste R CONTAMINANT DATA				EMISSION I	POINT DISC	CHARGE PA	RAMETERS	S		
		1. Emission Point	4. UTM Co	ordinates of	Emission Point				Source			
						5.	6.	Stack Exit I)ata		7. Fugitive	s
EPN (A)	FIN (B)	NAME (C)	Zone	East (Meters)	North (Meters)	Ht. AGL (Feet)	Dia. (Feet) (A)	Velocity (fps) (B)	Temp. (f) (C)	Len. (ft.) (A)	Wid. (ft.) (B)	Axis Degrees (C)
TANK11	TANK11	TANK 12: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	14R	528,720	3,162,011	21.00	0.50	0.00	90			
FANK12	TANK12	TANK 13: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)	14R	528,720	3,162,011	21.00	0.50	0.00	90			
ΓANK13	TANK13	TANK 14: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)	14R	528,720	3,162,011	21.00	0.50	0.00	90			

Note:

Permit Number:	7-CERT Registration		RN Number:	RN106501851	Date:	3/11/2024
Company Name:		Ineos USA Oil & Gas LLC			•	•

	AI	R CONTAMINANT DATA				EMISSION I	POINT DISC	CHARGE PA	RAMETER	S		
		1. Emission Point	4. UTM Co	ordinates of	Emission Point				Source			
						5.	6.	Stack Exit I) Data		7. Fugitive	s
EPN (A)	FIN (B)	NAME (C)	Zone	East (Meters)	North (Meters)	Ht. AGL (Feet)	Dia. (Feet) (A)	Velocity (fps) (B)	Temp. (f) (C)	Len. (ft.) (A)	Wid. (ft.) (B)	Axis Degrees (C)
TANK14	TANK14	TANK 15: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)	14R	528,720	3,162,011	21.00	0.50	0.00	90			
ΓANK15	TANK15	TANK 16: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)	14R	528,720	3,162,011	21.00	0.50	0.00	90			
TANK16	TANK16	TANK 17: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 1.283 TURN-OVERS/YR; 1.406 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)	14R	528,720	3,162,011	21.00	0.50	0.00	90			

Note:

Permit Number:	PI-7-CERT Registration		RN Number:	RN106501851	Date:	3/11/2024
Company Name:		Ineos USA Oil & Gas LLC	2			

Review of applications		its will be expedited by supplying all necessary information requested	d on this Tabl	le.								
	AIR	CONTAMINANT DATA				EMISSION 1	POINT DISC	CHARGE PA	RAMETER	S		
		1. Emission Point	4. UTM Co	oordinates of	Emission Point	:			Source			
EPN (A)	FIN (B)	NAME (C)	Zone	East (Meters)	North (Meters)	5. Ht. AGL (Feet)	6. Dia. (Feet) (A)	Stack Exit I Velocity (fps) (B)	Temp. (f) (C)	Len. (ft.) (A)	7. Fugitive Wid. (ft.) (B)	Axis Degrees (C)
TANK18	TANK18	TANK 19: PRODUCED WATER @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 0.026 TURN-OVERS/YR; 0.028 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: PRODUCED WATER TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	14R	528,720	3,162,011	21.00	0.50	0.00	90			
TANK19	TANK19	TANK 20: PRODUCED WATER @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 0.026 TURN-OVERS/YR; 0.028 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: PRODUCED WATER TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)	14R	528,720	3,162,011	21.00	0.50	0.00	90			
TANK20	TANK20	TANK 21: PRODUCED WATER @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 0.026 TURN-OVERS/YR; 0.028 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: PRODUCED WATER TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	14R	528,720	3,162,011	21.00	0.50	0.00	90			

Note:

Permit Number:	PI-7-CERT Registration		RN Number:	RN106501851	Date:	3/11/2024
Company Name:		Ineos USA Oil & Gas LLC	2			

and apprention		its will be expedited by supplying all necessary information requested CONTAMINANT DATA				EMISSION	POINT DISC	HARGE PA	RAMETER	S		
		1. Emission Point	4. UTM Co	oordinates of	Emission Point	t			Source			
			1			5.	6.	Stack Exit I	Data		7. Fugitive	s
EPN (A)	FIN (B)	NAME (C)	Zone	East (Meters)	North (Meters)	Ht. AGL (Feet)	Dia. (Feet) (A)	Velocity (fps) (B)	Temp. (f) (C)	Len. (ft.) (A)	Wid. (ft.) (B)	Axis Degrees (C)
C LOAD 1	C LOAD I	LOADING 1: STABILIZED CRUDE @ 8.74553752 PSIA; THROUGHPUT: 344,925.000 GALLONS/YR; 22.500 BBLS/D; 45.625 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; COMMENTS: CRUDE LOADING; VENTING TO ATMOSPHERE; 106.352(L)	14R	528,720	3,162,011	8.00	0.50	0.23	90			
PW LOAD 1	PW LOAD 1	LOADING 2: PRODUCED WATER @ 8.74553752 PSIA; THROUGHPUT: 172,462.500 GALLONS/YR; 11.250 BBLS/D; 22.813 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; COMMENTS: PRODUCED WATER LOADING; ASSUMED 1% CRUDE BY VOLUME; VENTING TO ATMOSPHERE; 106.352(L)	14R	528,720	3,162,011	8.00	0.50	0.00	90			
HT1-FLASH	HT1-FLASH	FLASH 1: CRUDE/NATURAL GAS; THROUGHPUT: 2,063.391 BBLS/YR; 5.653 BBLS/D; FLASHING FROM 110.000 PSIG TO 14.270 PSIG; PRIMARY/SECONDARY CONTROLS: TO ATMOSPHERE / TO ATMOSPHERE; COMMENTS: HEATER- TREATER CRUDE FLASH VAPORS; VENTING TO ATMOSPHERE; 106.352(1)	14R	528,720	3,162,011	30.00	1.00	0.00	80			

Note:

Permit Number:	-7-CERT Registration RN		RN Number:	RN106501851	Date:	3/11/2024
Company Name:		Ineos USA Oil & Gas LLC				•

	Al	R CONTAMINANT DATA			I	EMISSION I	POINT DISC	CHARGE PA	RAMETER	S		
		1. Emission Point	4. UTM Co	ordinates of	Emission Point				Source			
			<u> </u>			5.	6.	Stack Exit I)ata		7. Fugitive	S
EPN (A)	FIN (B)	NAME (C)	Zone	East (Meters)	North (Meters)	Ht. AGL (Feet)	Dia. (Feet) (A)	Velocity (fps) (B)	Temp. (f) (C)	Len. (ft.) (A)	Wid. (ft.) (B)	Axis Degrees (C)
HT2-FLASH	HT2-FLASH	FLASH 2: CRUDE/NATURAL GAS; THROUGHPUT: 2,063.391 BBLS/VR; 5.653 BBLS/D; FLASHING FROM 110.000 PSIG TO 14.270 PSIG; PRIMARY/SECONDARY CONTROLS: TO ATMOSPHERE / TO ATMOSPHERE; COMMENTS: HEATER-TREATER CRUDE FLASH VAPORS; VENTING TO ATMOSPHERE; 106.352(I)		528,720	3,162,011	30.00	1.00	0.00	80			
HT3-FLASH	HT3-FLASH	FLASH 3: CRUDE/NATURAL GAS; THROUGHPUT: 2,063.391 BBLS/YR; 5.653 BBLS/D; FLASHING FROM 110.000 PSIG TO 14.270 PSIG; PRIMARY/SECONDARY CONTROLS: TO ATMOSPHERE / TO ATMOSPHERE; COMMENTS: HEATER- TREATER CRUDE FLASH VAPORS; VENTING TO ATMOSPHERE; 106.352(I)		528,720	3,162,011	30.00	1.00	0.00	80			
HT4-FLASH	HT4-FLASH	FLASH 4: CRUDE/NATURAL GAS; THROUGHPUT: 2,063.391 BBLS/YR; 5.653 BBLS/D; FLASHING FROM 110.000 PSIG TO 14.270 PSIG; PRIMARY/SECONDARY CONTROLS: TO ATMOSPHERE / TO ATMOSPHERE; COMMENTS: HEATER-TREATER CRUDE FLASH VAPORS; VENTING TO ATMOSPHERE; 106.352(I)		528,720	3,162,011	30.00	1.00	0.00	80			

Note:

Permit Number:	· ·		RN Number:	RN106501851	Date:	3/11/2024
Company Name:		Ineos USA Oil & Gas LLC			•	

Review of applications		its will be expedited by supplying all necessary information requeste CONTAMINANT DATA	d on this Tabl	e.	1	EMISSION I	POINT DISC	HARGE PA	RAMETERS	S		
		1. Emission Point	4. UTM Co	ordinates of	Emission Point		01112 2100		Source	<u>~</u>		
EDM	T TOTAL	Vine			L M d	5.		Stack Exit I			7. Fugitive	
EPN (A)	FIN (B)	NAME (C)	Zone	East (Meters)	North (Meters)	Ht. AGL (Feet)	Dia. (Feet) (A)	Velocity (fps) (B)	Temp. (f) (C)	Len. (ft.) (A)	Wid. (ft.) (B)	Axis Degrees (C)
FUG	FUG	FUGITIVES 1; LIGHT-LIQUID COMPONENTS / NATURAL GAS COMPONENTS /: 8,760.000 HRS/YR; MONITORING PROGRAM: ///; COMMENTS: SITE FUGITIVE EMISSIONS; 106.352(I)	14R	528,720	3,162,011	3.00	0.01	0.01	90			
MSS 1	MSS 1	BLOW DOWNS 1: THROUGHPUT: 25.000 SCF/BLOWDOWN @ 25.00 BLOWDOWNS/MONTH; 0.008 MMSCF/YR; 300.000 HRS/YR; COMMENTS: MSS ACTIVITY; VAPORS VENTED TO ATMOSPHERE DURING MSS ACTIVITIES; 106.359	14R	528,720	3,162,011	20.00	0.50	0.00	90			
MSS 2	MSS 2	BLOW DOWNS 2: THROUGHPUT: 5,620.000 SCF/BLOWDOWN @ 0.08 BLOWDOWNS/MONTH; 0.006 MMSCF/YR; 1.000 HRS/YR; COMMENTS: MSS ACTIVITY; STORAGE TANK DE-GASSING DURING MAINTENANCE ACTIVITY; ASSUME DE-GASSING 1 TANK/YEAR; VENTS TO ATMOSPHERE; 106.359	14R	528,720	3,162,011	20.00	0.50	0.26	90			

Note:

Permit Number:	PI-7-CERT Registration		RN Number:	RN106501851	Date:	3/11/2024
Company Name:		Ineos USA Oil & Gas LLC				

11		nits will be expedited by supplying all necessary information requester R CONTAMINANT DATA				EMISSION I	POINT DISC	HARGE PA	RAMETERS	S		
		1. Emission Point	4. UTM Co	oordinates of	Emission Point				Source			
						5.	6.	Stack Exit D)ata		7. Fugitive	es
EPN (A)	FIN (B)	NAME (C)	Zone	East (Meters)	North (Meters)	Ht. AGL (Feet)	Dia. (Feet) (A)	Velocity (fps) (B)	Temp. (f) (C)	Len. (ft.) (A)	Wid. (ft.) (B)	Axis Degrees (C)
MSS 3	MSS 3	BLOW DOWNS 3: THROUGHPUT: 1,200.000 SCF/BLOWDOWN @ 1.00 BLOWDOWNS/MONTH; 0.115 MMSCF/YR; 96.000 HRS/YR; COMMENTS: MSS ACTIVITIES; MISC. ABRASIVE BLASTING/COATING ACTIVITIES; VENTS TO ATMOSPHERE; AREA SOURCE; 106.359	14R	528,720	3,162,011	3.00	0.25	0.08	90			
VENTING 1	VENTING 1	BLOW DOWNS 4: THROUGHPUT: 2.250 SCF/BLOWDOWN @ 182.50 BLOWDOWNS/MONTH; 0.005 MMSCF/YR; 2,190.000 HRS/YR; COMMENTS: PNEUMATIC DEVICE; VENTING TO ATMOSPHERE; 106.352(1)	14R	528,720	3,162,011	3.00	0.25	0.00	90			
ENG3	ENG3	LQUID FUEL ENGINE 1: HONDA GX160; SERIAL NO.: GCBPT-1482761; 4.8 HP; FUEL: GASOLINE; 4S-RB; CONTROL: NONE; 8,760.000 HRS/YR; PERMIT STATUS: UN-MODIFIED; COMMENTS: GASOLINE FIRED PUMP ENGINE; 106.512; UN-MODIFIED	-14R	528,720	3,162,011	2.00	0.08	3,080.36	1,200			

Note:

Permit Number:	PI-7-CERT Registration		RN Number:	RN106501851	Date:	3/11/2024
Company Name:		Ineos USA Oil & Gas LLC	<i>j</i>			

Review of applications		its will be expedited by supplying all necessary information requested CONTAMINANT DATA	d on this Tabl	le.		EMISSION I	POINT DISC	HARGE PA	RAMETER	S		
		1. Emission Point	4. UTM Co	ordinates of	Emission Point				Source			
EPN	FIN	NAME	Zone	East	North	5. Ht.	6. Dia.	Stack Exit D	Data Temp.	Len.	7. Fugitive Wid.	s Axis
(A)	(B)	NAME (C)	Zone	(Meters)	(Meters)	AGL (Feet)	(Feet) (A)	(fps) (B)	(f) (C)	(ft.) (A)	(ft.) (B)	Degrees (C)
ENG4	ENG4	LQUID FUEL ENGINE 2: HONDA GX160; SERIAL NO.: GCBPT-1482912; 4.8 HP; FUEL: GASOLINE; 4S-RB; CONTROL: NONE; 8,760.000 HRS/YR; PERMIT STATUS: UN-MODIFIED; COMMENTS: GASOLINE FIRED PUMP ENGINE; 106.512; UN-MODIFIED		528,720	3,162,011	2.00	0.08	3,080.36	1,200			
ENG5	ENG5	LQUID FUEL ENGINE 3: HONDA GX160; SERIAL NO.: GCBPT-1482762; 4.8 HP; FUEL: GASOLINE; 4S-RB; CONTROL: NONE; 8,760.000 HRS/YR; PERMIT STATUS: UN-MODIFIED; COMMENTS: GASOLINE FIRED PUMP ENGINE; 106.512; UN-MODIFIED	-14R	528,720	3,162,011	2.00	0.08	2,373.40	1,200			
ENG6	ENG6	LQUID FUEL ENGINE 4: HONDA GX160; SERIAL NO.: GCBPT-1482911; 4.8 HP; FUEL: GASOLINE; 4S-RB; CONTROL: NONE; 8,760.000 HRS/YR; PERMIT STATUS: UN- MODIFIED; COMMENTS: GASOLINE FIRED PUMP ENGINE; 106.512; UN-MODIFIED	-14R	528,720	3,162,011	2.00	0.08	2,373.40	1,200			

I. E	ngine Data																						
Man	ufacturer:				M	lodel	No.:						Seria	ıl No.:						Man	ufacture Da	ıte:	
HON	IDA				GΣ	X160)						GCB	PT-14	82761						4/1/	2013	
Reb	uild Date:				No	o. of	Cyli	nders:					Com	pressi	on Ra	ıtio:				EPN	:		
		NA							1							9.01:	1			ENG	13		
App	lication:		Gas	Compress	sion					Elect	tric G	eneration	on			Refriger	ratio	on			Emergency	/Stand	l-by
X	4 Stroke Cy	cle		2 Stroke	e Cycle	e		X Carb	uretec	l	X	Sparl	(Ignit	ed		D	ual	Fuel		Fuel	Injected		
	Diesel		X	Naturally	y Aspi	irated	1		Blov	ver/Pu	mp So	cavenge	ed			Turbo C	Char	ed and I.C.			Turbo Chai	rged	
	Intercooled			I.C. Wat	ter Ter	mper	ature	:								Lean Bu	urn			X	Rich Burn		
Ignit	tion/Injection	Timing:		Fix	xed:	Y	Yes								Varia	ıble:							
Man	ufacture Hors	epower Ra	ting:		4.8	8					Prop	osed H	Iorsep	ower I	Rating	;:		4.80					
										Disc	harge	Paran	neters										
Stac	k Height (Fe	et)		Sta	ack Di	iame	eter ((Feet)			Stac	ck Tem	perat	ure (d	eg. F))			Exit	Veloc	ity (FPS)		
		2.00						0.08						1,	,200.0	0					3,080.3	61	
II. I	Fuel Data		1												1				1			1	
Туре	of Fuel: Field Gas Landfill Gas LP Gas				Gas				Natural	Ga	s	Dige	ster G	as		Diesel							
Fuel	Use (BTU/bh	ıp-hr):		####		F	Heat '	Value	132,	000.00	0			(HHV	7)			132,0	00.00)		(LHV	7)
Sulfu	ır Content (gr	ains/100 s	cf - we	ight %):																			
III.	Emission Fa	ctors (Bef	ore Co	ontrol)																			
	NO x			CO					SO2					voc				F-aldehyd	e		PM1	0	
g/hp	-hr	ppmv	g/hp	-hr	pp	pmv		g/hp-hr		ppm	ıv	g/hp-	hr		ppm	v g/	/hp-	hr	ppm	v	g/hp-hr		ppmv
6.62			267.4	14				2.667E-01				6.60		1		1.	.890)			0.318		
Sour	ce of Emissio	n Factors:			X	N	Manu	facturer Da	ıta		X	AP-4	2		Other	r (specify	y):						
IV.	Emission Fac	ctors (Pos	t Cont	rol)																			
	NO x			СО					SO2					voc				F-aldehyd	e		PM1	0	
g/hp	-hr	ppmv	g/hp	-hr	pp	pmv		g/hp-hr		ppm	ıv	g/hp-	hr		ppmv	v g/	/hp-	hr	ppm	v	g/hp-hr		ppmv
6.62			267.4	14				2.667E-01				6.60				1.	.890)			0.318		
Meth	nod of Emissio		ıl:			SCR				Lean	Opei	ration			Paran	neter Ad	just	ment					
	Stratified Ch	narge			JL	.CC (Catal	yst		Othe	er (spe	ecify):											
Note	: Must subm	it a copy o	of any i	manufactı	urer co	ontro	ol infe	ormation th	at dei	nonstr	rates (control	efficie	епсу.									
Is Fo	rmaldehyde i	ncluded in	VOC	?												X		Yes			No		
V. I	Federal and S	State Stan	dards	(check al	ll that	appl	ly)						1										
X	NSPS JJJJ		X	MACT 2	ZZZZ			NSP	S IIII				Title	30 Ch	apter 1	117 - Lis	st Co	ounty:		Mc N	Mullen		
VI.	Additional I	nformatio	n																				
1.	Submit a cop	py of the e	ngine 1	manufactu	urer's s	site ra	ating	or general	rating	specif	ficatio	n data.											
2.	Submit a typ	oical fuel g	as anal	lysis, inclu	uding s	sulfu	ır con	itent and he	ating	value.	For g	gasaeoı	ıs fuel	s, prov	vide m	nole							
	percent of co	onstituents																					
3.	Submit desc	ription of a	air/fuel	ratio con	ntrol sv	vstem	ı (ma	nufacturer	inform	nation	is acc	entable	e).										

TCEQ-10195 (Revised 11/11) Table 29 Reciprocationg Engines

This form is for use by facilities subject to air quality permit requirements and

I. E	ngine Data																			
Mar	ufacturer:				Mode	el No.	:				;	Serial No.:					Manu	ufacture Da	ite:	
HON	IDA				GX16	50						GCBPT-14	82912	2				4/1/	2013	
Reb	uild Date:				No. o	f Cyli	inders:	:				Compressi	on Ra	tio:			EPN:	1		
		NA						1						9.01	:1		ENG-	4		
App	lication:		Gas (Compression	n				Ele	ectric Gei	neratio	n		Refrige	eration			Emergency	/Stand	-by
X	4 Stroke Cyc	cle		2 Stroke C	ycle		X	Carbur	eted	X	Spark	Ignited		I	Oual Fuel		Fuel I	Injected		
	Diesel		X	Naturally A	Aspirat	ed		E	Blower/I	Pump Sca	venge	d		Turbo	Chared and I.C			Turbo Chai	ged	
	Intercooled			I.C. Water	Tempo	erature	•							Lean B	urn		X	Rich Burn		
Igni	tion/Injection	n Timing:		Fixed	1:	Yes							Varia	ble:						
Man	ufacture Horse	sepower Ra	ting:		4.8					Propo	sed Ho	orsepower I	Rating	;:	4.80					
									Dis	scharge l	Param	eters								
Stac	k Height (Fee	et)		Stac	k Dian	neter	(Feet)			Stack	тетр	oerature (d	eg. F))		Exi	it Veloci	ty (FPS)		
	:	2.00					0.08					1,	200.0	0				3,080.30	51	
II. 1	Fuel Data																			
Туре	of Fuel:		Field	Gas			Landf	ill Gas		LP G	as			Natura	l Gas	Dig	gester Ga	ıs		Diesel
Fuel	Consumption	(BTU/bhp	-hr):			Heat	Value	1	32,000.	00		(HHV	7)		132	,000.0	00		(LHV)
Sulfi	ır Content (gr	ains/100 so	ef - we	ight %):			1.1141	E+00												
III.	Emission Fa	ctors (Bef	ore Co	ontrol)																
	NO x			со				S	SO2			voc			F-aldehy	de		PM1	0	
g/hp	-hr	ppmv	g/hp-	hr	ppm	v	g/hp-l	hr	pp	mv	g/hp-l	ır	ppm	v g	/hp-hr	ppr	mv	g/hp-hr		ppmv
6.62			267.4	14			2.6671	E-01			6.60			1	.890			0.318		
Sour	ce of Emission	n Factors:			X	Manu	ıfacture	er Data		X	AP-42	2	Other	r (specif	ỳ):					
IV.	Emission Fac	ctors (Pos	t Cont	rol)																
	NO x			CO				S	SO2			voc	!		F-aldehy	de		PM1	0	
g/hp	-hr	ppmv	g/hp-	hr	ppm	v	g/hp-l	hr	pp											ppmv
6.62							8r		PP	IIIV	g/hp-l	11	ppm	v g	/hp-hr	ppr	mv	g/hp-hr		
									PP	IIIV	g/hp- 1 6.60		ppm		.890	ppr		g/hp-hr 0.318		
Metl	nod of Emissio	ons Contro	1	14	NSCI	R Cata	2.6671			an Opera	6.60			1		ppr				
Metl	nod of Emission		1	14		R Cata	2.6671 alyst		Le		6.60 tion			1	.890	ppr				
		harge	1:		JLCC	Cata	2.6671 alyst lyst	E-01	Le	an Opera her (spec	6.60 ation			1	.890	ppr				
Note	Stratified Ch	harge uit a copy o	l: f any r	manufacture	JLCC	Cata	2.6671 alyst lyst	E-01	Le	an Opera her (spec	6.60 ation			1 meter Ac	.890	ppr				
Note Is Fo	Stratified Ch	harge nit a copy o	l: f any r	manufacture	JLCC	Cata	2.6671 alyst lyst	E-01	Le	an Opera her (spec	6.60 ation			1 meter Ac	.890	ppr		0.318		
Note Is Fo	Stratified Ch	harge nit a copy o	l: f any r	manufacture	JLCC	Cata	2.6671 alyst lyst	E-01	Le Ot	an Opera her (spec	6.60 ation ify):		Paran	I I I I I I I I I I I I I I I I I I I	.890 djustment	ppr		0.318 No		
Note Is Fo	Stratified Ch : Must subm ormaldehyde in	harge nit a copy of ncluded in	l: VOC?	manufacture	JLCC	Cata	2.6671 alyst lyst	E-01	Le Ot	an Opera her (spec	6.60 ation ify):	efficiency.	Paran	I I I I I I I I I I I I I I I I I I I	.890 djustment	ppr		0.318 No		
Note Is Fo	Stratified Ch. : Must subm rmaldehyde in Federal and S NSPS JJJJ	harge nit a copy of neluded in State Stane	l: VOC? lards	manufacture	JLCC er cont. hat ap	C Cata	2.6671 alyst lyst	E-01	Le Ot demon.	an Opera	6.60 ation iffy):	efficiency.	Paran	I I I I I I I I I I I I I I I I I I I	.890 djustment	ppr		0.318 No		
Note Is Fo V. 1 X VI.	Stratified Ch.: Must submirmaldehyde in Sederal and S. NSPS JJJJ Additional In	narge nit a copy of neluded in State Stane Information py of the e	l: VOC? lards	manufacture (check all t	JLCC er cont. hat ap	C Cata rol inj ply) rating	2.6671 alyst lyst formati	NSPS lateral rate	Le Ot demon.	an Opera her (spec	6.60 ation ify): control of	efficiency. Title 30 Ch	Parar	neter Ad	.890 djustment	ppr		0.318 No		
Note Is Fo V. 1 X VI.	Stratified Ch : Must subm rmaldehyde in Federal and S NSPS JJJJ Additional In Submit a cop	narge nit a copy of neluded in State Stand nformation py of the e	l: VOC? dards X n ngine r as anal	manufacture (check all t	JLCC er cont. hat ap	C Cata rol inj ply) rating	2.6671 alyst lyst formati	NSPS lateral rate	Le Ot demon.	an Opera her (spec	6.60 ation ify): control of	efficiency. Title 30 Ch	Parar	neter Ad	.890 djustment	ppr		0.318 No		

TCEQ-10195 (Revised 11/11) Table 29 Reciprocationg Engines

This form is for use by facilities subject to air quality permit requirements and

I. E	ngine Data																							
Man	ufacturer:				Mo	odel N	0.:						Seria	al No.:						Ma	nufactur	e Date:		
HON	IDA				GX	Κ 160							GCB	PT-14	82762	2						4/1/201	13	
Rebi	uild Date:				No	o of C	ylinder	·s:					Com	pressi	on Ra	tio:				EP	N:			
		NA							1							9.01	:1			EN	G5			
App	lication:		Gas (Compress	sion					Elect	tric G	eneratio	on			Refrige	eratio	on			Emerg	ency/Sta	and-by	
X	4 Stroke Cy	cle		2 Stroke	Cycle	:	X	Carb	ureted	1	X	Sparl	(Ignit	ed		I	Dual	Fuel		Fue	el Injected			
	Diesel		X	Naturally	y Aspii	rated			Blow	er/Pu	mp So	cavenge	ed			Turbo	Chai	red and I.C			Turbo	Chargeo	1	
	Intercooled			I.C. Wat	ter Ten	nperati	ure									Lean B	urn			X	Rich B	urn		
Ignit	tion/Injection	Timing:		Fix	xed:	Ye	s								Varia	ıble:								
Man	ufacture Hors	epower Ra	ting:		4.8	3					Prop	osed H	Iorsep	ower l	Rating	;:		4.80						
										Discl	harge	Paran	neters	s										
Stac	k Height (Fe	et)		Sta	ack Di	iamete	er (Feet	t)			Stac	k Tem	perat	ture (d	leg. F))			Exi	it Velo	ocity (FP	S)		
		2.00					0.08	3						1,	,200.0	0					2,3	73.398		
II. I	Fuel Data																							
Туре	of Fuel: Field Gas Landfill Gas LP G					Gas				Natura	l Ga	s	Dig	gester (Gas		Diesel							
Fuel	Consumption	(BTU/bhp	o-hr):			Не	at Valu	e	132,0	00.00)			(HHV	7)			132	,000.0	00		(L	HV)	
Sulfu	ır Content (gr	ains/100 sc	cf - we	ight %):			1.11	4E+00								•								
III.	Emission Fa	ctors (Bef	ore Co	ontrol)																				
	NO x			СО					SO2					voc	:			F-aldehyo	de		1	PM10		
g/hp	-hr	ppmv	g/hp-	hr	ppi	mv	g/hp	-hr		ppm	v	g/hp-	hr		ppm	v g	/hp-	-hr	ppi	mv	g/hp-h	r	ppmv	
6.62			267.4	14			2.66	7E-01				6.60				1	.890)			0.318			
Sour	ce of Emissio	n Factors:	•		X	Ma	nufactu	ırer Da	ta		X	AP-4	2		Other	(specif	y):				•			
IV.	Emission Fa	ctors (Post	t Cont	rol)	•							•												
	NO x			со					SO2					voc	!			F-aldehyo	de		1	PM10		
g/hp	-hr	ppmv	g/hp-	hr	ppi	mv	g/hp	-hr		ppm	v	g/hp-	hr		ppm	v g	/hp-	hr	ppi	mv	g/hp-h	r	ppmv	
6.62			267.4	14			2.66	7E-01				6.60				1	.890)			0.318			
Meth	nod of Emissi	ons Contro	1:		NS	CR C	atalyst			Lean	Oper	ration			Parar	neter A	djust	ment						
	Stratified Cl	narge			JLO	CC Ca	talyst			Othe	r (spe	ecify):												
Note	: Must subm	it a copy o	of any r	nanufactu	urer co	ontrol	informa	ation th	at den	nonstr	rates o	control	efficie	ency.										
Is Fo	rmaldehyde i	ncluded in	VOC?	,												Σ	ζ	Yes			No			
v. F	ederal and S	State Stand	dards	(check all	l that a	apply))											•						
X	NSPS JJJJ		X	MACT Z	ZZZZ			NSPS	S IIII				Title	30 Ch	apter	117 - Li	st C	ounty:		Мс	Mullen			
VI.	Additional I	nformatio	n									1												
1.	Submit a co	py of the en	ngine 1	nanufactu	ırer's si	ite rati	ng or ge	eneral 1	ating	specif	icatio	n data.												
2.	Submit a typ	oical fuel ga	as anal	ysis, inclu	uding s	sulfur o	content	and he	ating v	value.	For g	gasaeoı	ıs fuel	ls, prov	vide m	nole								
	percent of co	onstituents																						
3.	Submit desc	ription of s	air/fuel	ratio con	itrol sv	stem (manufa	cturer i	nform	ation	is acc	entable	e).											

TCEQ-10195 (Revised 11/11) Table 29 Reciprocationg Engines

This form is for use by facilities subject to air quality permit requirements and

I. E	ngine Data																			
Mar	ufacturer:				Mode	l No.	:				Seri	al No.:					Manu	ıfacture Da	ite:	
HON	IDA				GX16	50					GCE	3PT-148	82911					4/1/	2013	
Reb	uild Date:				No. of	f Cyli	nders:				Con	ıpressi	on Ra	tio:			EPN:			
		NA						1						9.01	:1		ENG	5		
App	lication:		Gas (Compression	n				Electi	ric Genera	tion			Refrige	eration			Emergency	/Stand	-by
X	4 Stroke Cyc	cle		2 Stroke C	ycle		X C	Carburete	d	X Spa	ırk Igni	ted		I	Oual Fuel		Fuel I	njected		
	Diesel		X	Naturally A	Aspirate	ed		Blo	wer/Pun	np Scaven	ged			Turbo	Chared and I.C	2.		Turbo Char	ged	
	Intercooled			I.C. Water	Tempe	rature		•						Lean B	urn		X	Rich Burn		
Igni	tion/Injection	Timing:	•	Fixe	1:	Yes							Varia	ble:			•			
Man	ufacture Horse	epower Ra	ting:	•	4.8					Proposed	Horsep	power F	Rating	;:	4.80					
									Disch	arge Par	ameter	s								
Stac	k Height (Fee	et)		Stac	k Diam	eter	(Feet)			Stack Te	mpera	ture (d	eg. F))		Exi	it Veloci	ty (FPS)		
	:	2.00					0.08					1,	200.0	0				2,373.39	98	
II. 1	Fuel Data																			
Туре	of Fuel:		Field	Gas			Landfil	l Gas		LP Gas				Natura	l Gas	Dig	gester Ga	S		Diesel
Fuel	Consumption	(BTU/bhp	o-hr):			Heat	Value	132	,000.00			(HHV	7)		132	2,000.0	00		(LHV)
Sulf	ır Content (gr	ains/100 s	cf - we	ight %):			1.114E	+00												
III.	Emission Fa	ctors (Bef	ore Co	ontrol)																
	NO x			со				SO	2			voc			F-aldehy	de		PM1	0	
g/hp	-hr	ppmv	g/hp-	hr	ppmv	,	g/hp-hi	r	ppmv	v g/h	p-hr		ppmv	v g	/hp-hr	ppi	mv	g/hp-hr		ppmv
6.62			267.4	14			2.667E	-01		6.6	0			1	.890			0.318		
Sour	ce of Emission	n Factors:			X	Manu	ıfacturer	Data		X AP	-42		Other	r (specif	y):					
IV.	Emission Fac	ctors (Pos	t Cont	rol)																
	NO x			CO				SO	,											
g/hp	-hr							302	•			voc			F-aldehy	de		PM1	0	
		ppmv	g/hp-	hr	ppmv	,	g/hp-hi		ppmv	v g/h	p-hr		ppmv	v g	F-aldehy /hp-hr	de ppi	mv	PM1 g/hp-hr	0	ppmv
6.62		ppmv	g/hp -		ppmv	,	g/hp-hi 2.667E	r		y g/h 6.6									0	ppmv
	nod of Emission		267.4		ppmv NSCF		2.667E	r	ppmv	_	0		ppmv	1	/hp-hr			g/hp-hr	0	ppmv
		ons Contro	267.4			R Cata	2.667E	r	ppmv Lean	6.6	0		ppmv	1	/ hp-hr .890			g/hp-hr	0	ppmv
Meth	nod of Emissio	ons Contro	267.4 1:	14	NSCF	R Cata	2.667E alyst	r -01	Lean Other	6.6 Operation	0		ppmv	1	/ hp-hr .890			g/hp-hr	0	ppmv
Meth	nod of Emissic	ons Contro narge	267.4 al:	nanufacture	NSCF	R Cata	2.667E alyst	r -01	Lean Other	6.6 Operation	0		ppmv	1	/hp-hr .890			g/hp-hr	0	ppmv
Meti Note	Stratified Ch	ons Contro narge nit a copy o	267.4 l: voc?	nanufacture	NSCF JLCC	R Cata	2.667E alyst	r -01	Lean Other	6.6 Operation	0		ppmv	1 meter Ac	/hp-hr .890			g/hp-hr 0.318	0	ppmv
Meti Note	Stratified Ch	ons Contro narge nit a copy o	267.4 l: voc?	nanufacture	NSCF JLCC er contr	R Cata	2.667E alyst lyst cormatio	r -01	Lean Other	6.6 Operation	ol effici	iency.	Paran	I I I I I I I I I I I I I I I I I I I	/hp-hr .890			g/hp-hr 0.318	0	ppmv
Note Is Fo	Stratified Ch : Must subm ormaldehyde in	ons Contro narge iit a copy o ncluded in	267.4 li: VOC?	nanufacture	NSCF JLCC er contr	R Cata	2.667E alyst lyst cormatio	r -01 -01 	Lean Other	6.6 Operation	ol effici	iency.	Paran	I I I I I I I I I I I I I I I I I I I	/hp-hr .890 djustment Yes			g/hp-hr 0.318		ppmv
Note Is Fo	Stratified Ch. Stratified Ch. Must subm rmaldehyde in Federal and S. NSPS JJJJ	ons Contro marge tiit a copy on neluded in State Stand	267.4 l: VOC? dards	manufacture (check all t	NSCF JLCC per contr hat app	Catal Catal rol inf	2.667E llyst lyst Cormatio	r-01 -01 m that de	Lean Other	6.6 Operation (specify)	O effici	iency.	Paran	I I I I I I I I I I I I I I I I I I I	/hp-hr .890 djustment Yes			g/hp-hr 0.318		ppmv
Note Is Fo V. I X VI.	Stratified Ch : Must subm ormaldehyde in Gederal and S NSPS JJJJ Additional In	ons Control narge iit a copy of ncluded in State Stand	267.4 li: VOC? dards of X	nanufacture (check all t	NSCF JLCC per contribution hat app ZZ r's site r	Cata Cata Cata Dly)	2.667E allyst lyst formatio or gene	r-01 In that de	Lean Other monstro	6.6 Operation (specify) ates contr	Title	iency.	Paran	neter Ad	/hp-hr .890 djustment Yes			g/hp-hr 0.318		ppmv
Note Is For V. II X VI.	stratified Ch. Stratified Ch. Must subm rmaldehyde in Federal and S NSPS JJJJ Additional In Submit a cop	ons Control marge iit a copy of included in State Stand information py of the e	267.4 l: VOC? dards (X n ngine r as anal	nanufacture (check all t	NSCF JLCC per contribution hat app ZZ r's site r	Cata Cata Cata Dly)	2.667E allyst lyst formatio or gene	r-01 In that de	Lean Other monstro	6.6 Operation (specify) ates contr	Title	iency.	Paran	neter Ad	/hp-hr .890 djustment Yes			g/hp-hr 0.318		ppmv

TCEQ-10195 (Revised 11/11) Table 29 Reciprocationg Engines

This form is for use by facilities subject to air quality permit requirements and

Ineos USA Oil & Gas LLC
Corner S Ranch Mcm B Pad
Fowlerton, Mc Mullen County, Texas
PI-7-CERT Registration

2.10 Supporting Documentation/Simulations

COMPANY Ineos USA Oil & Gas LLC
SITE NAME Corner S Ranch Mcm B Pad
DATE 03/11/24

TANK TYPE VERTICLE FIXED ROOF
TANK TYPE UN-INSULATED
TANK TYPE CONE ROOF
FILL TYPE SUBMERGED LOADING
CITY/STATE SAN ANTONIO, TEXAS
TANK PAINT BLACK
TANK CONDITION AGED
TANK CONTENTS CRUDE (RVP 10.5)
EPN TANK1: STABILIZED CRUDE

LI IV	THINKI. STABILIZED CRODE				
SYMBOL	EPN	UNITS	VALUE	AP-42 EQUATION	COMMENTS
				REFERENCE	
Q		BBLS/YR	513.281		FILLING RATE
D _{VERT}		FT	12.000		DIAMETER (VERTICLE TANKS)
H_S		FT	19.860		SHELL HEIGHT
H_L		FT	9.930		LIQUID HEIGHT (1/2 OF SHELL HEIGHT)
K_P		DIMENSIONLESS	0.750		PRODUCT FACTOR (0.75 FOR CRUDE, 1.0 FOR ALL OTHER PRODUCTS)
CALCULATE TO	OTAL TANK LOSS				
L_{T}	LT = LS + LW	LBS/YR	489.687	1-1	TOTAL ROUTINE LOSSES
L _S	$365*V_V*W_V*K_E*K_S$	LBS/YR	354.332	1-2	STANDING LOSSES
L_{W}	$V_Q^*K_N^*K_P^*W_V^*K_B$	LBS/YR	135.355	1-35	WORKING LOSSES
CALCULATE ST	TANDING LOSS				
V _v	[(PI*D ²)/4]*H _{VO}	CF	1,137.194	1-3	VAPOR SPACE VOLUME
W _v	$(M_V * P_{VA}/(R * T_V))$	LBS/CF	0.063	-	STOCK VAPOR DENSITY
K _E	DELTA T _V /T _{LA} +(DELTA P _V -DELTA		0.338	1-5	VAPOR SPACE EXAPNSION FACTOR
K _E	$0.0018*[0.7*(T_{AX}-T_{AN})+0.02*a*I]$	PER DAY	0.077	1-12	VAPOR SPACE EXAPNSION FACTOR (IF TANK LOCATION, COLOR & C
K _S	1/(1+0.053*P _{VA} *H _{VO})	DIMENSIONLESS	0.177	1-21	VENTED VAPOR SATURATION FACTOR
H _{VO-VERT}	H_S - H_L + H_{RO}	FT	10.055	1-16	VAPOR SPACE OUTAGE (VERTICLE TANKS)
T _{AX}	113 11L 11RO	DEG. R	539.500	1 10	AVERAGE DAILY MAXIMUM AMBIENT TEMPERATURE
T _{AN}		DEG. R	519.200		AVERAGE DAILY MINIMUM AMBIENT TEMPERATURE
a a		NONE	0.970		TANK SURFACE SOLAR ABSORBANCE
I		BTU/FT ² -DAY	1,477.000		AVE. DAILY TOTAL INSOLATION ON HORIZONTAL SURFACE
M_{V}		LBS/LB-MOLE	41.770		VAPOR MOLECULAR WT.
H _{RO-CONE}	1/3*0.0625*R _S	FT	0.125	1-17	ROOF OUTAGE (CONE ROOF)
R _S	3	FT	6.000	1 17	TANK SHELL RADIUS
K _S	$[1/(1+0.053*P_{VA}*H_{VO})]$	DIMENSIONLESS	0.177	1-21	VENTED VAPOR SATURATION FACTOR
P _{VA}	[(PSIA	8.746		V.P. @ AVE. DAILY LIQUID SURFACE TEMPERATURE
W _V	$M_V*P_{VA}/(R*T_V)$	LBS/CF	0.063		STOCK VAPOR DENSITY
R		PSIA*CF/(LB-MOLE			IDEAL GAS CONSTANT
T _V	$0.7*T_{AA}+0.30*T_{B}+0.009*a*I$	DEG. R	543.534		AVERAGE VAPOR TEMPERATURE
T _{AA}	$(T_{AX}+T_{AN})/2$	DEG. R	529.350		AVE. DAILY AMBIENT TEMP.
T _B	T _{AA} +0.003*a*I	DEG. R	533.648	1-31	LIQUID BULK TEMP.
T _{LA}	$0.4*T_{AA}+0.6*T_{B}+0.005*a*I$	DEG. R	539.092	1-28	AVE. DAILY LIQUID SURFACE TEMP
DELTA T _V	0.7*DELTA T _A +0.02*a*I	DEG. R	42.864	1-7	AVE. DAILY VAPOR TEMP. RANGE
DELTA T _A	T _{AX} -T _{AN}	DEG. R	20.300	1-7	AVE. DAILY AMBIENT TEMP. RANGE
P _{VX}	- AX - AN	PSIA	9.610	1-9	AVE. DAILY MAXIMUM VAPOR PRESSURE
P _{VN}		PSIA	8.121	1-9	AVE. DAILY MINIMUM VAPOR PRESSURE
P _{BP}		PSIA	0.030	1 /	BREATHER VENT PRESSURE SETTING
P _{BV}		PSIA	(0.030)		BREATHER VENT VACUUM SETTING
DELTA P _V	P_{VX} - P_{VN}	PSIA	1.489	1-9	AVE. DAILY VAPOR PRESSURE RANGE
DELTA P _B	P _{BP} -P _{BV}		0.060	1-10	BREATHER VENT PRESSURE SETTING RANGE
P _A	■ BP ▲ BV	PSIA	14.270	1-10	ATMOSPHERIC PRESSURE
T _{LX}	T_{LA} +0.25*DELTA T_V	DEG. R	549.808		MAXIMUM LIQUID TEMPERATURE
T _{LX}	T_{LA} +0.25*DELTA T_{V} T_{LA} -0.25*DELTA T_{V}	DEG. R	549.808 528.376		
	ILA-0.23 DELIA IV				MINIMUM LIQUID TEMPERATURE
T _{LX}		DEG. F	90.108		MAXIMUM LIQUID TEMPERATURE
T_{LN}		DEG. F	68.676		MINIMUM LIQUID TEMPERATURE

COMPANY SITE NAME DATE TANK TYPE TANK TYPE TANK TYPE TANK TYPE FILL TYPE CITY/STATE TANK PAINT	Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad 03/11/24 VERTICLE FIXED ROOF UN-INSULATED CONE ROOF SUBMERGED LOADING SAN ANTONIO, TEXAS BLACK				
TANK CONDITION	AGED				
TANK CONTENTS EPN	CRUDE (RVP 10.5) TANK1: STABILIZED CRUDE				
CALCULATE WOR					
L_{W}	$V_Q*K_N*K_P*W_V*K_B$	LBS/YR	135	1-35	WORKING LOSSES
V_Q	5.614*Q	CF/YR	2,882		NET WORKING LOSS THROUGHPUT
K _N		DIMENSIONLESS	1.00 1.00		WORKING LOSS TURNOVER SATURATION FACTOR (FOR FLASHING TA
$egin{array}{c} K_{ m B} \ K_{ m P} \end{array}$		DIMENSIONLESS DIMENSIONLESS	0.750		VENT SETTING CORRECTION FACTOR; FOR OPEN VENTS & +/-0.03 PSIG PRODUCT FACTOR (1.0 FOR CRUDE, 0.75 FOR ALL OTHER PRODUCTS)
W_{V}	$(M_V*P_{VA}/(R*T_V)$	LBS/CF	0.063		STOCK VAPOR DENSITY
•	V VA V				
VADOD DDESSUDI	E CALCULATIONS AT MAX. LIQUI	D TEMBED ATUBE			
T _{LX}	CALCULATIONS AT MAX. EIQUI	DEG. F	90.000		MAXIMUM LIQUID TEMPERATURE LOWER LIMIT
T _{LX}		DEG. F	100.000		MAXIMUM LIQUID TEMPERATURE UPPER LIMIT
T_{LN}		DEG. F	60.000		MINIMUM LIQUID TEMPERATURE LOWER LIMIT
T_{LN}		DEG. F	70.000		MINIMUM LIQUID TEMPERATURE UPPER LIMIT
DEG. F 40.000 50.000 60.000 70.000 80.000 90.000 100.000	PSIA 6.600 7.100 7.600 8.200 8.800 9.600 10.500				
	DEG. F (LOWER LIMIT)	DEG. F (UPPER LIMIT	т VP @ Т	P_{VX}	
T_{LX}	90.000	100.000	9.6000	9.6097	
$T_{ m LN}$	60.000	70.000	VP @ T _{LN} 7.6000	P _{VN} 8.12058	
VADOD DDESSIDE	E CALCULATIONS AT AVE. LIQUI	n TEMPEDATUDE			
T _{LA}	$0.4*T_{AA}+0.6*T_{B}+0.005*a*I$	DEG. F	79.0923		AVE. DAILY LIQUID SURFACE TEMP
T _{LX}	5	DEG. F	70.000		AVE. DAILY LIQUID SURFACE TEMP LOWER LIMIT
T_{LX}		DEG. F	80.000		AVE. DAILY LIQUID SURFACE TEMP UPPER LIMIT
DEG. F 40.000 50.000 60.000 70.000 80.000 90.000 100.000	PSIA 6.600 7.100 7.600 8.200 8.800 9.600 10.500				
T_{LA}	DEG. F (LOWER LIMIT) 70.000	DEG. F (UPPER LIMIT 80.000	T VP @ T _{LA} 8.2000	P _{VA} 8.7455	

COMPANY Ineos USA Oil & Gas LLC
SITE NAME Corner S Ranch Mcm B Pad
DATE 03/11/24

TANK TYPE VERTICLE FIXED ROOF
TANK TYPE UN-INSULATED
TANK TYPE CONE ROOF
FILL TYPE SUBMERGED LOADING
CITY/STATE SAN ANTONIO, TEXAS
TANK PAINT BLACK
TANK CONDITION AGED
TANK CONTENTS CRUDE (RVP 10.5)
EPN TANK17: PRODUCED WATER

LI IN	TAINKIT. TRODUCED WATER				
SYMBOL	EPN	UNITS	VALUE	AP-42 EQUATION	COMMENTS
				REFERENCE	
Q		BBLS/YR	1,026.563		FILLING RATE
D_{VERT}		FT	12.000		DIAMETER (VERTICLE TANKS)
H_S		FT	19.860		SHELL HEIGHT
H_L		FT	9.930		LIQUID HEIGHT (1/2 OF SHELL HEIGHT)
K_P		DIMENSIONLESS	0.750		PRODUCT FACTOR (0.75 FOR CRUDE, 1.0 FOR ALL OTHER PRODUCTS)
CALCULATE TO	OTAL TANK LOSS				
L _T	LT = LS + LW	LBS/YR	625.041	1-1	TOTAL ROUTINE LOSSES
L _S	$365*V_V*W_V*K_E*K_S$	LBS/YR	354.332	1-2	STANDING LOSSES
L_{W}	$V_{Q}*K_{N}*K_{P}*W_{V}*K_{B}$	LBS/YR	270.709	1-35	WORKING LOSSES
CALCULATE ST	FANDING LOSS				
V _v	[(PI*D ²)/4]*H _{VO}	CF	1,137.194	1-3	VAPOR SPACE VOLUME
$\mathbf{w}_{\mathbf{v}}$	$(M_V*P_{VA}/(R*T_V)$	LBS/CF	0.063		STOCK VAPOR DENSITY
K _E	DELTA T _V /T _{LA} +(DELTA P _V -DELTA		0.338	1-5	VAPOR SPACE EXAPNSION FACTOR
K _E	$0.0018*[0.7*(T_{AX}-T_{AN})+0.02*a*I]$	PER DAY	0.077	1-12	VAPOR SPACE EXAPNSION FACTOR (IF TANK LOCATION, COLOR & C
K _S	1/(1+0.053*P _{VA} *H _{VO})	DIMENSIONLESS	0.177	1-21	VENTED VAPOR SATURATION FACTOR
H _{VO-VERT}	H_S - H_L + H_{RO}	FT	10.055	1-16	VAPOR SPACE OUTAGE (VERTICLE TANKS)
T _{AX}	S E RO	DEG. R	539.500		AVERAGE DAILY MAXIMUM AMBIENT TEMPERATURE
T _{AN}		DEG. R	519.200		AVERAGE DAILY MINIMUM AMBIENT TEMPERATURE
a		NONE	0.970		TANK SURFACE SOLAR ABSORBANCE
I		BTU/FT ² -DAY	1,477.000		AVE. DAILY TOTAL INSOLATION ON HORIZONTAL SURFACE
$M_{\rm V}$		LBS/LB-MOLE	41.770		VAPOR MOLECULAR WT.
H _{RO-CONE}	1/3*0.0625*R _S	FT	0.125	1-17	ROOF OUTAGE (CONE ROOF)
R _s	J	FT	6.000		TANK SHELL RADIUS
K _S	$[1/(1+0.053*P_{VA}*H_{VO})]$	DIMENSIONLESS	0.177	1-21	VENTED VAPOR SATURATION FACTOR
P _{VA}	11. 10/2	PSIA	8.746		V.P. @ AVE. DAILY LIQUID SURFACE TEMPERATURE
W _v	$M_{V}*P_{VA}/(R*T_{V})$	LBS/CF	0.063		STOCK VAPOR DENSITY
R	Y VA V	PSIA*CF/(LB-MOLE			IDEAL GAS CONSTANT
T_V	$0.7*T_{AA}+0.30*T_{B}+0.009*a*I$	DEG. R	543.534		AVERAGE VAPOR TEMPERATURE
T_{AA}	$(T_{AX}+T_{AN})/2$	DEG. R	529.350		AVE. DAILY AMBIENT TEMP.
T _B	$T_{AA} + 0.003 * a * I$	DEG. R	533.648	1-31	LIQUID BULK TEMP.
T_{LA}	$0.4*T_{AA}+0.6*T_{B}+0.005*a*I$	DEG. R	539.092	1-28	AVE. DAILY LIQUID SURFACE TEMP
DELTA T _V	0.7*DELTA T _A +0.02*a*I	DEG. R	42.864	1-7	AVE. DAILY VAPOR TEMP. RANGE
DELTA T _A	T_{AX} - T_{AN}	DEG. R	20.300	1-7	AVE. DAILY AMBIENT TEMP. RANGE
P _{VX}	AA AN	PSIA	9.610	1-9	AVE. DAILY MAXIMUM VAPOR PRESSURE
P _{VN}		PSIA	8.121	1-9	AVE. DAILY MINIMUM VAPOR PRESSURE
P _{BP}		PSIA	0.030	•	BREATHER VENT PRESSURE SETTING
P _{BV}		PSIA	(0.030)		BREATHER VENT VACUUM SETTING
DELTA P _V	P_{VX} - P_{VN}	PSIA	1.489	1-9	AVE. DAILY VAPOR PRESSURE RANGE
DELTA P _B	P _{BP} -P _{BV}	· · -	0.060	1-10	BREATHER VENT PRESSURE SETTING RANGE
P _A	D1	PSIA	14.270		ATMOSPHERIC PRESSURE
T _{LX}	T_{LA} +0.25*DELTA T_V	DEG. R	549.808		MAXIMUM LIQUID TEMPERATURE
T _{LN}	T_{LA} -0.25*DELTA T_{V}	DEG. R	528.376		MINIMUM LIQUID TEMPERATURE
T _{LX}	-LA VIDO DEDITI TV	DEG. F	90.108		MAXIMUM LIQUID TEMPERATURE
T _{LN}		DEG. F	68.676		MINIMUM LIQUID TEMPERATURE
*LN		DEG. F	00.070		MINIMUM LIQUID TEMFERATURE

COMPANY SITE NAME DATE TANK TYPE TANK TYPE TANK TYPE FILL TYPE CITY/STATE TANK PAINT TANK CONDITION	Ineos USA Oil & Gas LLC Corner S Ranch Mcm B Pad 03/11/24 VERTICLE FIXED ROOF UN-INSULATED CONE ROOF SUBMERGED LOADING SAN ANTONIO, TEXAS BLACK AGED				
TANK CONTENTS	CRUDE (RVP 10.5)				
EPN CALCULATE WOR	TANK17: PRODUCED WATER				
L _W	V _O *K _N *K _P *W _V *K _B	LBS/YR	271	1-35	WORKING LOSSES
$v_{Q}^{"}$	5.614*Q	CF/YR	5,763		NET WORKING LOSS THROUGHPUT
K _N	_	DIMENSIONLESS	1.00		WORKING LOSS TURNOVER SATURATION FACTOR (FOR FLASHING TA
K_B		DIMENSIONLESS	1.00		VENT SETTING CORRECTION FACTOR; FOR OPEN VENTS & +/-0.03 PSIG
K_P		DIMENSIONLESS	0.750		PRODUCT FACTOR (1.0 FOR CRUDE, 0.75 FOR ALL OTHER PRODUCTS)
W_V	$(M_V^*P_{VA}/(R^*T_V)$	LBS/CF	0.063		STOCK VAPOR DENSITY
VADOD DDEGGLIDE	CALCII ATIONE AT MAY LIGHT	D TEMPED ATURE			
T _{LX}	CALCULATIONS AT MAX. LIQUI	DEG. F	90.000		MAXIMUM LIQUID TEMPERATURE LOWER LIMIT
T _{LX}		DEG. F	100.000		MAXIMUM LIQUID TEMPERATURE UPPER LIMIT
T _{LN}		DEG. F	60.000		MINIMUM LIQUID TEMPERATURE LOWER LIMIT
T _{LN}		DEG. F	70.000		MINIMUM LIQUID TEMPERATURE UPPER LIMIT
- LIV		520.1	70.000		
DEG. F	PSIA				
40.000	6.600				
50.000	7.100				
60.000	7.600				
70.000 80.000	8.200 8.800				
90.000	9.600				
100.000	10.500				
_	DEG. F (LOWER LIMIT)	DEG. F (UPPER LIMIT		P_{VX}	
T_{LX}	90.000	100.000	9.6000	9.6097	
			VP @ T _{I.N}	D	
т	60.000	70.000	7.6000	P _{VN} 8.12058	
T_{LN}	60.000	70.000	7.0000	8.12038	
	CALCULATIONS AT AVE. LIQUII	TEMPERATURE			
T_{LA}	$0.4*T_{AA}+0.6*T_{B}+0.005*a*I$	DEG. F	79.0923		AVE. DAILY LIQUID SURFACE TEMP
T_{LX}		DEG. F	70.000		AVE. DAILY LIQUID SURFACE TEMP LOWER LIMIT
T_{LX}		DEG. F	80.000		AVE. DAILY LIQUID SURFACE TEMP UPPER LIMIT
DEG. F	PSIA				
40.000	6.600				
50.000	7.100				
60.000	7.600				
70.000	8.200				
80.000	8.800				
90.000 100.000	9.600 10.500				
100.000	10.500				
	DEG. F (LOWER LIMIT)	DEG. F (UPPER LIMIT	TVP @ T _{LA}	P_{VA}	
T_{LA}	70.000	80.000	8.2000	8.7455	