Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad Tilden, Mc Mullen County, Texas PI-7-CERT Registration

30 TAC 106. 352(1) 30 TAC 106. 359

TCEQ CN: CN605746593 TCEQ RN: RN106552607 Registration No.: 106961

Prepared By: EnTech Consulting Corp. 21 Waterway Ave., Ste. 300 The Woodlands, Texas 77380

Micheal K. Harris, P.E. Senior Air Project Manager (936) 443-5332

Date: 02/26/2024

TABLE OF CONTENTS

1 ADMINISTRATIVE SECTION

- 1.1 Cover Letter
- 1.2 Core Data Form
- 1.3 PI-7-CERT Registration
- 1.4 Copy of Fee Payment (if applicable)

2 TECHNICAL SECTION

- 2.1 Introduction
- 2.2 Process Description
- 2.3 Emissions Summary (MAERT)
- 2.4 Emission Calculations
- 2.5 NAAQS Review (if required)
- 2.6 Regulatory Analysis
- 2.7 Analytical Data
- 2.8 Maps
- 2.9 Checklists/Tables
- 2.10 Supporting Documentation/Simulations

Ineos USA Oil & Gas LLC
Mckenzie-Foley Unit B MCM Pad
Tilden, Mc Mullen County, Texas
PI-7-CERT Registration

1 ADMINISTRATIVE SECTION

02/26/2024

Texas Commission on Environmental Quality (TCEQ) Air Permits Initial Review Team (APIRT) 12100 Park 35 Circle Mail Code 161; Building C, Third Floor Austin, Texas 78753

Subject: Ineos USA Oil & Gas LLC

1164 FM 2367, Carrizo Springs, Texas 78834

Mckenzie-Foley Unit B MCM Pad

CN: CN605746593 RN: RN106552607

Permit No.: 106961 PI-7-CERT Registration

The Executive Director:

Please find attached the following documents:

• PI-7-CERT Registration for the above referenced facility.

Please call for additional information or further assistance.

Sincerely,

Jase Perry SHE-R Programs Manager 1164 FM 2367 Carrizo Springs, Texas 78834

Phone No.: 512-917-2685

Email: jase.perry@ineos.com

TCEQ Core Data Form

TCEQ Use Only	

 $For detailed instructions \ regarding \ completion \ of \ this \ form, please \ read \ the \ Core \ Data \ Form \ Instructions \ or \ call \ 512-239-5175.$

SECTION I: General Information

SECTION I: Gener	ai imormau	on									
1. Reason for Submission	(if other	is checked plea	se describe in space	e provide	ede)						
New Permit, Registration	on or Authorization	(Core Data Fo	m should be subm	itted with	the progr	am application	1)				
Renewal (Core Data Fo	rm should be subm	nitted with the re	enewal form)		X Other PI-7-CERT Registration						
2. Customer Reference Numb	per (if issued)						ed Entity R	Refernce Number (if	issued)		
CN CN605746593			is link to search for mbers in Centray R			RN RN106552	607				
SECTION II: Custo	mer Informa	tion									
4. General Customer Informa			Date for Custome	er Inforn	nation Up	dates (mm/de	d/yyyy)		02/2	6/2024	
New Customer		X	Update to Custome	er Inform	ation	Cha	inge in Re	gulated Entity Own	ership		
Change in Legal Name											
The Custome Name								rrent and acti	ve with	the	
Texas Secretary of											
Customer Legal Name (if a	ın individual, print	last name fist:	ex: Doe, John)	If n	ew Custor	ner, enter prev	rious Custo	omer below			
Ineos USA Oil & Gas LLC											
7. TX SOS Filing Number (if a	pplicable)		Franchise Tax ID	(11 digi	its)			ID (9 digits)		NS Number (if	applicable)
803300949 11. Type of Customer:	Corporation	320705	Individual				KNOW Partnershi			KNOWN Limited	
11 Type of Gustomer.						11		r	21		
Government: City	County Fed	eral State	Other		Sole Pro	prietorship		Other:			
12. Number of Employees 0-20	21-100	X 101-250	251-	500		501 +	13.	Independently Ov X Yes		Operated? No	
14. Customer Role (Proposed of	or Actual) - as it rel	ates to the Regu	lated Entity listed	on this fo	rm. Pleas	e check only o	one of the	following:			
Owner	Оро	erator	X	Owner &	& Operator	r					
Occupational Licensee	Res	ponsible Party		Volunta	ry Cleanu _l	Applicant		Other			
15. Mailing Address	1164 FM 2367										
	City Carrizo	Springs		State	Texas		ZIP	78834		ZIP +4	
16. Country Mailing Informat	ion (if outside US	A)		17. E-N	Mail Addı	ess (if applica	ble)				
				jase.pe	rry@ine	os.com					
18. Telephone Number 512-917-2685	19.	Extensionn o	Code		20. Fax	Number (if a	applicable)				
012 317 2000	<u> </u>				ı						
SECTION III: Regul 21. General Regulated Entity				elow, thi	s form sho	ould be accom	panied by	a permit application	1).		
New Regulated Entity		date to Regulate			_	o Regulated E					
The Regulated Enti of organizational en	-	_	-	ı orde	r to me	et TCEQ A	Agency	Data Standar	ds (ren	noval	
22. Regulated Entity Name (na		re the regulated	action is taking pla	ice).							
Mckenzie-Foley Unit B	MCM Pad										

TCEQ Core Data Form (continued)

23.	Street Address of Regulated Entity:													
	(No P.O.Box)													
			C	ity				State			Zip		Zip + 4	
24.	County				Mc Mullen	<u> </u>								
	County					ysical Location if n	o street addres	ss is provi	ded.					
25.	Description to Physical Location	:				72 & Hwy 16 go W If for 0.8 mi to site of		or 5.1 mi t	o Pertle Rd tu	rn R go 1.6	5 mi to lea	ase entrance w	v/cattle guard en	trance has game-proof 8
26.	Nearest City								Sta				Nearest ZIP	Code
27	Tilden Latitued (N) In I	looimal.	129	8.502				Texas 28. Longitude (W) In Decimal:			1. 00	3.644	78072	
27.	Lautueu (N) III L	ecinai.	20	0.302				20. Lui	igitude (vv)	in Decima	ii. -/C	.044		
Deg 28.	rees 00		.00			Seconds 7.70		Degrees -98.00		38.00			Seconds 38.80	
29.	Primary SIC Cod	e	30. Se	econda	ry SIC Code	(4 digits)	31. Primar	y NAICS	Code (5 or 6	digits)	32.	Secondary I	NAICS Code (5	or 6 digits)
131	1						211111							
33.	What is the Prima	ary Busi	ness of t	this ent	ity? (Please d	do not repeatr the SI	IC or NAICS of	description	1)		Į.			
Oil	production well													
34.	Mailing Address:		1	164 FI	M 2367									
			-											
			C	:4	Carrizo Spi			State	Texas		7:	78834	Zip + 4	Π
								State	Texas		Zip	70034	Z1p + 4	
35.	Email Address:		ja	ise.per	ry@ineos.c	om								
36.	Telephone Numb	er				37. Ext	ension or Co	de			38. Fax	Number (if	applicable)	
512	2-917-2685													
39.	TCEO Programs	and ID !	Number	s. Che	ck all Progran	ns and write in the p	permits/registra	ation num	bers that will b	oe affected	by the up	dates submitt	ed on this	
	form or the update			le. If y	our Program is	s not listed, check o	ther and write	it in. See		a Form ins	tructions f	for additional	guidance.	
	Dam Safety			Dist	ricts		Edwards Aqu	uiter		Industria	l Hazardo	ous Waste	Municipa	al Solid Waste
17	h. a n .			0.00			ln 1 a			Invia			la	
X ##	New Source Revie	w - Air		OSS	F		Petroleum St	orage Tan	k	PWS			Sludge	
	la.			m: .1	** **		m:			II. 10"			Tropper	
	Stormwater			Title	V - Air		Tires			Used Oi	l .		Utilities	
	l				***		I			lere n			los	
	Voluntary Cleanup			was	te Water		Wastewater A	Agricultur	e	Water R	ights		Other:	
SE	CTION IV:	Prepa	rer I	nforn	nation									
		Perry							41. Title:	SHE-R I	Programs	Manager		
42.	Telephone Numb	er		43.	Extension or	· Code	44. Fa:	x Number	(if applicable	e)	45. E-n	nail Address		
512	2-917-2685										jase.pe	rry@ineos.o	com	
QT.	CCTION V:	A+1.	orizo-	ı Çi~-	nature									
						ledge, that the infor	mation provid	ed in this	form is true an	nd complet	e, and tha	t I have signa	ture authority to	
						I, Field 9 and/or as r			to the ID numl	bers identi	fied in fie	ld 39.	-	
	mpany:				as LLC	on on who should s	2511 mis 1011II		b Title:	SHE-R	Prograi	ns Manager	r	
Na	me (In Print):	Jase Pe	erry									Phone:	512-917-26	585
Sig	nature:											Date:		

Texas Commission on Environmental Quality Form PI-7-CERT Certification and Registration for Permits by Rule (Page 1)

The TCEQ requires that a complete Core Data Form bearing an original signature be submitted on all incoming applications unless a Regulated Entity and Customer Reference Number have been issued by the TCEQ and no core data information has changed. For more information regarding the Core Data Form, call (512) 239-5175 or go to the TCEQ Web site at www.tceq.texas.gov/permitting/central_registry/guidance.html.

I. REGISTRANT INFORMATION								
A. Company or Other Legal Customer Name: Ineos US	SA Oil & C	Gas LLC						
B. Company Official Contact Name: X Mr. Mrs.	Ms.	Other						
Name: Jase Perry	-	<u> </u>						
Title: SHE-R Programs Manager								
Mailing Address: 1164 FM 2367								
State: Texas Zip Code: 78834								
Phone: 512-917-2685	Fax:							
Email: jase.perry@ineos.com								
All PBR registration responses will be sent via e-mail.								
C. Technical Contact Name: X Mr. Mrs.	Ms.	Other						
Name: Micheal K Harris, P.E.	Name: Micheal K Harris, P.E.							
Title: Senior Air Project Manager								
Company: EnTech Consulting Corp.								
Mailing Address: 21 Waterway Ave.								
City: The Woodlands State:	Texas		Zip Code:	77380				
Phone: 936-443-5332 Fax:								
Email: mike.harris@entechservice.com								
II. FACILITY AND SITE INFORMATION								
A. Name/Type of Facility:								
Facility Name: Mckenzie-Foley Unit B MCM Pad								
Type of Facility: Oil production well			X	Permanent	Temporary			
For portable units, please provide the serial number of the equipment being	ıg authorized	l below.						
Serial No.:	Serial No.: Serial No.:							
B. Facility Location Information								
Street Address:								
If there is no street address, provide written driving directions to the site a county, and ZIP code for the site (attach description if additional space is	-	he closest city or town,						
From the intx of Hwy 72 & Hwy 16 go W on Hwy 72 for 5.1 m gate go thru gate NW for 0.8 mi to site on R	ii to Pertle l	Rd turn R go 1.6 mi to lease	entrance v	v/cattle guard entra	ance has game-proof 8 ft			
City: Tilden	County:	Mc Mullen		ZIP Code: 7807	2			

Texas Commission on Environmental Quality Form PI-7-CERT

Certification and Registration for Permits by Rule

(Page 2)

C. TCEQ Core Data Form Is the Core Data Form (TCEQ Form Number 10400) attached? If "NO," provide customer reference number (CN) and regulated entity number (RN) below. Customer Reference Number (CN): CN605746593 Regulatory Entity Number (RN): RN106552607									
is the Core Data Form (TCEQ Form Number 10400) attached? If "NO." provide eastomer reference number (CN) and regulated entity number (RN) below. Costomer Reference Number (CN): CN605746593 Regulatory Entity Vamber (RN): RN106552607 D. TCEQ Account Identification Number (if known): E. Type of seison:	II. FACILITY AND SITE INFORMATION (continued)								
If "NO," provide customer reference number (CN) and regulated entity number (RN) below. Customer Reference Number (CN): CN605746593 Regulatory Entity Number (RN): RN106552607 D. TCEQ Account Identification Number (if known): E. Type of action: maint application X Caunge to Registration For Change to Registration provide the Registration Number: 106.961.000 F. PBR numbers(s) claimed under 30 TAC Chapter 106 8 106. 8 106. 8 106. 106. 9 106. 9 106. 0 Historical Standard Exemption or PBR Are you claiming an historical standard exemption or PBR? Yes X No If "YES," enter rule number(s) and ussociated effective date in the spaces provided below. Rule Number(s) Effective Date Effective Date If Pevious Standard Exemption or PBR Registration Number Is this authorization for a change to an existing facility previously authorized under a standard exemption and PBR Registration Number In this authorization for a change to an existing facility previously authorized under a standard exemption or PBR? X Yes No If "YES," enter previous standard exemption number(s) and PBR Registration number(s) and pBR Registration Nyumber In this authorization for a change to an existing facility previously authorized under a standard exemption or PBR? X Yes No If "YES," enter previous standard exemption number(s) and PBR Registration number(s) and PBR Registration Nyumber In this authorization of the paces provided below. Standard Exemption and PBR Registration Nyumber(s) Effective Date Registration Nyumber In the pace of the pace	C. TCEQ Core Data Form						•		
Costomer Reference Number (CN): CN605746593 Regulatory Entity Number (RN): EN106552607 D. TCEQ Account Identification Number (10 (November 10 (Novem	Is the Core Data Form (TCEQ Form Number 10400) attached?					X	Yes		No
Regulatory Entity Number (RN): RN106552607 D. TCEQ Account Identification Number (if known): E. Type of axion: Initial Application X Change to Registration Number: 106,961,000 For Change to Registration provide the Registration Number: 106,961,000 For Change to Registration provide the Registration Number: 106,961,000 For Change to Registration Power 106,961,000 For Change to Registration provide the Registration Number: 106,961,000 For Change to Registration Power 106,961,000 For Change to Registration Power 106,961,000 For Change to Registration Number: 106,961,000 For Change to Regi	If "NO," provide customer reference number (CN) and regulate	ed entity number (I	RN) belo	w.					
D. TCEQ Account Identification Number (if known): E. Type of action: Initial Application X Change to Registration Provide the Registration Number: 106.961.000	Customer Reference Number (CN): CN605746593								
E. Type of action: Baintal Application X Change to Registration	Regulatory Entity Number (RN): RN106552607								
For Change to Registration provide the Registration Number: 106,961,000 F. PBR numbers(s) claimed under 30 TAC Chapter 106 \$ 106. 352(1) \$ 106. \$ 106. 145 or 165 or 16	D. TCEQ Account Identification Number (if known):								
F. PBR number(s) claimed under 30 TAC Chapter 106 \$ 106.	E. Type of action: Initial Application X Char	nge to Registration							
\$ 106. 352(l) \$ 106. \$	For Change to Registration provide the Registration Number:	106,961.000							
\$ 106. 359 \$ 106. \$ 106. \$ 10	F. PBR numbers(s) claimed under 30 TAC Chapter 106								
8 106. G. Historical Standard Exemption or PBR Are you claiming an historical standard exemption or PBR? Rule Number(s) Rule Number(s) Rule Number(s) H. Previous Standard Exemption or PBR Registration Number Is this authorization for a change to an existing facility previously authorized under a standard exemption or PBR? If "Yes." and a sociated effective date in the spaces provided below. Beffective Date If "Yes." a Yes. No If "Yes." a Yes. No If "Yes." a Yes. No If "Yes." a No If "Yes." enter previous Standard Exemption or PBR Registration Number Is this authorization for a change to an existing facility previously authorized under a standard exemption or PBR? If "Yes." enter previous standard exemption number(s) and PBR registration number(s), and associated effective dates in the spaces provided below. Standard Exemption and PBR Registration Njumber(s) In (3.52(1)	§ 106. 352(I)								
G. Historical Standard Exemption or PBR Are you claiming an historical standard exemption or PBR? Rule Number(s) Rule Number(s) Rule Number(s) Effective Date H. Previous Standard Exemption or PBR Registration Number Is this authorization for a change to an existing facility previously authorized under a standard exemption or PBR? If "YES," enter previous standard exemption number(s) and PBR registration number(s), and associated effective dates in the spaces provided below. Standard Exemption and PBR Registration Nymber (s) Effective Date Registration Nymber (106.352(l) 11/22/2012 106961 106.359 09/10/2013 106961 106.512 06/13/2001 106961 L. H. Other Facilities at this Site Authorized by Standard Exemption, PBR, or Standard Permit Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit registration number(s), and associated effective dates in the spaces provided below.	§ 106. 359			§ 106.					
Are you claiming an historical standard exemption or PBR? If "YES," enter rule number(s) and associated effective date in the spaces provided below. Rule Number(s) Rule Number(s) Effective Date H. Previous Standard Exemption or PBR Registration Number is this authorization for a change to an existing facility previously authorized under a standard exemption or PBR? X Yes No If "YES," enter previous standard exemption number(s) and PBR registration number(s), and associated effective dates in the spaces provided below. Standard Exemption and PBR Registration Njumber(s) Effective Date Registration Number 106.352(1) 11/22/2012 106961 106.492 09/04/2000 106961 106961 106.512 06/13/2001 106961 L. H. Other Facilities at this Site Authorized by Standard Exemption, PBR, or Standard Permit Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit? Yes X No If "YES," enter standard exemption number(s), PBR registration number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.	§ 106.	§ 106.							
If "YES," enter rule number(s) and associated effective date in the spaces provided below. Rule Number(s) Effective Date H. Previous Standard Exemption or PBR Registration Number Is this authorization for a change to an existing facility previously authorized under a standard exemption or PBR? If "YES," enter previous standard exemption number(s) and PBR registration number(s), and associated effective dates in the spaces provided below. Standard Exemption and PBR Registration Njumber(s) Effective Date Registration Number 106.352(l) 11/22/2012 106961 106.359 09/10/2013 106961 106.961 106.91 106961 106961 106961 106961 106961 106961 106961 106961 106961 106961 106961 106961 106961 106961 106961 106961 106961 106961 106961	G. Historical Standard Exemption or PBR					_			
Rule Number(s) Effective Date H. Previous Standard Exemption or PBR Registration Number Is this authorization for a change to an existing facility previously authorized under a standard exemption or PBR? If "YES," enter previous standard exemption number(s) and PBR registration number(s), and associated effective dates in the spaces provided below. Standard Exemption and PBR Registration Njumber(s) Effective Date Registration Number 106.352(1) 11/22/2012 106961 106.359 09/10/2013 106961 106.91 106.92 09/04/2000 106961 106.512 06/13/2001 106961 1. H. Other Facilities at this Site Authorized by Standard Exemption, PBR, or Standard Permit Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit? Yes X No If "YES," enter standard exemption number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.	Are you claiming an historical standard exemption or PBR?					Yes		X No	
H. Previous Standard Exemption or PBR Registration Number Is this authorization for a change to an existing facility previously authorized under a standard exemption or PBR? X Yes No If "YES," enter previous standard exemption number(s) and PBR registration number(s), and associated effective dates in the spaces provided below. Standard Exemption and PBR Registration Njumber(s) Effective Date Registration Number 106.352(l) 11/22/2012 106961 106.359 09/10/2013 106961 106.492 09/04/2000 106961 106.512 06/13/2001 106961 L. H. Other Facilities at this Site Authorized by Standard Exemption, PBR, or Standard Permit Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit? Yes X No If "YES," enter standard exemption number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.	If "YES," enter rule number(s) and associated effective date in	the spaces provide	d below.						
Is this authorization for a change to an existing facility previously authorized under a standard exemption or PBR? X Yes No If "YES," enter previous standard exemption number(s) and PBR registration number(s), and associated effective dates in the spaces provided below. Standard Exemption and PBR Registration Njumber(s) Effective Date Registration Number 106.352(l) 11/22/2012 106961 106.359 09/10/2013 106961 106.492 09/04/2000 106961 106.512 06/13/2001 106961 I. H. Other Facilities at this Site Authorized by Standard Exemption, PBR, or Standard Permit Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit? Yes X No If "YES," enter standard exemption number(s), PBR registration number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.	Rule Number(s)			Effective I	Date				
Is this authorization for a change to an existing facility previously authorized under a standard exemption or PBR? X Yes No If "YES," enter previous standard exemption number(s) and PBR registration number(s), and associated effective dates in the spaces provided below. Standard Exemption and PBR Registration Njumber(s) Effective Date Registration Number 106.352(l) 11/22/2012 106961 106.359 09/10/2013 106961 106.492 09/04/2000 106961 106.512 06/13/2001 106961 I. H. Other Facilities at this Site Authorized by Standard Exemption, PBR, or Standard Permit Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit? Yes X No If "YES," enter standard exemption number(s), PBR registration number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.									
Is this authorization for a change to an existing facility previously authorized under a standard exemption or PBR? X Yes No If "YES," enter previous standard exemption number(s) and PBR registration number(s), and associated effective dates in the spaces provided below. Standard Exemption and PBR Registration Njumber(s) Effective Date Registration Number 106.352(l) 11/22/2012 106961 106.359 09/10/2013 106961 106.492 09/04/2000 106961 106.512 06/13/2001 106961 I. H. Other Facilities at this Site Authorized by Standard Exemption, PBR, or Standard Permit Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit? Yes X No If "YES," enter standard exemption number(s), PBR registration number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.									
Is this authorization for a change to an existing facility previously authorized under a standard exemption or PBR? X Yes No If "YES," enter previous standard exemption number(s) and PBR registration number(s), and associated effective dates in the spaces provided below. Standard Exemption and PBR Registration Njumber(s) Effective Date Registration Number 106.352(l) 11/22/2012 106961 106.359 09/10/2013 106961 106.492 09/04/2000 106961 106.512 06/13/2001 106961 I. H. Other Facilities at this Site Authorized by Standard Exemption, PBR, or Standard Permit Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit? Yes X No If "YES," enter standard exemption number(s), PBR registration number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.									
Is this authorization for a change to an existing facility previously authorized under a standard exemption or PBR? X Yes No If "YES," enter previous standard exemption number(s) and PBR registration number(s), and associated effective dates in the spaces provided below. Standard Exemption and PBR Registration Njumber(s) Effective Date Registration Number 106.352(l) 11/22/2012 106961 106.359 09/10/2013 106961 106.492 09/04/2000 106961 106.512 06/13/2001 106961 I. H. Other Facilities at this Site Authorized by Standard Exemption, PBR, or Standard Permit Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit? Yes X No If "YES," enter standard exemption number(s), PBR registration number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.									
Is this authorization for a change to an existing facility previously authorized under a standard exemption or PBR? X Yes No If "YES," enter previous standard exemption number(s) and PBR registration number(s), and associated effective dates in the spaces provided below. Standard Exemption and PBR Registration Njumber(s) Effective Date Registration Number 106.352(l) 11/22/2012 106961 106.359 09/10/2013 106961 106.492 09/04/2000 106961 106.512 06/13/2001 106961 I. H. Other Facilities at this Site Authorized by Standard Exemption, PBR, or Standard Permit Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit? Yes X No If "YES," enter standard exemption number(s), PBR registration number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.									
Is this authorization for a change to an existing facility previously authorized under a standard exemption or PBR? X Yes No If "YES," enter previous standard exemption number(s) and PBR registration number(s), and associated effective dates in the spaces provided below. Standard Exemption and PBR Registration Njumber(s) Effective Date Registration Number 106.352(l) 11/22/2012 106961 106.359 09/10/2013 106961 106.492 09/04/2000 106961 106.512 06/13/2001 106961 I. H. Other Facilities at this Site Authorized by Standard Exemption, PBR, or Standard Permit Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit? Yes X No If "YES," enter standard exemption number(s), PBR registration number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.									
If "YES," enter previous standard exemption number(s) and PBR registration number(s), and associated effective dates in the spaces provided below. Standard Exemption and PBR Registration Njumber(s) Effective Date Registration Number 106.352(1) 11/22/2012 106961 106.359 09/10/2013 106961 106.492 09/04/2000 106961 106.512 06/13/2001 106961 I. H. Other Facilities at this Site Authorized by Standard Exemption, PBR, or Standard Permit Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit? Yes X No If "YES," enter standard exemption number(s), PBR registration number(s), and Standard Permit regist	H. Previous Standard Exemption or PBR Registration Numbe	r							
Standard Exemption and PBR Registration Njumber(s) Effective Date Registration Number 106.352(1) 11/22/2012 106961 106.359 09/10/2013 106961 106.492 09/04/2000 106961 106.512 06/13/2001 106961 I. H. Other Facilities at this Site Authorized by Standard Exemption, PBR, or Standard Permit Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit? Yes X No If "YES," enter standard exemption number(s), PBR registration number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.	Is this authorization for a change to an existing facility previous	ly authorized unde	er a stand	ard exemption or PBR?	X	Yes		No	
106.352(I) 11/22/2012 106961 106.359 09/10/2013 106961 106.492 09/04/2000 106961 106.512 06/13/2001 106961 I. H. Other Facilities at this Site Authorized by Standard Exemption, PBR, or Standard Permit Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit? Yes X No If "YES," enter standard exemption number(s), PBR registration number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.	If "YES," enter previous standard exemption number(s) and PE	BR registration nur	nber(s), a	and associated effective dates in the	e space	s provided be	low.		
106.359 09/10/2013 106.492 09/04/2000 106961 106.512 06/13/2001 106961 I. H. Other Facilities at this Site Authorized by Standard Exemption, PBR, or Standard Permit Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit? Yes X No If "YES," enter standard exemption number(s), PBR registration number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.	Standard Exemption and PBR Registration Njumber(s)	Effe	ctive Dat	e		Registration	Number		
106.492 09/04/2000 106961 106.512 06/13/2001 106961 I. H. Other Facilities at this Site Authorized by Standard Exemption, PBR, or Standard Permit Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit? Yes X No If "YES," enter standard exemption number(s), PBR registration number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.	106.352(1)	11/22/2012	2			106961			
I. H. Other Facilities at this Site Authorized by Standard Exemption, PBR, or Standard Permit Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit? Yes X No If "YES," enter standard exemption number(s), PBR registration number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.	106.359	09/10/2013	3			106961			
I. H. Other Facilities at this Site Authorized by Standard Exemption, PBR, or Standard Permit Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit? Yes X No If "YES," enter standard exemption number(s), PBR registration number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.	106.492	09/04/2000)			106961			
Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit? Yes X No If "YES," enter standard exemption number(s), PBR registration number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.	106.512	06/13/2001				106961			
Are there any other facilities at this site that are authorized by an Air Standard Exemption, PBR, or Standard Permit? Yes X No If "YES," enter standard exemption number(s), PBR registration number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.									
If "YES," enter standard exemption number(s), PBR registration number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.	I. H. Other Facilities at this Site Authorized by Standard Exer	mption, PBR, or S	tandard F	Permit					
If "YES," enter standard exemption number(s), PBR registration number(s), and Standard Permit registration number(s), and associated effective date in the spaces provided below.	Are there any other facilities at this site that are authorized by a	n Air Standard Exc	emption,	PBR, or Standard Permit?		Yes		X No	
	If "YES," enter standard exemption number(s), PBR registratio	on number(s), and	Standard	Permit registration number(s),		J			
	and associated effective date in the spaces provided below.			-					
		Effe	ctive Dat	re e		Registration	Number		
\mathbf{I}									

Texas Commission on Environmental Quality Form PI-7-CERT

Certification and Registration for Permits by Rule

(Page 3)

II. FACILITY AND SITE INFORMATION (continued)					
J. Other Air Preconstruction Permits			_		
Are there any other air preconstruction permits at this site?			Yes	X	No
If "YES," enter permit number(s) in the spaces provided below.			-		
K. Affected Air Preconstruction Permits					
Does the PBR being claimed directly affect any permitted facility?			Yes	Х	No
If "YES," enter the permit number(s) in the spaces provided below.				-	
L. Federal Operating Permit (FOP) Requirements (30 TAC Chapter 122 Applicability)					
1. Is this facility located at a site that is required to obtain an FOP pursuant to 30 TAC Chapter	122? Yes	X	No	То Ве	Determined
If the site currently has an existing federal operating permit, enter the permit number.			-		
Check the requirements of 30 TAC Chapter 122 that will be triggered if this certification is accep	ted (check all that apply).				
Initial Application for an FOP Significant Revision	a for an SOP		Minor	r Revision	for an SOP
Operational Flexibility/off Permit Notification for an SOP			Revis	ion for G	OP
To Be Determined X None					
2. Identify the type(s) of FOP issued and/or FOP application(s) submitted/pending for the site (check all that apply).				
SOP GOP GOP application/revisio	on application: Submitted or u	nder	APD review.		
X N/A SOP application/revision application: submitted or unde	er APD review				
	a fu D feview.				
III. FEE INFORMATION (See Section VII. for address to send fee or go to www.tceq.texas.gc	ov/epay to pay online.)				
A. Fee Requirements					
Is a fee required per Title 30 TAC § 106.50?		X	Yes		No
If "NO," specify the exception. There are three exceptions to paying a PBR fee.			(check al	l that app	ly).
Registration is solely to establish a federally enforceable emission limit.			Yes		
2. Registration is within six months of an initial PBR review, and it is addressing deficiencies, a	administrative				
changes, or other allowed changes.			Yes		
3. Registration is for a remediation project (30 TAC § 106.533).			Yes		
		_	_		

Texas Commission on Environmental Quality

Form PI-7-CERT

Certification and Registration for Permits by Rule

(Page 4)

III. FEE INFORMATION (See Section VII. for address to send fee or go to www.tceq.texas.gov/epay to pay online). (contin	ued)								
B. Fee Amount									
1. A \$100 fee is required if any of the answers in III.B.1 are "YES."									
This business have less than 100 employees?									
This business have less than 6 million dollars in annual gross receipts?		Yes	X	No					
This registration is submitted by a governmental entity with a population of less than 10,000?		Yes	X	No					
This registration is submitted by a non-profit organization		Yes	X	No					
2. A \$450 fee is required for all other registrations									
C. Payment Information									
Check/money order/transaction or voucher number:									
Individual or company name check:									
Fee amount (\$): \$450.00									
Was fee Paid online?	X	Yes		No					
IV. Technical Information Including State And Federal Regulatory Requirements									
Place a check next to the appropriate box to indicate what is included in your submittal.									
NOTE: Any technical or essential information needed to confirm that facilities are meeting the requirements of the PBR is	must	be provided. Not prov	riding	g key information					
could result in an automatic deficiency and voiding of the project.									
A. PBR requirements (Checklists are optional; however, your review will go faster if you provide applicable checklists.)									
Did you demonstrate that the general requirements in 30 TAC § 106.4 are met?	X	Yes		No					
Did you demonstrate that the individual requirements of the specific PBR are met?	X	Yes		No					
B. Confidential Information (All pages properly marked "CONFIDENTIAL")		Yes	X	No					
C. Process Flow Diagram	X	Yes		No					
D. Process Description	X	Yes		No					
E. Maximum Emissions Data and Calculations	X	Yes		No					
Note: If the facilities listed in this registration are subject to the Mass Emissions Cap & Trade program under 30 TAC Chap	ter 1	01, Subchapter H, Div	ision	ı 3,					
the owner/operator of these facilities must possess NOx allowances equivalent to the actual NOx, emissions from these facilitie	s.								

Texas Commission on Environmental Quality

Form PI-7-CERT

Certification and Registration for Permits by Rule

(Page 5)

IV. Technical Information Includ	ling State And Federal Regulatory Requirements (continued)				
Place a check next to the appr	ropriate box to indicate what is included in your submittal.				
NOTE: Any technical or essen	ntial information needed to confirm that facilities are meeting the requi	rements of the PBR mu	st be provided. Not pro	vidin	g key information
could result in an automatic de	eficiency and voiding of the project.				
F. F. Is this certification being sub	omitted to certify the emissions for the entire site?	X	Yes		No
If "NO," include a summary of the s	specific facilities and emissions being certified.				
G. Table 1(a) (Form 10153) Emiss	sion Point Summary	X	Yes		No
H. H. Distances from Property Lin	ne and Nearest Off-Property Structure				
Distance from this facility's emissio	on release point to the nearest property line:	<u>20</u>	0.000	feet	Ĺ
Distance from this facility's emissio	on release point to the nearest off-property structure:	<u>></u> :	3,000	feet	1
I. Project Status					
Has the company implemented the p	project or waiting on a response from TCEQ?		Implemented	X	Waiting
J. Projected Start of Construction and Pr	rojected Start of Operation Dates				
Projected Start of Construction (pro	vide date):	P	ENDING		
Projected Start of Operation (provid	le date):	P	ENDING		
V. DELINQUENT FEES					
	il all delinquent fees and/or penalties owed to the TCEQ or the Office o tocol. For more information regarding Delinquent Fees and Penalties, go				
VI. SIGNATURE FOR CER	TIFICATION AND REGISTRATION				
state that to the best of my knowledg the Texas Health and Safety Code, C governmental ordinance or resolutio prevention of significant deterioration	have knowledge of the facts included in this application and that these ge and belief, the project for which this application is made will not in a Chapter 382, the Texas Clean Air Act (TCAA); the air quality rules of the one enacted pursuant to the TCAA. I further state that I understand my sit on, or major source of hazardous air pollutant permitting requirements. material statements or representations in the application is a criminal of	any way violate any pro the Texas Commission of gnature indicates that the The signature further signature	vision of the Texas Water on Environmental Quality is application meets all ignifies awareness that in	er Co ty; or appli	ode (TWC), Chapter 7; any local icable nonattainment,
Name (printed):	Jase Perry	SHE-R Programs	Manager		
Signature (original signature require	ed):				
Date:					

Submitting Copies of the Certification and Registration

Texas Commission on Environmental Quality Form PI-7-CERT Certification and Registration for Permits by Rule (Page 6)

Hand Delivery, Overnight Mail

Austin, Texas 78753

or call (512) 239-1250

MC 214, 12100 Park 35 Circle, Building A, Third Floor

To find your Regional Office address, go to the TCEQ Web site

Copies must be sent as listed below:									
Processing delays may occur if copies are not sent as noted.									
Who	Where	What							
Air Permits Initial Review Team (APIRT)	Regular, Certified, Priority Mail	Originals Form PI-7, Core Data Form and							
	MC161, P.O. Box 13087 Austin, Texas 78711-3087	all attachments. Not required if using ePermits ¹							
	Hand Delivery, Overnight Mail								
	MC 161, 12100 Park 35 Circle, Building C, Third Floor								
	Austin, Texas 78753								
Revenue Section, TCEQ	Regular, Certified, Priority Mail	Original Money Order or Check, Copy							
	MC 214, P.O. Box 13088 Austin, Texas 78711-3088	of Form PI-7 and Core Data Form							

Not required if fee was paid using ePay2

Copy of Form PI-7, Core Data Form

at www.tceq.texas.gov/publications/gi/gi-002.html, or call (512) 239-125 and all attachments. Not required if using ePermits1

To Find your local or Regional Air Pollution Control Programs go to the Copy of Form PI-7, Core Data Form

TCEQ, APD Website at www.tceq.texas.gov/permitting/air/local_progr and all attachments.

Appropriate TCEQ Regional Office

Appropriate Local Air Pollution

Control Program(s)

TCEQ-20182 (APDG 5379v21, Revised 03/18) PI-7-CERT

This form is for use by facilities subject to air quality permit requirements and may be revised periodically.

ePermits located at www3.tceq.texas.gov/steers/

² ePay located at www.tceq.texas.gov/epay

2 TECHNICAL SECTION

2.1 Introduction

The applicant: Ineos USA Oil & Gas LLC

Address: 1164 FM 2367

Carrizo Springs, Texas 78834

Phone No.: 512-917-2685

Responsible official: Jase Perry

SHE-R Programs Manager

512-917-2685

jase.perry@ineos.com

Technical contact: Micheal K Harris, P.E.

Senior Air Project Manager

936-443-5332

mike.harris@entechservice.com

The facility: Mckenzie-Foley Unit B MCM Pad

TCEQ CN: CN605746593 TCEQ RN: RN106552607

Current registration no(s).: 106961 Description: PI-7-CERT Registration

Registrations claimed in this document: 106.352(l)

106.359

From the intx of Hwy 72 & Hwy 16 go W on Hwy 72 for 5.1 mi to Pertle Rd turn R go 1.6

Physical location: mi to lease entrance w/cattle guard entrance has game-proof 8 ft gate go thru gate NW for 0.8

mi to site on R

Latitude/Longitude: 28 30 08 N -98 38 39 W UTM: Zone: Easting: Northing: 14R 534,829.570 3,152,876.220

Facility type: Oil production well

2.2 Process Description

This is a sour production facility, with natural gas H2S content of 30 ppm, and crude production of 35 bbls/d. The following activities occur on-site:

- Inlet separation
- · Heater-treater processing
- Product storage (tanks)
- Product flash generation
- Product loading activities
- Blowdown/MSS activities
- Fugitive component emissions
- Other activities/sources: 1 gasoline powered pump engine.

ENDEAVOR ENERGY RESOURCES, L.P.

Mckenzie-Foley Unit B MCM Pad

Tilden, Mc Mullen County, Texas

PI-7-CERT Registration

2.2 Process Description (continued)

A detailed description of all on-site process acrtivities is provided below:

• Inlet separation

Natural gas is directed to the sales pipeline and crude/liquids are directed to either the heater-treater (if present on-site) for vapor pressure reduction or are sent directly into storage tanks.

• Crude is directed into the heater-treater for vapor pressure reduction/stabilization.

FIN	RATIN	G	OPERATION			
HT1	1.000	mmbtu/hr	8,760.00	hrs/yr		

• The following product storage tanks exist or are proposed at the facility:

FIN	PRODUCT	SIZE		THROUG	PUT	VENTS TO
TANK1	stabilized crude	400.00	bbls ea. in size	11.67	bbls/d-ea.	to air
TANK2	stabilized crude	400.00	bbls ea. in size	11.67	bbls/d-ea.	to air
TANK5	produced water	400.00	bbls ea. in size	17.50	bbls/d-ea.	to air
TANK3	stabilized crude	400.00	bbls ea. in size	11.67	bbls/d-ea.	to air

• The following crude/produced-water related flash vapors will be generated at the facility:

FIN	PRODUCT	THROUGHPUT		OPERATING PRE	SSURE				
HT1-FLASH	crude/natural gas	35	bbls/d	flashing from:	111.4	to:	14.27	psig	,

• The following activities occur at the facillity:

FIN	PRODUCT	THROUGH	PUT	LOADING TYPE	CONTROL TYPE
C LOAD 1	stabilized crude	35.00	bbls/d	submerged loading	to air
PW LOAD 1	produced water	17.50	bbls/d	submerged loading	to air

• The following fugitve component emissions will occur at the facility:

FIN	DESCRIPTION
FUG	light-liquid components
FUG	natural gas components

• The following blowdowns/MSS activities will occur at the facility:

FIN DESCRIPTION THROUGHPUT VENTS TO	
MSS 1 natural gas 0.00750 mmscf/yr to atmosphere	
MSS 2 natural gas 0.00562 mmscf/yr to atmosphere	
MSS 3 blasting/coating vapors 0.11520 mmscf/yr to atmosphere	
VENTING 1 natural gas 0.00493 mmscf/yr to atmosphere	

• Other activities/sources: 1 gasoline powered pump engine.

FIN	MAKE	MODEL	HP RATING	CONTROL	DESCRIPTION
ENG2	HONDA	GX160	4.8	none	gasoline powered pump engine

Mckenzie-Foley Unit B MCM Pad Tilden, Mc Mullen County, Texas PI-7-CERT Registration

2.2 Process Description (continued)

Table 2.2.1 provides a list/description and operating parameters of emission sources at the facility. Table 2.2.2 provides FIN descriptions. Table 2.2.3 provides a summary of revisions associated with this submittal. Figure 2.2.1 provides a simplified process description. This registration is submitted to certify emissions from all on-site sources. The following is a brief process description for this site.

Crude, produced water and natural gas from the wellheads pass through on-site separation. Natural gas is then directed to the sales pipeline, and liquids are directed to the heater-treaters for further vapor- pressure reduction. The heater-treaters vent flash vapors to atmosphere. From the heater-treaters, crude and produced water are directed into the on-site storage tanks. The storage tank working/breathing vapors are vented to atmosphere. Crude and produced water are periodically trucked off-site to sales/disposal. The trucks are in dedicated normal service.

The following MSS activities will occur at this facility (authorized under 30 TAC 106.359):

- •EPNs MSS-01, blowdown activities during equipment maintenance; vented to atmosphere;
- •EPN MSS-02, tank de-gassing operations; and,
- •EPN MSS-03, periodic maintenance blasting/painting of equipment.

COMPANY: SITE NAME: DESCRIPTION: DATE: Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration 02/26/24

TABLE 2.2.1 (SOURCE OPERATING DATA)

SOURCE DESCRIPTION	,	OPERATING	PARAMETER	RS								SOURCE CONTROLS					
FIN / EPN	ТҮРЕ	VALUE	UNITS	VALUE	UNITS	VALUE	UNITS	VALUE	UNITS	VALUE	UNITS	CONTROLS	CONTROLS	DESCRIPTIONS/C OMMENTS			
COMBUSTION CONTROL DEVICES		CONTROL EF	Ŧ.	HEAT INPUT		WASTE VAPO	R FLOW	OPERATING TIM	ИE			PRIMARY CONTROL	SECONDARY CONTROL	WASTE VAPORS CONTROLLED			
FLARE1 / FLARE1	FLARE		DRE		MMBTU/HR		ACFM		HRS/YR					REMOVED FROM S	REMOVED FROM SERVICE		
ENGINES (COMPRESSION IGNITED)		RATING		RUN-TIME		FUEL USEAG	Е					PRIMARY CONTROL	SECONDARY CONTROL	MAKE	MAKE MODEL USAGE		
ENG2 / ENG2	GASOLINE POWERED PUMP ENGINE	4.800	ВНР	8,760.000	HRS/YR	0.255	GAL/HR	267.435	G/HP-HR	6.600	G/HP-HR	4S-RB	NONE	HONDA	HONDA GX160		
BOILERS/HEATERS		RATING		RUN-TIME		NOX		со		VOC		PRIMARY CONTROL	SECONDARY CONTROL	MAKE	MODEL		
HT1 / HT1	BOILERS (<100 MMBTU/HR)	1.000	MMBTU/HR	8,760.000	HRS/YR	129.216	LBS/MMSCF	108.541	LBS/MMSCF	7.107	LBS/MMSCF	UNCONTROLLED		UNKNOWN	UNKNOWN		
TANKS		SIZE		TYPE		THROUGHPU	Т	VOC CONTENT		VOC THRO	UGHPUT	PRIMARY CONTROL	SECONDARY CONTROL	CONTENTS			
TANK1 / TANK1	STORAGE TANKS	400.000	BBLS/EA.	VFR		11.667	BBLS/D-EA.	100.00%	%	11.667	BBLS/D	TO AIR	TO AIR	STABILIZED CRUDE			
TANK2 / TANK2	STORAGE TANKS	400.000	BBLS/EA.	VFR		11.667	BBLS/D-EA.	100.00%	%	11.667	BBLS/D	TO AIR	TO AIR	STABILIZED CRUDE			
TANK5 / TANK5	STORAGE TANKS	400.000	BBLS/EA.	VFR		17.500	BBLS/D-EA.	1.00%	%	0.175	BBLS/D	TO AIR	TO AIR	PRODUCED WATER			
TANK3 / TANK3	STORAGE TANKS	400.000	BBLS/EA.	VFR		11.667	BBLS/D-EA.	100.00%	%	11.667	BBLS/D	TO AIR	TO AIR	STABILIZED CRUD	STABILIZED CRUDE		
LOADING		THROUGHPU	T	VOC CONTE	NT	VOC THROUG	GHPUT					PRIMARY CONTROL	SECONDARY CONTROL	LIQUIDS LOADED		LOADING TYPE	
C LOAD 1 / C LOAD 1	LOADING	35.000	BBLS/D	100.00%	%	35.000	BBLS/D					TO AIR	TO AIR	STABILIZED CRUD	ÞΕ	SUBMERGED	
PW LOAD 1 / PW LOAD 1	LOADING	17.500	BBLS/D	1.00%	%	0.175	BBLS/D					TO AIR	TO AIR	PRODUCED WATE	R	SUBMERGED	
FLASH		THROUGHPU	T	VOC CONTE	NT	VOC THROUG	GHPUT	PSIG RANGE		GOR		PRIMARY CONTROL	SECONDARY CONTROL	LIQUID			
HT1-FLASH / HT1-FLASH	FLASH	35.175	BBLS/D	100.00%	%	35.175	BBLS/D	111.4 - 14.27	PSIG		SCF/BBL	TO ATMOSPHERE	TO ATMOSPHERE	CRUDE/NATURAL	GAS		
FUGITIVE COMPONENTS		OPERATING	TIME	EMISSIONS (VOC)	EMISSIONS (V	VOC)					PRIMARY CONTROL	SECONDARY CONTROL				
FUG / FUG	FUGITIVES	8,760.000	HRS/YR	0.682	PPH	2.985	TPY							SITE FUGITIVE EM	ISSIONS; 106.352(l)		
MSS ACTIVITIES/BLOWDOWNS		OPERATING	TIME	RATE		RATE		EMISSIONS (VC	OC)	HEAT CON	TENT	PRIMARY CONTROL	SECONDARY CONTROL	VAPOR DESCRIPTION			
MSS 1 / MSS 1	BLOW DOWNS	300.000	HRS/YR	25.000	SCF/HR	0.008	MMSCF/YR	0.074	PPH	1,318.000	BTU/SCF	TO ATMOSPHERE	TO ATMOSPHERE	MSS ACTIVITY; VAPORS VENTED TO ATMOSPHERE DURING P ACTIVITIES; 106.359			
MSS 2 / MSS 2	BLOW DOWNS	1.000	HRS/YR	5,620.000	SCF/HR	0.006	MMSCF/YR	16.676	РРН	1,318.000	BTU/SCF	TO ATMOSPHERE	TO ATMOSPHERE	MISS ACTIVITT; STURAGE TAIN DE-GASSING DURING MAINTENANCE ACTIVITY; ASSUME DE-GASSING 1 TANK/YEA VENTS TO ATMOSPHERE: 106 359			
MSS 3 / MSS 3	BLOW DOWNS	96.000	HRS/YR	1,200.000	SCF/HR	0.115	MMSCF/YR	2.989	РРН	3,071.000	BTU/SCF	TO ATMOSPHERE	TO ATMOSPHERE	MSS ACTIVITIES; N		ASTING/COATING ACTIVITIES; CE; 106.359	
VENTING 1 / VENTING 1	BLOW DOWNS	2,190.000	HRS/YR	2.250	SCF/HR	0.005	MMSCF/YR	0.007	PPH	1,318.000	BTU/SCF	TO ATMOSPHERE	TO ATMOSPHERE	NATURAL GAS			

COMPANY: Ineos USA Oil & Gas LLC
SITE NAME: Mckenzie-Foley Unit B MCM Pad
DESCRIPTION: PI-7-CERT Registration

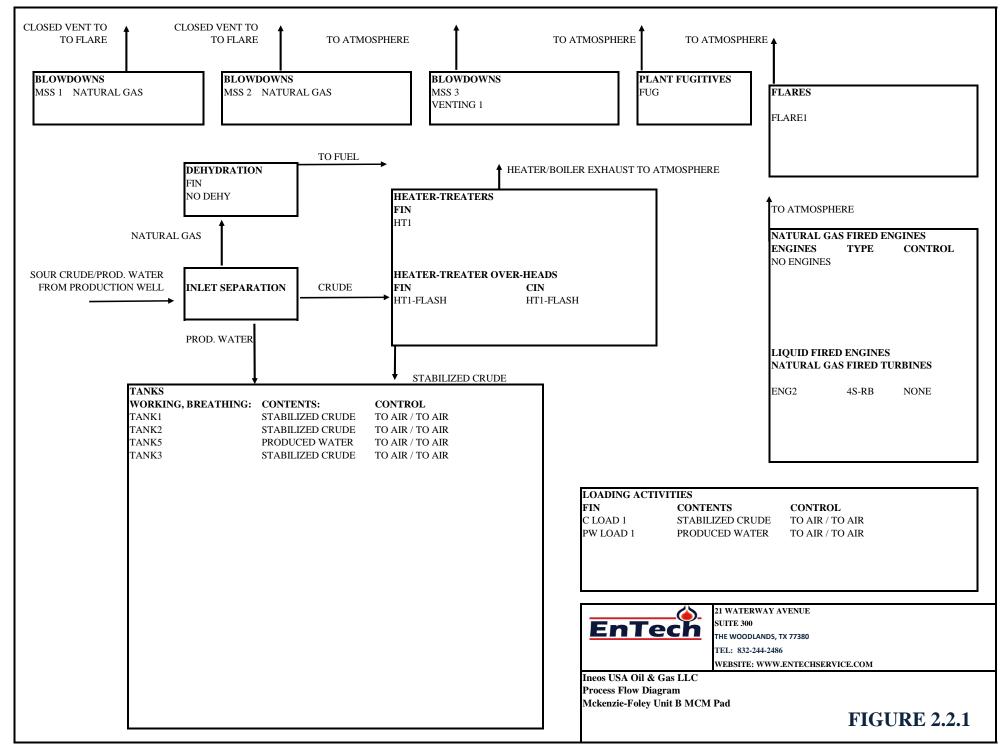
DATE: 02/26/24

TABLE 2.2.2 (SOURCE DESCRIPTIONS)

TABLE 2.2.2 (SOURCE I	DESCRIPTIONS)								
SOURCE DESCRIPTION									
FIN / EPN	EPN	ТҮРЕ	DESCRIPTIONS/COMMENTS						
COMBUSTION CONTROL DEVICE:	S								
FLARE1	FLARE1	FLARE	REMOVED FROM SERVICE						
ENGINES (COMPRESSION IGNITED	D)		MAKE	MODEL					
ENG2	ENG2	GASOLINE POWERED PUMP ENGINE	HONDA	GX160					
BOILERS/HEATERS			MAKE	MODEL					
нті	НТ1	BOILERS (<100 MMBTU/HR)	UNKNOWN	UNKNOWN					
TANKS			CONTENTS						
TANK1	TANK1	STORAGE TANKS	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)						
TANK2	TANK2	STORAGE TANKS	CRUDE TANK; 400 BBL; VENTING TO ATMO	SPHERE; 106.352(l)					
TANK5	TANK5	STORAGE TANKS	PRODUCED WATER TANK; 400 BBL; VENTIN	NG TO ATMOSPHERE; 106.352(l)					
TANK3	TANK3	STORAGE TANKS	CRUDE TANK; 400 BBL; VENTING TO ATMO	SPHERE; 106.352(l)					
LOADING			LIQUIDS LOADED						
C LOAD 1	C LOAD 1	LOADING	CRUDE LOADING; VENTING TO ATMOSPHE	RE; 106.352(L)					
PW LOAD 1	PW LOAD 1	LOADING	PRODUCED WATER LOADING; ASSUMED 19 ATMOSPHERE; 106.352(L)	6 CRUDE BY VOLUME; VENTING TO 17					

COMPANY: Ineos USA Oil & Gas LLC
SITE NAME: Mckenzie-Foley Unit B MCM Pad
DESCRIPTION: PI-7-CERT Registration

DATE: 02/26/24


TABLE 2.2.2 (SOURCE DESCRIPTIONS)

SOURCE DESCRIPTION	,								
FIN / EPN	EPN	ТҮРЕ	DESCRIPTIONS/COMMENTS						
FLASH			LIQUID	COMMENTS					
HT1-FLASH	HT1-FLASH	FLASH	CRUDE/NATURAL GAS	HEATER-TREATER CRUDE FLASH VAPORS; VENTING TO ATMOSPHERE; 106.352(1)					
FUGITIVE COMPONENTS									
FUG	FUG	FUGITIVES	SITE FUGITIVE EMISSIONS; 106.352(1)						
MSS ACTIVITIES/BLOWDOWNS									
MSS 1	MSS 1	BLOW DOWNS	MSS ACTIVITY; VAPORS VENTED TO ATMO	SPHERE DURING MSS ACTIVITIES; 106.359					
MSS 2	MSS 2	IBLOW DOWNS	MSS ACTIVITY; STORAGE TANK DE-GASSIN ASSUME DE-GASSING 1 TANK/YEAR; VENTS						
MSS 3	MSS 3	BLOW DOWNS	MSS ACTIVITIES; MISC. ABRASIVE BLASTIN ATMOSPHERE; AREA SOURCE; 106.359	G/COATING ACTIVITIES; VENTS TO					
VENTING 1	VENTING 1	BLOW DOWNS	PNEUMATIC DEVICE; VENTING TO ATMOSF	PHERE; 106.352(1)					

02/26/24

TABLE 2.2.3 (PERMIT REVISIONS)

	THE VISIONS)										
FIN	EPN	REVISIONS									
FLAREI	FLARE1	REMOVED FROM SERVICE									
нті	нті	LOWER EMISSIONS, DUE TO LOWER PRODUCTION/DEPLETION; HEAT INPUT RATING INCREASED TO 1.0 MMBTU/HR; VENTING TO ATMOSPHERE; REVISED FUEL COMPOSITION/HEAT INPUT; UPDATED EMISSION FACTORS DUE TO UPDATED FUEL HEAT CONTENT; 106.352(I).									
TANK1	TANK1	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.									
TANK2	TANK2	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.									
TANK5	TANK5	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.									
TANK3	TANK3	LOWER EMISSIONS DUE TO REVISED PRODUCTION/DEPLETION; VENTING TO ATMOSPHERE; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION; VOC CONTENT CONSERVATIVELY ASSUMED AT 75 WT%.									
C LOAD 1	C LOAD I	MODIFIED EMISSIONS DUE TO LOWER PRODUCTION/DEPLETION; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION.									
PW LOAD 1	PW LOAD 1	MODIFIED EMISSIONS DUE TO LOWER PRODUCTION/DEPLETION; REVISED/LOWERED PRODUCTION; REVISED VAPOR SPECIATION.									
HT1-FLASH	HT1-FLASH	NEW SOURCE; HEATER-TREATER CRUDE FLASH VAPORS; FLASH VAPOR VENTING TO ATMOSPHERE.									
FUG	FUG	UPDATED COMPONENT COUNT/VAPOR ANALYSIS.									
MSS 1	MSS 1	EPN MSS-1 REPLACES EPN MSS; REVISED VAPOR COMPOSITION/REVISED BLOWDOWN RATE/REVISED DURATION.									
MSS 2	MSS 2	NEW SOURCE									
MSS 3	MSS 3	NEW SOURCE									
VENTING 1	VENTING 1	NEW SOURCE									
ENG2	ENG2	NO REVISIONS									

Ineos USA Oil & Gas LLC
Mckenzie-Foley Unit B MCM Pad
Tilden, Mc Mullen County, Texas
PI-7-CERT Registration

2.3 Emissions Summary (MAERT)

Ineos USA Oil & Gas Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration DATE:

2/26/2024

MAERT

POTENTIAL TO EMI	T (PTE)																		
EMISSION SOURCE		voc		NOX		со		PM10		PM 2.5		SO2		H2S		BENZENE TOTAL		TOTAL	НАР
FIN	EPN	PPH	TPY	PPH	TPY	PPH	TPY	PPH	TPY	PPH	TPY	PPH	TPY	PPH	TPY	PPH	TPY	PPH	TPY
FLARE1	FLARE1																		
HT1	HT1	0.005	0.024	0.098	0.429	0.082	0.361	0.007	0.033	0.007	0.033	0.001	0.003	0.000	0.000	0.000	0.000	0.002	0.008
TANK1	TANK1	0.126	0.554											0.000	0.000	0.000	0.001	0.003	0.014
TANK2	TANK2	0.126	0.554											0.000	0.000	0.000	0.001	0.003	0.014
TANK5	TANK5	0.175	0.765											0.000	0.001	0.000	0.002	0.004	0.020
TANK3	TANK3	0.126	0.554											0.000	0.000	0.000	0.001	0.003	0.014
C LOAD 1	C LOAD 1	34.272	1.216											0.000	0.000	0.001	0.000	0.012	0.000
PW LOAD 1	PW LOAD 1	0.343	0.006											0.000	0.000	0.000	0.000	0.000	0.000
HT1-FLASH	HT1-FLASH	4.070	17.827											0.004	0.016	0.009	0.042	0.104	0.456
FUG	FUG	0.682	2.985											0.000	0.000	0.000	0.000	0.000	0.001
MSS 1	MSS 1	0.074	0.011											0.000	0.000	0.000	0.000	0.002	0.000
MSS 2	MSS 2	16.676	0.008											0.000	0.000	0.039	0.000	0.426	0.000
MSS 3	MSS 3	2.989	0.143					0.062	0.003	0.062	0.003			0.000	0.000	0.467	0.022	2.335	0.112
VENTING 1	VENTING 1	0.007	0.007											0.000	0.000	0.000	0.000	0.000	0.000
ENG2	ENG2	0.070	0.306	0.070	0.307	2.830	12.395	0.003	0.015			0.003	0.012	0.000	0.000	0.000	0.000	0.020	0.088
TOTAL EMISSIONS (TPY):		59.741	24.961	0.168	0.736	2.912	12.756	0.073	0.050	0.070	0.036	0.003	0.015	0.005	0.018	0.518	0.070	2.915	0.728
MAXIMUM OPERATING SCHEDULE:			HOURS/I	DAY:	24.00	DAYS/W	EEK:	7.00	WEEKS/	YR:	52.00	HOURS/	YR	8,760.00					
TOTAL EMISSIONS:	ALL STORAGE TANKS		2.426	FOR OOOOa & OOOOb APPLICABILITY															

Ineos USA Oil & Gas LLC
Mckenzie-Foley Unit B MCM Pad
Tilden, Mc Mullen County, Texas
PI-7-CERT Registration

2.4 Emission Calculations

Emission calculations have been provided based on the following (if located on-site; and, as applicable):

- Boiler emissions were calculated using factors provided in the EPA publication AP-42, Compilation of Air Pollution Emission Factors;
- Tank emissions were calculated using factors provided in the EPA publications AP-42, Compilation of Air Pollution Emission Factors; and, the formulas presented in Section 7;
- Loading fugitive emissions were calculated using factors provided in the EPA publication AP-42, Compilation of Air Pollution Emission Factors;
- Crude flash emissions were calculated using the laboratory data.

 The crude properties used for this application were selected from the site with the highest emissions potential within the same geographical area of this site;
- Produced water flash emissions were calculated assuming 1% crude by volume, using the above referenced crude properties;
- Plant fugitive emissions were calculated using factors provided in the EPA publication API Publication No. 4615, Emission Factors For Oil And Gas Production Operations;
- Engine emissions (if applicable/included) were calculated using factors provided in the EPA publication AP-42, Compilation of Air Pollution Emission Factors; and/or, manufacturer factors.
- Flare emissions (if applicable/included) were calculated using factors provided in the TCEQ "Air Permit Technical Guidance for Chemical Sources, Flares and Vapor Oxidizers".
- Dehydration plant emissions (if applicable/included) were calculated using GRI-GLYCalc software and inlet natural gas flow rate/vapor speciation.
- Amine plant emissions (if applicable/included) were calculated using AMINE-Calc software and inlet natural gas flow rate/vapor speciation.

COMPANY: Ineos USA Oil & Gas LLC SITE: Mckenzie-Foley Unit B MCM Pad

ACTION: PI-7-CERT Registration

DATE: 2/26/2024 WORKSHEET: Fuel Gas 1

FUEL VAPOR PROPERTIES			
ITEM	UNITS	VALUE	
HEAT CONTENT	BTU/SCF	1,318.000	
MOLECULAR WT.	LBS/LB-MOLE	40.244	
CRITERIA POLLUTANTS		MOLE %	WT %
WT. % COMPOSITION			
NOx	%		
CO	%		
SO2	%		
PM10	%		
PM2.5	%		
H2S	%	0.0030%	0.005%
VOC	%	10.689%	25.611%
HAP POLLUTANTS	·	•	
BENZENE	%	0.017%	0.060%
ETHYLBENZENE	%	0.001%	0.005%
FORMALDEHYDE	%		
HEXANE-N	%	0.131%	0.509%
METHANOL	%		
TOLUENE	%	0.014%	0.058%
XYLENE-M	%	0.005%	0.024%
XYLENE-O	%		
XYLENE-P	%		
	%		
	%		
	%		
VOC(HAP)-u	%		
GHG POLLUTANTS	·		
METHANE	%	74.756%	54.111%
CO2	%	0.864%	1.716%
N2O	%		
	%		
	%		
TOTAL	%	100.000%	100.000%

SITE: Mckenzie-Foley Unit B MCM Pad ACTION: PI-7-CERT Registration DATE: 2/26/2024 WORKSHEET: BOILERS/HEATERS 1 (<100 MMBTU/HR) SOURCE DESCRIPTION FIN HT1 EPN DESCRIPTION HEATER-TREATER; VENTING TO ATMOSPHERE; 106.352(L) HT1 SOURCE OPERATING PARAMETERS
FIN FUEL TYPE EPN MAKE MODEL CONTROL TYPE HT1 UNCONTROLLED NATURAL GAS HT1 UNKNOWN UNKNOWN SOURCE OPERATING PARAMETERS EXH. VEL. FPS RUN-TIME HEAT INPUT EXH. TEMP FUEL FUEL FUEL FIN EPN HRS/YR MMBTU/HR DEG. F MMBTU/YR MMSCF/HR MMSCF/YR HT1 HT1 8,760.0 1.000 850.0 8.94 0.001 6.646 8,760,000 SOURCE STACK PARAMETERS STACK DIA. STACK HT. FIN EPN ZONE UTM E UTM N 534,829.6 HT1 HT1 14R 3,152,876.2 1.000 20.000

COMPANY:

Ineos USA Oil & Gas LLC

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad Pt-7-CERT Registration 2/26/2024 BOILERS/HEATERS 1 (<100 MMBTU/HR) COMPANY: SITE: ACTION: DATE: WORKSHEET:

EMISSION FACTORS	UNITS	TOTAL	HT1			
NOx	LBS/MMSCF		129.216			
CO	LBS/MMSCF		108.541			
SO2	LBS/MMSCF		0.779			
PM10	LBS/MMSCF		9.820			
PM2.5	LBS/MMSCF		9.820			
Pb	LBS/MMSCF		0.001			
VOC	LBS/MMSCF		7.107			
HAP POLLUTANTS						
BENZENE	LBS/MMSCF		0.003			
ETHYLBENZENE	LBS/MMSCF					
FORMALDEHYDE	LBS/MMSCF		0.097			
HEXANE-N	LBS/MMSCF		2.326			
METHANOL	LBS/MMSCF					
TOLUENE	LBS/MMSCF		0.004			
XYLENE-M	LBS/MMSCF					
XYLENE-O	LBS/MMSCF		0.001			
XYLENE-P	LBS/MMSCF					
	LBS/MMSCF					
	LBS/MMSCF					
H2S (CALCULATED)	LBS/MMSCF		0.000			
VOC(HAP)-u	LBS/MMSCF					
GHG POLLUTANTS						
METHANE	LBS/MMSCF		2.972			
CO2	LBS/MMSCF		155,058.824			
N2O	LBS/MMSCF		2.843			
	LBS/MMSCF					
_	LBS/MMSCF					

NOTES:

^{1.} AP-42 EMISSION FACTORS ADJUSTED FOR FUEL/VAPOR HEAT CONTENT.

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration 2/26/2024 BOILERS/HEATERS 1 (<100 MMBTU/HR) COMPANY: SITE: ACTION: DATE: WORKSHEET:

EL GOGYANG TO ATH COONTENE						
EMISSIONS TO ATMOSPHERE	T D TITTO	mom i r	T T T T		1	
EMISSIONS			HT1			
	PPH	0.098	0.098			<u> </u>
	PPH	0.082	0.082			<u> </u>
	PPH	0.001	0.001			
	PPH	0.007	0.007			
	PPH	0.007	0.007			
	PPH	0.000	0.000			
	PPH	0.005	0.005			
HAP POLLUTANTS						
	PPH	0.000	0.000			
	PPH					
	PPH	0.000	0.000			
	PPH	0.002	0.002			
METHANOL	PPH					
TOLUENE	PPH	0.000	0.000			
XYLENE-M	PPH					1
XYLENE-O	PPH	0.000	0.000			
	PPH					
	PPH					
	PPH			İ		
	PPH	0.000	0.000			
	PPH					
GHG POLLUTANTS		1				
	PPH	0.002	0.002			
	PPH	117.647	117.647			
	PPH	0.002	0.002			
	PPH	0.002	0.002			
	PPH					
	PPH	749.152	749.152			
		TOTAL				
EMISSIONS	UNITS TPY		HT1			
		0.429	0.429 0.361			
	TPY	0.361				
	TPY	0.003	0.003			
	TPY	0.033	0.033			
	TPY	0.033	0.033			
	TPY	0.000	0.000			
	TPY	0.024	0.024			
HAP POLLUTANTS				,		
BENZENE		0.000	0.000			
	TPY					
	TPY	0.000	0.000			
	TPY	0.008	0.008			
	TPY					
	TPY	0.000	0.000			<u> </u>
	TPY					
XYLENE-O	TPY	0.000	0.000			
XYLENE-P	TPY					
	TPY					
	TPY					
	TPY	0.000	0.000	İ		
	TPY					
GHG POLLUTANTS						
	TPY	0.010	0.010			
CO2	TPY	515.294	515.294			
		0.009	0.009			
	TPY	U.UUJ	0.003	-		
	TPY					
	TPY	3,281.285	3,281.285	—		-
		13 /81 /85	1 / 2 / 2 / 2 / 2 / 2			

COMPANY: Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration SITE: ACTION:

DATE: 2/26/2024

WORKSHEET: BOILERS/HEATERS 1 (<100 MMBTU/HR)

EXAMPLE CALCULATIONS: CALCULATE NOX EMISSIONS:

HT1

HEAT INPUT FUEL HEAT CONTENT MMBTU/HR 1.000 BTU/SCF 1,318.000 RUN TIME HRS/YR 8,760.000

FUEL CONSUMPTION= MMSCF/HR HEAT INPUT, MMBTU/HR

HEAT CONTENT, BTU/SCF

FUEL CONSUMPTION= MMSCF/HR 0.00076

LBS/MMSCF AT 1020 BTU/SCF NOX E.F. 100.000

CORRECTED FOR FUEL HEAT CONTENT NOX E.F. LBS/MMSCF 129.216

PPH FUEL CONSUMPTION, MMSCF/HR X NOX E.F., LBS/MMSCF NOX EMISSIONS=

NOX EMISSIONS= PPH 0.098

NOX EMISSIONS, PPH X RUN TIME, HRS/YR 2,000 LBS/TON NOX EMISSIONS= TPY

NOX EMISSIONS= TPY 0.429

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration 2/26/2024 Tanks 1-SWF COMPANY:

SITE: ACTION: DATE: WORKSHEET:

SOURCE DESCRIPTION		
FIN	EPN	DESCRIPTION
TANK1	TANK1	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)
TANK2	TANK2	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)
TANK5	TANK5	PRODUCED WATER TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)
TANK3	TANK3	CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)

SOURCE OPERATING PARAMET	ERS								
FIN	EPN	TYPE	CONTENTS	SIZE	SIZE	THROUGHPUT	FILL RATE	TEMP.	RUN-TIME
1.114	EFIN	TIFE	CONTENTS	GALLONS	BBLS	BBLS/D	GPH	DEDG. F	HRS/YR
TANK1	TANK1	VFR	STABILIZED CRUD	16,800.0	400.0	11.67	20.417	90.108	8,760.0
TANK2	TANK2	VFR	STABILIZED CRUD	16,800.0	400.0	11.67	20.417	90.108	8,760.0
TANK5	TANK5	VFR	PRODUCED WATER		400.0	17.50	30.625	90.108	8,760.0
TANK3	TANK3	VFR	STABILIZED CRUD	16,800.0	400.0	11.67	20.417	90.108	8,760.0

SOURCE STACK PARAME	ETERS								
FIN	EPN	ZONE	UTM E	UTM N	UTM N STACK DIA.	STACK HT.	EXH. TEMP	EXH. VEL.	
THIN	EFIN	ZONE	UTWLE	UTWIN	FT.	FT.	DEG. F	FPS	
TANK1	TANK1	14R	534,829.6	3,152,876.2	0.500	21.000	90.1	0.00	
TANK2	TANK2	14R	534,829.6	3,152,876.2	0.500	21.000	90.1	0.00	
TANK5	TANK5	14R	534,829.6	3,152,876.2	0.500	21.000	90.1	0.00	
TANK3	TANK3	14R	534,829.6	3,152,876.2	0.500	21.000	90.1	0.00	

UN-CONTROLLED VAPORS									
FIN	EPN	LBS/YR	MAX. LBS/MO.	LBS/OZ. SEA.	PRIMARY	P. C. DRE	SECONDARY	S.C. DRE	
PHN	EFIN	LBS/TK	MAA. LBS/MO.	LBS/OZ. SEA.	CONTROL	%	CONTROL	%	
TANK1	TANK1	1,477.275	369.319	615.531	TO AIR		TO AIR		
TANK2	TANK2	1,477.275	369.319	615.531	TO AIR		TO AIR		
TANK5	TANK5	2,038.746	509.687	849.478	TO AIR		TO AIR		
TANK3	TANK3	1,477.275	369.319	615.531	TO AIR		TO AIR		

EMISSIONS TO ATMOSPHERE							
FIN	EPN	EMISSIONS	EMISSIONS	EMISSIONS			
FIIN	EFIN	MAX. PPH	AVE. PPH	TPY			
TANK1	TANK1	0.506	0.169	0.739			
TANK2	TANK2	0.506	0.169	0.739			
TANK5	TANK5	69.820	0.233	1.019			
TANK3	TANK3	0.506	0.169	0.739			

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration 2/26/2024 Tanks 1-SWF COMPANY:

SITE: ACTION: DATE: WORKSHEET:

VAPOR PROPERTIES						
EPN	TANK1	TANK2	TANK5	TANK3		
CRITERIA POLLUTANTS	WT%	WT%	WT%	WT%	WT%	WT%
NOx						
CO						
SO2						
PM10						
PM2.5						
Pb						
VOC	74.9999%	74.9999%	74.9999%	74.9999%		
HAP POLLUTANTS						
BENZENE	0.1750%	0.1750%	0.1750%	0.1750%		
ETHYLBENZENE	0.0140%	0.0140%	0.0140%	0.0140%		
FORMALDEHYDE						
HEXANE-N	1.4880%	1.4880%	1.4880%	1.4880%		
METHANOL						
TOLUENE	0.1700%	0.1700%	0.1700%	0.1700%		
XYLENE-M	0.0700%	0.0700%	0.0700%	0.0700%		
XYLENE-O						
XYLENE-P						
H2S	0.0670%	0.0670%	0.0670%	0.0670%		
VOC(HAP)-u						
GHG POLLUTANTS				`	·	
METHANE						
CO2	24.9331%	24.9331%	24.9331%	24.9331%		
N2O						
TOTAL	100.0000%	100.0000%	100.0000%	100.0000%		

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration 2/26/2024 Tanks 1-SWF COMPANY: SITE: ACTION: DATE: WORKSHEET:

EMISSIONS TO ATMOSPHERE							
EMISSIONS	UNITS	TOTAL	TANK1	TANK2	TANK5	TANK3	
NOx	PPH						
CO	PPH						
SO2	PPH						
PM10	PPH						
PM2.5	PPH						
Pb	PPH						
VOC	PPH	0.554	0.126	0.126	0.175	0.126	
HAP POLLUTANTS		10.00	1000-0	1000-0	101210	1012-0	· ·
BENZENE	PPH	0.001	0.000	0.000	0.000	0.000	
ETHYLBENZENE	PPH	0.000	0.000	0.000	0.000	0.000	
FORMALDEHYDE	PPH	0.000	0.000	0.000	0.000	0.000	
HEXANE-N	PPH	0.011	0.003	0.003	0.003	0.003	
METHANOL	РРН	0.011	0.003	0.003	0.003	0.003	
		0.004	0.000		0.000	0.000	
TOLUENE	PPH	0.001	0.000	0.000	0.000	0.000	
XYLENE-M	PPH	0.001	0.000	0.000	0.000	0.000	
XYLENE-O	PPH						
XYLENE-P	PPH						
	PPH						
	PPH						
H2S	PPH	0.000	0.000	0.000	0.000	0.000	
VOC(HAP)-u	PPH						
GHG POLLUTANTS	•						•
METHANE	PPH						
CO2	PPH	0.184	0.042	0.042	0.058	0.042	
N2O	PPH			*****			
1120	PPH						
	PPH						
TOTAL	PPH	0.739	0.169	0.169	0.233	0.169	
EMISSIONS	UNITS	TOTAL	TANK1	TANK2	TANK5	TANK3	
	TPY	TOTAL	TANKI	1 ANK2	LANKS	1 ANK3	
NOx							
CO	TPY						
SO2	TPY						
PM10	TPY						
PM2.5	TPY						
Pb	TPY						
VOC	TPY	2.426	0.554	0.554	0.765	0.554	
HAP POLLUTANTS							
BENZENE	TPY	0.006	0.001	0.001	0.002	0.001	
ETHYLBENZENE	TPY	0.000	0.000	0.000	0.000	0.000	
FORMALDEHYDE	TPY						
HEXANE-N	TPY	0.048	0.011	0.011	0.015	0.011	
METHANOL	TPY	0.0.0	0.011	0.011	0.015	0.011	
TOLUENE	TPY	0.006	0.001	0.001	0.002	0.001	
XYLENE-M	TPY	0.008	0.001	0.001	0.002	0.001	+
XYLENE-M XYLENE-O		0.002	0.001	0.001	0.001	0.001	
	TPY			_		+	
XYLENE-P	TPY						
	TPY						
	TPY						
H2S	TPY	0.002	0.000	0.000	0.001	0.000	
VOC(HAP)-u	TPY						
GHG POLLUTANTS							
METHANE	TPY						
CO2	TPY	0.807	0.184	0.184	0.254	0.184	
CO2			1	T T		1	 1
N2O	TPY						
	TPY						
		3.235	0.739	0.739	1.019	0.739	

COMPANY: Ineos USA Oil & Gas LLC
SITE: Mckenzie-Foley Unit B MCM Pad
ACTION: PI-7-CERT Registration

DATE: 2/26/2024 WORKSHEET: Tanks 1-SWF

EXAMPLE CALCULATIONS: CALCULATE VOC EMISSIONS:

TANK THROUGPHUT

CONTROL DRE:

EPN TANK1

AP-42, CHP. 7 EMISSIONS LBS/YR 1,477.275 AVE. ANNUAL EMISSION RATE AP-42, CHP. 7 EMISSIONS LBS 369.319 MAX. EMISSION RATE

 RUN TIME
 HRS/YR
 8,760.000

 TANK FILLING RATE:
 GPH
 20.417

 TANK CAPACITY:
 GALLONS
 16,800.000

GALLONS/YR 178,850.000

TURN-OVERS:

NO/YR
TANK THROUGHPUT, GAL/YR
TANK SIZE, GALLONS

TURN-OVERS: NO./YR 10.646

%

VAPOR VOC WT % % 75.00%

UN-CONTROLLED MAX. EMISSIONS PPH <u>EMISSIONS, LBS</u> X VOC WT. %

HRS/YR

UN-CONTROLLED MAX. EMISSIONS PPH 0.126

UN-CONTROLLED MAX. EMISSIONS PPH HOURLY RATE X (1 - DRE) = 0.126

UN-CONTROLLED ANNUAL EMISSIONS LBS/YR 1,477.275 X VOC WT. % = 1,107.954 UN-CONTROLLED ANNUAL EMISSIONS TPY 0.554 =

CONTROLLED ANNUAL EMISSIONS TPY ANNUAL RATE X (1 - DRE) = 0.554

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration 2/26/2024 LOADING 1 COMPANY: SITE: ACTION: DATE: WORKSHEET:

SOURCE DESCRIPTION		
FIN	EPN	DESCRIPTION
C LOAD 1	C LOAD 1	CRUDE LOADING; VENTING TO ATMOSPHERE; 106.352(L)
PW LOAD 1	PW LOAD 1	PRODUCED WATER LOADING; ASSUMED 1% CRUDE BY VOLUME; VENTING TO ATMOSPHERE; 106.352(L)

SOURCE OPERATING PARAMETERS									
FIN	EPN	CONTENTS	THROUGHPUT	THROUGHPUT	VOC FRACTION	VOC FRACTION	LOADING RATE	OPERATING TIME	MAX. TEMP,
FIIN	Ern	CONTENTS	BBLS/D	GAL/YR	VOC FRACTION	GAL/YR	GPM	HRS/YR	DEG. F
C LOAD 1	C LOAD 1	STABILIZED CRUD	35.00	536,550.00	1.00	536,550.00	126.000	70.972	90.1
PW LOAD 1	PW LOAD 1	PRODUCED WATER	17.50	268,275.00	0.01	2,682.75	126.000	35.486	90.1

SOURCE OPERATING PAR FIN	RAMETERS EPN		VAPOR MOLE. WT. LBS/LB-MOLE	SATURATION FACTOR	UN-CONTROLLED EMISSION RATE LBS/MGAL	PRIMARY CONTROL	SECONDARY CONTROL	S.C. DRE %
C LOAD 1	C LOAD 1	8.746	38.143	0.6		TO AIR	TO AIR	
PW LOAD 1	PW LOAD 1	8.746	38.143	0.6	4.53	TO AIR	TO AIR	

SOURCE STACK PARAMI	ETERS								
FIN	EPN	ZONE	UTM E	UTM N	STACK DIA.	STACK HT.	EXH. TEMP	EXH. VEL.	
Pill	EFN	ZONE	UTWIE	UTWIN	FT.	FT.	DEG. F	FPS	
C LOAD 1	C LOAD 1	14R	534,830	3,152,876	0.500	8.000	90.1	0.23	
PW LOAD 1	PW LOAD 1	14R	534,830	3,152,876	0.500	8.000	90.1	0.00	

EMISSIONS TO ATMOSPHERE									
FIN	IEDN	EMISSIONS	EMISSIONS	EMISSIONS					
		MAX. LBS/YR	MAX. PPH	TPY					
C LOAD 1	C LOAD 1	2,432.355	34.272	1.216					
PW LOAD 1	PW LOAD 1	12.162	0.343	0.006					
						, and the second			

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration 2/26/2024 LOADING 1 COMPANY: SITE: ACTION: DATE: WORKSHEET:

CRITERIA POLLUTANTS WT% WT% WT% WT% WT% WT% WT% W	EPN	C LOAD 1	PW LOAD 1				
NOX CO SO2 MIO MIO MIO MIO MIO MIO MIO MIO MIO MIO							
CO	CRITERIA POLLUTANTS	WT%	WT%	WT%	WT%	WT%	WT%
SO2							
PM10 PM2.5 Pb PM2.6 PM2.							
PM2.5 Pb VOC 99.988% 99.988% VOC 99.988% 99.9988% HAP POLLUTANTS BENZENE 0.0031% 0.0031% ETHYLBENZENE 0.0002% 0.0002% FORMALDEHYDE 1	SO2						
Pb	PM10						
VOC 99.9988%	PM2.5						
HAP POLLUTANTS BENZENE 0.0031% 0.0031%							
BENZENE 0.0031% 0.0031% 0.0002% ETHYLBENZENE 0.0002% 0.0002%		99.9988%	99.9988%				
ETHYLBENZENE 0.0002% 0.0002% 0.0002% 0.0002% 0.0002% 0.0002% 0.0002% 0.0002% 0.0002% 0.0002% 0.0002% 0.00026% 0.00026% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.00000% 0.000000% 0.000000 0.000000 0.000000 0.000000 0.000000	HAP POLLUTANTS	•	•	•	•	•	.
FORMALDEHYDE HEXANE-N 0.0266% 0.0266% 0.0266% ETHANOL TOLUENE 0.0030% 0.0030% 0.0012%							
HEXANE-N METHANOL DO030% METHANOL DO030% DO030% NYLENE-M NYLENE-M NYLENE-O XYLENE-P DO0012% DO012%	ETHYLBENZENE	0.0002%	0.0002%				
METHANOL TOLUENE 0.0030% 0.0030% XYLENE-M XYLENE-O XYLENE-P H2S 0.0012% 0.001	FORMALDEHYDE						
TOLUENE		0.0266%	0.0266%				
XYLENE-M XYLENE-O XYLENE-P XYLENE-P H2S 0.0012% 0.001	METHANOL						
XYLENE-O XYLENE-P L2S 0.0012% 0.0012% VOC(HAP)-u GIGG POLLUTANTS METHANE C02 N2O N2O N2O N2O N2O N2O N2O N	TOLUENE	0.0030%	0.0030%				
XYLENE-P H2S 0.0012% 0.0012	XYLENE-M	0.0012%	0.0012%				
H2S 0.0012% 0.0012% 0.0012% VOC(HAP)-u							
VOC(HAP)-u GHG POLLUTANTS METHANE CO2 N2O	XYLENE-P						
VOC(HAP)-u GHG POLLUTANTS METHANE CO2 N20 Sign Sign Sign Sign Sign Sign Sign Sign							
VOC(HAP)-u SHG POLLUTANTS HETHANE CO2 N2O	TIAG.	0.00120	0.00120/				
GHG POLLUTANTS METHANE CO2 N2O		0.0012%	0.0012%				
METHANE CO2 N2O							
CO2 N2O							
N2O							
	N2U						
Γ OT Δ I $1100~0000\%$ $1100~0000\%$ 1 1 1 1 1	TOTAL	100.0000%	100.0000%				

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration 2/26/2024 LOADING 1 COMPANY: SITE: ACTION: DATE: WORKSHEET:

EMISSIONS TO ATMOSPHERE								
EMISSIONS TO ATMOST TEXE	UNITS	TOTAL	C LOAD 1	PW LOAD 1				
NOx	PPH	10171L	C DOND I	LOND 1				
CO	PPH							
SO2	PPH							
PM10	PPH							
PM2.5	PPH							
			_					
Pb	PPH	21.11	2 / 2 = 2	0.010				
VOC	PPH	34.614	34.272	0.343				l .
HAP POLLUTANTS		1			ı	1		1
BENZENE	PPH	0.001	0.001	0.000				
ETHYLBENZENE	PPH	0.000	0.000	0.000				
FORMALDEHYDE	PPH							
HEXANE-N	PPH	0.009	0.009	0.000				
METHANOL	PPH							
TOLUENE	PPH	0.001	0.001	0.000				
XYLENE-M	PPH	0.000	0.000	0.000				
XYLENE-O	PPH							
XYLENE-P	PPH							
	PPH							
	PPH		1					1
H2S	PPH	0.000	0.000	0.000				
VOC(HAP)-u	PPH	0.000	0.000	0.000				
GHG POLLUTANTS	11111	-1			I.	1		1
METHANE	PPH	1				1		
CO2	PPH		_					
N2O	PPH							
	PPH							
	PPH							
TOTAL	PPH	34.615	34.272	0.343				
EMISSIONS	UNITS	TOTAL	C LOAD 1	PW LOAD 1				
NOx	TPY							
CO	TPY							
SO2	TPY							
PM10	TPY							
PM2.5	TPY							
Pb	TPY							
VOC	TPY	1.222	1.216	0.006				
HAP POLLUTANTS	- 1				L	· L		
BENZENE	TPY	0.000	0.000	0.000				
ETHYLBENZENE	TPY	0.000	0.000	0.000				
FORMALDEHYDE	TPY	0.000	0.000	0.000				
HEXANE-N	TPY	0.000	0.000	0.000				
METHANOL	TPY	0.000	0.000	0.000				
TOLUENE	TPY	0.000	0.000	0.000				
								
XYLENE-M	TPY	0.000	0.000	0.000				
XYLENE-O	TPY							
XYLENE-P	TPY							
	TPY							
	TPY		1					
H2S	TPY	0.000	0.000	0.000				
VOC(HAP)-u	TPY							
GHG POLLUTANTS								
METHANE	TPY							
CO2	TPY							
N2O	TPY							
- ·- ··	TPY		1					
	TPY		+					
TOTAL	TPY	1.222	1.216	0.006				
IVIAL	11 1	1.222	1.210	0.000		ļ	ļ.	

COMPANY: Ineos USA Oil & Gas LLC SITE: Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration ACTION:

DATE: 2/26/2024 WORKSHEET: LOADING 1

EXAMPLE CALCULATIONS:

CALCULATE VOC EMISSIONS:

EPN COMOUND NAME

VOC FRACTION OPERATION

THROUGHPUT THROUGHPUT (VOC FRACTION) MAX. ANNUAL TEMPERATURE (T1) MAX. ANNUAL TEMPERATURE (T1) LIQ. V. P. @ MAX. TEMP.

SATURATION FACTOR (S, FROM AP-42, TABLE 5.2-1) VAPOR VOC WT%

VAPOR MOL. WT. (FROM AP-42, TABLE 7.1-2, OR TANKS OUTPUT)

TO AIR CONTROL DRE

UNCONTROLLED LOADING EMISSIONS

LBS/MGAL

HRS/YR

DEG. F

DEG. R

PSIA

GALLONS/YR

GALLONS/YR

LBS/LB-MOLE

UN-CONTROLLED LOADING EMISSIONS UN-CONTROLLED LOADING EMISSIONS

UN-CONTROLLED LOADING EMISSIONS

UN-CONTROLLED LOADING EMISSIONS CONTROLLED LOADING EMISSIONS

CONTROLLED LOADING EMISSIONS

LBS/MGAL LBS/YR PPH TPY

PPH

TPY

2,000 LBS/TON MAX. PPH X (1 - DRE) MAX. TPY X (1 - DRE)

C LOAD 1 STABILIZED CRUDE

536,550.000

536,550.000

1.000

70.972

90.108

550.108

99.9988%

MAX. TEMP.

12.46 X SAT. FAC. X MOL. WT. X MAX. V.P.

[MAX. LBS/YR / HRS/YR] X VOC WT.%

MAX. PPH X OPERATION, HRS/YR

LBS/MGAL X THROUGHPUT, MGAL/YR X VOC FRACT.

8.746

0.600

38.143

4.533

34.272 1.216

2,432.355

34.272

1.216

COMPANY: Ineos USA Oil & Gas LLC

SITE: Mckenzie-Foley Unit B MCM Pad

ACTION: P1-7-CERT Registration

DATE: 2/26/2024

WORKSHEET: FLASH 1

SOURCE DESCRIPTION

FIN EPN DESCRIPTION

HT1-FLASH HT1-FLASH HEATER-TREATER CRUDE FLASH

EPN	DESCRIPTION
HT1-FLASH	HEATER-TREATER CRUDE FLASH VAPORS; VENTING TO ATMOSPHERE; 106.352(1)

SOURCE OPERATING PARAMETERS									
FIN	EPN	CONTENTS	THROUGHPUT BBLS/D			HPS/VP	TEMP.	OZONE SEA. MAX. TEMP. DEG. F	
HT1-FLASH	HT1-FLASH	CRUDE/NATURAL O	35.18	100.00%	12,838.88	8,760.00	79.800	104.200	

SOURCE OPERATING PARAMETERS									
FIN	IEPN	DOWN STREAM PSIG					VAPOR MOLE. WT. LBS/LB-MOLE	GOR SCF/BBL	
HT1-FLASH	HT1-FLASH	14.270	111.400	VASQUEZ-BEGGS	48.26	0.79	38.14		

SOURCE OPERATING PARAMETE	RS							
FIN	EPN			EMISSIONS TO ATMOSPHERE PPH	PRIMARY CONTROL	SECONDARY CONTROL	S.C. DRE %	
HT1-FLASH	HT1-FLASH	47,539.48	5.427	5	TO ATMOSPHERE	TO ATMOSPHERE		

SOURCE STACK PARAMETERS									
FIN	EPN	ZONE	UTM E	UTM N				EXH. VEL. FPS	
HT1-FLASH	HT1-FLASH	14R	534,830	3,152,876	1.000	30.000	79.800	1.54E-02	

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration 2/26/2024 FLASH 1 COMPANY: SITE: ACTION: DATE: WORKSHEET:

VAPOR PROPERTIES						
EPN	HT1-FLASH	1	1			
EIT	IIIIIEAGII					
CRITERIA POLLUTANTS	WT%	WT%	WT%	WT%	WT%	WT%
NOx						
CO						
SO2						
PM10						
PM2.5						
Pb						
VOC	74.9999%					
HAP POLLUTANTS						
BENZENE	0.1750%					
ETHYLBENZENE	0.0140%					
FORMALDEHYDE						
HEXANE-N	1.4880%					
METHANOL						
TOLUENE	0.1700%					
XYLENE-M	0.0700%					
XYLENE-O						
XYLENE-P						
H2S	0.0670%					
VOC(HAP)-u						
GHG POLLUTANTS	<u> </u>					
METHANE	24.0004					
CO2	24.9331%					
N2O						
mom a v	100.0000					
TOTAL	100.0000%					

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration 2/26/2024 FLASH 1 COMPANY: SITE: ACTION: DATE: WORKSHEET:

MINISTANDER NOTE TOTAL HTTPLISH	EN HOOMAND AND AND ADDRESS OF							
March		r p proc	mom i i	TYPE PY ACTY		ı	ı	
December December			TOTAL	HTT-FLASH				
Mail								
PRIO								
PRIST								
Proceedings								
PRI	PM2.5							
HAP POLITARINS								
BRYZNE		PPH	4.070	4.070				
ETHYLARINSEN ETHYL								
FORMALDRIVE								
HEXAREN			0.001	0.001				
METHANGL PPH 0.009 0.099								
TOLIUNE	HEXANE-N	PPH	0.081	0.081				
XYLENE PPH	METHANOL	PPH						
XYLENED	TOLUENE	PPH	0.009	0.009				
YMENSO	XYLENE-M	PPH	0.004	0.004				
Yaman	XYLENE-O							
PPH	XYLENE-P	PPH						
PPH				İ				
PPH 0.004 0.004								
VOCHAPD PPH	H2S		0.004	0.004				
Section Sect								
METHANE PPH		·		· · · · · · · · ·	· ·	l	l	
PPH		PPH						
PPH			1 353	1 353				
PPH			1.555	1.555				
PPH	1130							
TOTAL								
EMISSIONS UNITS TOTAL HTI-FLASH	ΤΟΤΔΙ		5 427	5 427				
NOX			TOTAL					
CO			TOTAL	IIII-IILASII				
SOC								
PM10								
PM2.5								
Ph								
VOC								
HAP POLLUTANTS BENZENE TPY 0.042 0.042			17 927	17 927				
BENZENE TPY 0.042 0.042 ETHYLBENZENE TPY 0.003 0.003 ETHYLBENZENE TPY 0.003 0.003 ETHYLBENZENE TPY 0.003 0.003 ETHYLBENZENE TPY 0.004 ENGAMETHANOL TPY 0.354 0.354 ETHANOL TPY 0.040 0.040 EXYLENE-M TPY 0.040 0.040 EXYLENE-M TPY 0.017 0.017 EXYLENE-O TPY 0.017 EXYLENE-O TPY 0.017 ETHY 0.017 ETHY 0.018 ETHY 0.018 ETHY 0.019 ETHY 0.		111	17.027	17.027				
ETHYLBENZENE TPY 0.003 0		TDV	0.042	0.042		I	ı	
FORMALDEHYDE								
HEXANE-N	ETHYLBENZENE FORMAL DELIVIDE		0.003	0.003				
METHANOL TPY 0.040 0.040 TOLUENE TPY 0.040 0.040 XYLENE-M TPY 0.017 0.017 XYLENE-O TPY 0.017 0.017 XYLENE-P TPY 0.016 0.016 H2S TPY 0.016 0.016 H2S TPY 0.016 0.016 VOC(AP)-u TPY 0.016 0.016 METHANE TPY 5.927 5.927 N2O TPY 5.927 5.927 N2O TPY TPY 0.016 TPY TPY 0.016 0.016			0.254	0.254				
TOLUENE TPY 0.040 0.040 0.040			0.334	0.334				
XYLENE-M XYLENE-O TPY XYLENE-P TPY TPY TPY TPY TPY TPY TPY TPY TPY TP			0.040	0.040				
XYLENE-O TPY								
TPY	X Y LENE-M		0.017	0.017				
TPY								
TPY	XYLENE-P							
H2S TPY 0.016 0.01								
VOC(HAP)-u								
GHG POLLUTANTS			0.016	0.016				
METHANE TPY		TPY						
CO2 TPY 5.927 5.927 N2O TPY								
N2O TPY								
TPY TPY			5.927	5.927				
TPY	N2O	TPY						
		TPY						
	TOTAL		23.770	23.770				

COMPANY: Ineos USA Oil & Gas LLC SITE: Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration ACTION:

DATE: 2/26/2024 WORKSHEET: FLASH 1

EXAMPLE CALCULATIONS: CALCULATE VOC EMISSIONS:

COMOUND NAME CRUDE/NATURAL GAS

VOC CONTENT 100.0000% OPERATION HRS/YR 8,760.000

THROUGHPUT BBLS/YR 12,838.875 BBLS/YR

THROUGHPUT (VOC FRACTION) THROUGHPUT, BBLS/YR X VOC CONTENT % 12,838.875 VAPOR VOC WT%

SCF/MOLE MOLAR VOLUME 385.462 VAPOR MOL. WT. (FROM AP-42, TABLE 7.1-2, OR TANKS OUTPUT) LBS/LB-MOLE 38.143

SCF/BBL GOR

TO ATMOSPHERE CONTROL DRE

UNCONTROLLED EMISSIONS GOR, SCF/BBL X THROUGHPUT, BBLS/YR X MOL. WT., LSB/LB-MOLE X VOC WT.% LBS/YR

HT1-FLASH

MOLAR VOLUME, SCF/MOLE

UNCONTROLLED EMISSIONS PPH LBS/YR / OPERATION, HRS/YR = UNCONTROLLED EMISSIONS TPY LBS/YR / 2,000 LBS/TON =

CONTROLLED EMISSIONS PPH MAX. PPH X (1 - DRE) 0.00 CONTROLLED EMISSIONS TPY MAX. TPY X (1 - DRE) 0.00

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration 2/26/2024 BLOWDOWNS / MSS COMPANY: SITE: ACTION: DATE: WORKSHEET:

SOURCE DESCRIPTION		
FIN	EPN	DESCRIPTION
MSS 1	MSS 1	MSS ACTIVITY; VAPORS VENTED TO ATMOSPHERE DURING MSS ACTIVITIES; 106.359
MSS 2	MSS 2	MSS ACTIVITY; STORAGE TANK DE-GASSING DURING MAINTENANCE ACTIVITY; ASSUME DE-GASSING 1 TANK/YEAR; VENTS TO ATMOSPHERE; 106.359
MSS 3	MSS 3	MSS ACTIVITIES; MISC. ABRASIVE BLASTING/COATING ACTIVITIES; VENTS TO ATMOSPHERE; AREA SOURCE; 106.359
VENTING 1	VENTING 1	PNEUMATIC DEVICE; VENTING TO ATMOSPHERE; 106.352(I)

SOURCE OPERATING PARAMETERS								
FIN	EPN	ICONTENTS		RATE SCF/HR			VAPOR MOLE. WT. LBS/LB-MOLE	
MSS 1	MSS 1	NATURAL GAS	1,318.00	25.00	0.0075	300.00	1.53	
MSS 2	MSS 2	NATURAL GAS	1,318.00	5,620.00	0.0056	1.00	1.53	
MSS 3	MSS 3	BLASTING/COATIN	3,071.00	1,200.00	0.1152	96.00	88.41	
VENTING 1	VENTING 1	NATURAL GAS	1,318.00	2.25	0.0049	2,190.00	1.53	

SOURCE OPERATING PARAMETERS								
FIN	EPN	UN-CONTROLLED EMISSION RATE PPH	ATMOSPHERE	PRIMARY CONTROL		SECONDARY CONTROL		
MSS 1	MSS 1	0.099	0.099	TO ATMOSPHERE	NONE	TO ATMOSPHERE		
MSS 2	MSS 2	22.235	22.221	TO ATMOSPHERE	NONE	TO ATMOSPHERE		
MSS 3	MSS 3	275.224	2.989	TO ATMOSPHERE	NONE	TO ATMOSPHERE		
VENTING 1	VENTING 1	0.009	0.009	TO ATMOSPHERE	NONE	TO ATMOSPHERE		

SOURCE STACK PARAMETERS									
FIN	EPN	ZONE	UTM E	UTM N	STACK DIA.	STACK HT.	EXH. TEMP	EXH. VEL.	
THN	EFN	ZONE	UTWLE	UTWIN	FT.	FT.	DEG. F	FPS	
MSS 1	MSS 1	14R	534,830	3,152,876	0.500	20.00	90.11	0.001	
MSS 2	MSS 2	14R	534,830	3,152,876	0.500	20.00	90.11	0.257	
MSS 3	MSS 3	14R	534,830	3,152,876	0.250	3.00	90.11	0.077	
VENTING 1	VENTING 1	14R	534,830	3,152,876	0.250	3.00	90.11	0.000	

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration 2/26/2024 BLOWDOWNS / MSS COMPANY: SITE: ACTION: DATE: WORKSHEET:

EPN	MSS 1	MSS 2	MSS 3	VENTING 1		
CRITERIA POLLUTANTS	WT%	WT%	WT%	WT%	WT%	WT%
NOx						
CO						
SO2						
PM10		+	4.6874%			
PM2.5			4.6874%			
Pb		+	4.067470			
VOC	74.9999%	74.9999%	99.9991%	74.9999%		
HAP POLLUTANTS	14.7777/0	17.7777/0	77.777170	17.7777/0		
BENZENE	0.1750%	0.1750%	13.2529%	0.1750%		
ETHYLBENZENE	0.0140%	0.0140%	18.0122%	0.0140%		
FORMALDEHYDE	0.011070	0.011070	10.012270	0.011070		
HEXANE-N	1.4880%	1.4880%	14.6218%	1.4880%		
METHANOL						
TOLUENE	0.1700%	0.1700%	15.6317%	0.1700%		
XYLENE-M	0.0700%	0.0700%	18.0122%	0.0700%		
XYLENE-O						
XYLENE-P						
·						
H2S	0.0670%	0.0670%	0.0009%	0.0670%		
VOC(HAP)-u						
GHG POLLUTANTS						
METHANE						
CO2						
N2O						
TOTAL	75.0669%	75.0669%	100.0000%	75.0669%		

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration 2/26/2024 BLOWDOWNS / MSS COMPANY: SITE: ACTION: DATE: WORKSHEET:

EMISSIONS TO ATMOSPHERE								
EMISSIONS	UNITS	TOTAL	MSS 1	MSS 2	MSS 3	VENTING 1		
NOx	PPH							
CO	PPH							
SO2	PPH							
PM10	PPH	0.062			0.062			
PM2.5	PPH	0.062			0.062			
Pb	PPH	0.002			0.002			
VOC	РРН	19.746	0.074	16.676	2.989	0.007		
HAP POLLUTANTS	J1111	17.740	0.074	110.070	2.767	0.007		
BENZENE	PPH	0.506	0.000	0.039	0.467	0.000		
ETHYLBENZENE	PPH	0.470	0.000	0.003	0.467	0.000		
FORMALDEHYDE	PPH	0.470	0.000	0.003	0.407	0.000		
HEXANE-N	РРН	0.799	0.001	0.331	0.467	0.000		
METHANOL	РРН	0.799	0.001	0.551	0.407	0.000		
TOLUENE	PPH	0.505	0.000	0.020	0.467	0.000		
		0.483		0.038	0.467			_
XYLENE-M	PPH	0.483	0.000	0.016	0.467	0.000		_
XYLENE-O	PPH						_	-
XYLENE-P	PPH						_	-
	PPH							
****	PPH	0.004				0.000		-
H2S	PPH	0.001	0.000	0.000	0.000	0.000		-
VOC(HAP)-u	PPH							
GHG POLLUTANTS							_	
METHANE	PPH							
CO2	PPH	5.571	0.025	5.544		0.002		
N2O	PPH							
	PPH							
	PPH							
TOTAL	PPH	25.317	0.099	22.221	2.989	0.009		
EMISSIONS	UNITS	TOTAL	MSS 1	MSS 2	MSS 3	VENTING 1		
NOx	TPY							
CO	TPY							
SO2	TPY							
PM10	TPY	0.003			0.003			
PM2.5	TPY	0.003			0.003			
Pb	TPY							
VOC	TPY	0.170	0.011	0.008	0.143	0.007		
HAP POLLUTANTS		•			•	•	•	
BENZENE	TPY	0.022	0.000	0.000	0.022	0.000		
ETHYLBENZENE	TPY	0.022	0.000	0.000	0.022	0.000		
FORMALDEHYDE	TPY							
HEXANE-N	TPY	0.023	0.000	0.000	0.022	0.000		
METHANOL	TPY	0.023	0.000	0.000	0.022	0.000		
TOLUENE	TPY	0.022	0.000	0.000	0.022	0.000		
XYLENE-M	TPY	0.022	0.000	0.000	0.022	0.000	+	+
XYLENE-O	TPY	0.022	0.000	0.000	0.022	0.000		-
XYLENE-P	TPY							-
A LEBRET	TPY							-
	TPY						+	+
H2S	TPY	0.000	0.000	0.000	0.000	0.000	+	+
		0.000	0.000	0.000	0.000	0.000	+	-
VOC(HAP)-u	TPY			1	1			1
GHG POLLUTANTS	Invest v							
METHANE	TPY	0.00	0.05	0.05-		0.000		-
CO2	TPY	0.009	0.004	0.003		0.002		
N2O	TPY							
	TPY							
	TPY							
TOTAL	TPY	0.179	0.015	0.011	0.143	0.010		

COMPANY: Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration SITE: ACTION:

DATE: 2/26/2024

WORKSHEET: BLOWDOWNS / MSS

EXAMPLE CALCULATIONS: CALCULATE VOC EMISSIONS:

MSS 1 BLOWDOWN RATE SCF/HR 25.000 BLOWDOWN RATE MMSCF/YR 0.008 DURATION HRS/YR 300.000 VAPOR MOLE. WT. LBS/LB-MOLE 1.525 MOLAR VOLUME SCF/MOLE 385.462 VAPOR VOC CONTENT WT% 75.000% PRIMARY CONTROL DRE NONE

BLOWDOWN RATE, SCF/HR X MOL. WT, LBS/LB-MOLE X VOC WT% MOLAR VOLUME, SCF/MOLE UN-CONTROLLED EMISSIONS PPH 0.074

%

PPH X OPERATION, HRS/YR 2,000 LBS/TON UN-CONTROLLED EMISSIONS TPY 0.011

 $\begin{array}{lll} MAX.\,PPH & X & (1-DRE) \\ MAX.\,TPY & X & (1-DRE) \end{array}$ CONTROLLED EMISSIONS PPH TPY #VALUE! CONTROLLED EMISSIONS #VALUE!

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration 2/26/2024 FUGITIVES 1 - 3 COMPANY: SITE: ACTION: DATE: WORKSHEET:

SOURCE DESCRIPTION / OPERATING PARAMETERS								
FIN	EPN	DESCRIPTION	SOURCE TYPE	LLEWIS	DURATION HRS/YR			
FUG	FUG	SITE FUGITIVE EMISSIONS; 106.352(1)	OIL & GAS	90.11	8,760.00			

SOURCE STACK PARAMETERS								
FIN EPN ZON	ZONE	UTM E	UTM N	FUG. LENGTH	FUG. WIDTH	FUG. HEIGHT		
	ZONE	UTWIE		FT	FT	FT		
FUG	FUG	14R	534,830	3,152,876	300.00	300.00	3.00	

EPN	SERVICE	LDAR PROGRAM	EPN	SERVICE	LDAR PROGRAM	EPN	SERVICE	LDAR PROGRAM
FUG	LIGHT-LIQUID COMPONENTS	NONE			NONE			NONE
COMPONENT	COUNT	EMISS. FACTOR	COMPONENT	COUNT	EMISS. FACTOR	COMPONENT	COUNT	EMISS. FACTOR
TYPE	COUNT	PPH/UNIT	TYPE	COUNT		TYPE	COUNT	PPH/UNIT
CONNECTORS-LIGHT LIQUID	23	0.000463						
FLANGES-LIGHT LIQUID	15	0.000243						
PUMPS-LIGHT LIQUID	4	0.028660						
RELIEF VALVES-LIGHT LIQUID	4	0.016500						
VALVES-LIGHT LIQUID	15	0.005500						
EPN	EMISSIONS	EMISSIONS	EPN	EMISSIONS	EMISSIONS	EPN	EMISSIONS	EMISSIONS
EPN	PPH	TPY	LFIN	PPH	TPY	LFIN	PPH	TPY
FUG	0.277	1.214						

EPN	SERVICE	LDAR PROGRAM	EPN	SERVICE	LDAR PROGRAM	EPN	SERVICE	LDAR PROGRAM
FUG	NATURAL GAS COMPONENTS	NONE		LIGHT-LIQUID COM	NONE		LIGHT-LIQUID COM	NONE
COMPONENT	COUNT	EMISS. FACTOR	COMPONENT	COUNT	EMISS. FACTOR	COMPONENT	COUNT	EMISS. FACTOR
TYPE	COUNT	PPH/UNIT	TYPE	COUNT	PPH/UNIT	TYPE	COUNT	PPH/UNIT
CONNECTORS-GAS	23	0.000440						
FLANGES-GAS	15	0.000860						
RELIEF VALVES-GAS	12	0.019400						
VALVES -GAS	15	0.009920						
COMPRESSORS-GAS		0.019400						
EPN	EMISSIONS	EMISSIONS	EPN	EMISSIONS	EMISSIONS	EPN	EMISSIONS	EMISSIONS
EFN	PPH	TPY	LFIN	PPH	TPY	EFIN	PPH	TPY
FUG	0.404	1.771						

EPN	SERVICE	LDAR PROGRAM	EPN	SERVICE	LDAR PROGRAM	EPN	SERVICE	LDAR PROGRAM
FUG		NONE			NONE			NONE
COMPONENT	COUNT	EMISS. FACTOR	COMPONENT	COUNT	EMISS. FACTOR	COMPONENT	COUNT	EMISS. FACTOR
TYPE	COUNT	PPH/UNIT	TYPE	COUNT	PPH/UNIT	TYPE	COUNT	PPH/UNIT
		, and the second	, and the second	, and the second				, and the second
EPN		EMISSIONS	EPN	EMISSIONS	EMISSIONS	EPN	EMISSIONS	EMISSIONS
DI IV	PPH	TPY	131 14	PPH	TPY	LIN	PPH	TPY
FUG								

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration 2/26/2024 FUGITIVES 1 COMPANY: SITE: ACTION: DATE: WORKSHEET:

VAPOR PROPERTIES / EMISS	SIONS								
EPN	FUG								
SERVICE	LIGHT-LIQUID COMPO	NENTS		NATURAL GAS	COMPONENTS				
CRITERIA POLLUTANTS	WT%	EMISSIONS	EMISSIONS	WT%	EMISSIONS	EMISSIONS	WT%	EMISSIONS	EMISSIONS
		PPH	TPY		PPH	TPY		PPH	TPY
NOx									
CO									
SO2									
PM10									
PM2.5									
Pb									
VOC	99.9988%		0.277	99.9988%	0.404	1.771			
HAP POLLUTANTS	•			-			•		
BENZENE	0.0031%		0.000	0.0031%	0.000	0.000			
ETHYLBENZENE	0.0002%		0.000	0.0002%	0.000	0.000			
FORMALDEHYDE									
HEXANE-N	0.0266%		0.000	0.0266%	0.000	0.000			
METHANOL									
TOLUENE	0.0030%		0.000	0.0030%	0.000	0.000			
XYLENE-M	0.0012%		0.000	0.0012%	0.000	0.000			
XYLENE-O									
XYLENE-P									
H2S	0.0012%		0.000	0.0012%	0.000	0.000			
VOC(HAP)-u									
GHG POLLUTANTS									
METHANE									
CO2									
N2O									
TOTALS	100.0000%		0.277	100.0000%	0.404	1.771			

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration 2/26/2024 FUGITIVES 1 COMPANY:

SITE: ACTION: DATE: WORKSHEET:

TOTAL EMISSIONS (ALL COMPONENT SERVICE) EPN FUG	PPH	TPY
NOx		
CO		
SO2		
PM10		
PM2.5		
Pb		
VOC	0.404	2.048
HAP POLLUTANTS		
BENZENE	0.000	0.000
ETHYLBENZENE	0.000	0.000
FORMALDEHYDE		
HEXANE-N	0.000	0.001
METHANOL		
TOLUENE	0.000	0.000
XYLENE-M	0.000	0.000
XYLENE-O		
XYLENE-P		
H2S	0.000	0.000
VOC(HAP)-u		
GHG POLLUTANTS		
METHANE		
CO2		
N2O		
	0.404	2.048
TOTAL	0.405	2.049

SITE: Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration ACTION: DATE: 2/26/2024 WORKSHEET: DIESEL ENGINES 1 SOURCE DESCRIPTION FIN DESCRIPTION EPN GASOLINE POWERED PUMP ENGINE ENG2 ENG2 SOURCE OPERATING PARAMETERS FIN MAKE MODEL ENGINE TYPE FUEL TYPE EPN ENG2 HONDA GASOLINE ENG2 GX160 4S-RB SOURCE OPERATING PARAMETERS RATING RUN-TIME FUEL USE FUEL HEAT FUEL USE FUEL USE HEAT INPUT HEAT INPUT FIN EPN ВНР HRS/YR BTU/HP-HR BTU/GAL GAL/HR MMBTU/HR MMBTU/YR GAL/YR ENG2 ENG2 8,760.0 132,000.000 0.255 2,229.818 0.034 294.336 4.800 7,000.000 SOURCE STACK PARAMETERS STACK DIA. STACK HT. EXH. TEMP EXH. VEL. FIN EPN ZONE UTM E UTM N DEG. F FPS ENG2 ENG2 14R 534,829.6 3,152,876.2 0.083 2.000 1,200.000 3,080.361

COMPANY:

Ineos USA Oil & Gas LLC

COMPANY: Ineos USA Oil & Gas LLC SITE: Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration

ACTION: DATE: 2/26/2024

WORKSHEET: DIESEL ENGINES 1

	UNITS	TOTAL	ENG2			
	G/HP-HR		6.615			
CO	G/HP-HR		267.435			
SO2	G/HP-HR		0.267			
PM10	G/HP-HR		0.318			
PM2.5	G/HP-HR					
	G/HP-HR					
	G/HP-HR		6.600			
HAP POLLUTANTS						
	G/HP-HR		0.003			
	G/HP-HR					
	G/HP-HR		1.890			
	G/HP-HR					
METHANOL	G/HP-HR					
	G/HP-HR		0.001			
	G/HP-HR		0.001			
	G/HP-HR					
	G/HP-HR					
	G/HP-HR					
	G/HP-HR					
	G/HP-HR					
	G/HP-HR					
GHG POLLUTANTS						
	G/HP-HR		0.000			
	G/HP-HR		488.981			
N2O	G/HP-HR					
	G/HP-HR					
	G/HP-HR					

NOTE: 1. AP-42 EMISSION FACTORS IN LBS/MMBTU CONVERTED TO GRAMS/HP-HR AS FOLLOWS (USING NOX AS AN EXAMPLE):

NOTE: THIS IS AN EXAMPLE CALCULATION; THE ACTUAL NOX E.F. USED MAY HAVE BEEN PROVIDED BY THE MANUFACTURER IN GRAMS/HP-HR,

ENGINE TYPE

4S-RB

	4S-RB	
%	0.00%	
LBS/MMBTU	1.630	PRE-CONTROL
LBS/MMBTU	1.630	POST-CONTROL
BTU/HP-HR	7,000.000	
GRAMS/LB	453.600	
	LBS/MMBTU LBS/MMBTU BTU/HP-HR	% 0.00% LBS/MMBTU 1.630 LBS/MMBTU 1.630 BTU/HP-HR 7,000.000

LBS TO GRAMS CONVERSION 453.600 AP-42 E.F., LBS/MMBTU X ENGINE FUEL USE, BTU/HP-HR X 453.6 GRAMS/LB AP-42 NOX E.F. GRAMS/HP-HR

1,000,000 BTU/MMBTU AP-42 NOX E.F. PRE-CONTROL PRE-CONTROL GRAMS/HP-HR 5.176 AP-42 NOX E.F. SUPPLIED BY MANUFACTURER GRAMS/HP-HR 6.615 POST-CONTROL AP-42 NOX E.F. GRAMS/HP-HR 5.176 AP-42 NOX E.F. SUPPLIED BY MANUFACTURER GRAMS/HP-HR POST-CONTROL 6.615

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration 2/26/2024 DIESEL ENGINES 1 COMPANY: SITE: ACTION: DATE: WORKSHEET:

EMISSIONS TO ATMOSPHERE							
EMISSIONS TO ATMOSPHERE EMISSIONS	UNITS	TOTAL	ENG2	I			
NOx	PPH	0.070	0.070				
NOX CO	PPH	2.830	2.830	-			
SO2	PPH	0.003	0.003				
PM10	PPH	0.003	0.003				
PM2.5	PPH						
Pb	PPH						
VOC	PPH	0.070	0.070				
HAP POLLUTANTS							
BENZENE	PPH	0.000	0.000				
ETHYLBENZENE	PPH						
FORMALDEHYDE	PPH	0.020	0.020				
HEXANE-N	PPH						
METHANOL	PPH						
TOLUENE	PPH	0.000	0.000				
XYLENE-M	PPH	0.000	0.000				
XYLENE-O	PPH		1				
XYLENE-P	PPH		1				
	PPH	1	1	<u> </u>			
	PPH	+	+				
	PPH	+	+	 			1
VOC(HAP)-u	PPH	+	+	+			-
	PPH			ll			L
GHG POLLUTANTS	Inner	10,000	0.000	ı	ı	ı	
METHANE	PPH	0.000	0.000				
CO2	PPH	5.174	5.174				
N2O	PPH						
	PPH						
	PPH						
TOTALS	PPH	1,000.000	1,000.000				
EMISSIONS	UNITS	TOTAL	ENG2				
NOx	TPY	0.307	0.307				
CO	TPY	12.395	12.395				
SO2	TPY	0.012	0.012				
PM10	TPY	0.015	0.015				
PM2.5	TPY						
Pb	TPY						
VOC	TPY	0.306	0.306				
HAP POLLUTANTS	11.1	0.500	0.500		1		
BENZENE	TPY	0.000	0.000	l I	1	İ	
ETHYLBENZENE	TPY	0.000	0.000	+			
FORMALDEHYDE	TPY	0.088	0.088	+			-
		0.088	0.068				-
HEXANE-N	TPY	-	+				ļ
METHANOL	TPY	0.000	0.000				
TOLUENE	TPY	0.000	0.000				
XYLENE-M	TPY	0.000	0.000				ļ
XYLENE-O	TPY		1				
XYLENE-P	TPY						
	TPY						
	TPY						
	TPY						
VOC(HAP)-u	TPY						
GHG POLLUTANTS		•	•				•
METHANE	TPY	0.000	0.000				
CO2	TPY	22.664	22.664				
		22.007	22.507				
							1
N2O	TPY			l l			
	TPY						
		157.080	157.080				

COMPANY: Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration SITE: ACTION:

DATE:

2/26/2024 DIESEL ENGINES 1 WORKSHEET:

EXAMPLE CALCULATIONS: CALCULATE NOX EMISSIONS:

LBS TO GRAMS CONVERSION

NOX E.F.

ENG2 HP RATING FUEL USE BHP BTU/HP-HR 4.800 7,000.000 FUEL HEAT CONTENT BTU/SCF 132,000.000 RUN TIME

HRS/YR 8,760.000 GRAMS/LB 453.600 GRAMS/HP-HR 6.615

ENGINE RATING, HP X NOX E.F., GRAMS/HP-HR 453.6 GRAMS/LB NOX EMISSIONS= PPH

NOX EMISSIONS= PPH 0.070

NOX EMISSIONS= TPY NOX EMISSIONS, PPH X RUN TIME, HRS/YR

2,000 LBS/TON

NOX EMISSIONS= TPY 0.307

COMPANY:	Ineos USA Oil & Gas LLC
SITE:	Mckenzie-Foley Unit B MCM Pa
ACTION:	PI-7-CERT Registration
DATE:	2/26/2024
WORKSHEET:	COMBUSTION CONTROL 1 - 6

SOURCE DESCRIPTION		
FIN	EPN	DESCRIPTION
FLARE1	FLARE1	REMOVED FROM SERVICE

SOURCE OPERATING PARAMETERS									
FIN	EPN	TYPE	DRE C1 - C3	DRE C4+	DRE H2S	HEAT INPUT	HEAT INPUT	HEAT INPUT	TOTAL HEAT INPUT MMBTU/HR
FLARE1	FLARE1	FLARE							

SOURCE OPERATING PARAMETERS						
FIN		RUN-TIME HDS/VD	HEAT CONTENT	COMBINED HEAT CONTENT BTU/SCF		
FLARE1	FLARE1					

SOURCE STACK PARAMETERS									
FIN	EPN	ZONE	UTM E	UTM N	STACK DIA. FT.	STACK HT. FT.	EXHST. TEMP. DEG. F	VELOCITY FPS	
FLARE1	FLARE1								

EMISSION FACTORS	UNITS	FLARE1		
NOx	LBS/MMBTU	0.064		
CO	LBS/MMBTU	0.550		
SO2	LBS/MMBTU			
PM10	LBS/MMBTU			
PM2.5	LBS/MMBTU			

NOTES:

AP-42 EMISSION FACTORS ADJUSTED FOR FUEL/VAPOR HEAT CONTENT.

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad PI-7-CERT Registration 2/26/2024 COMBUSTION CONTROL 1 - 6 COMPANY: SITE: ACTION: DATE: WORKSHEET:

COMBINED ASSIST/FUEL/WASTE GAS INPUT						
VAPOR INPUT		TOTAL	FLARE1			
NOx	PPH					
CO	PPH					
SO2	PPH					
PM10	PPH					
PM2.5	PPH					
H2S	PPH					
VOC	PPH					
HAP POLLUTANTS						
BENZENE	PPH					
ETHYLBENZENE	PPH					
FORMALDEHYDE	PPH					
HEXANE-N	PPH					
METHANOL	PPH					
TOLUENE	PPH					
XYLENE-M	PPH					
XYLENE-O	PPH					
XYLENE-P	PPH					
	PPH					
	PPH					
H2S	PPH					
VOC(HAP)-u	PPH					
GHG POLLUTANTS						
METHANE	PPH					
CO2	PPH					
N2O	PPH					
	PPH					
	PPH					
TOTALS	PPH					

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad Pl-7-CERT Registration 2/26/2024 COMBUSTION CONTROL 1 - 6 COMPANY: SITE: ACTION: DATE: WORKSHEET:

EL GOSTONO DO LES LOCAVIERE	r is trans	mom . r	Er ADEI	1	I		
	UNITS	TOTAL	FLARE1				
NOx	PPH						
CO	PPH						
SO2	PPH						
PM10	PPH						
PM2.5	PPH						
H2S	PPH						
VOC	PPH						
HAP POLLUTANTS							
BENZENE	PPH						
ETHYLBENZENE	PPH						
FORMALDEHYDE	PPH						
HEXANE-N	PPH						
METHANOL	PPH						
TOLUENE	PPH						
XYLENE-M	PPH						
XYLENE-O	PPH						
XYLENE-P	PPH						
	PPH						
	PPH						
	PPH						
VOC(HAP)-u	PPH						
GHG POLLUTANTS							
METHANE	PPH						
CO2	PPH						
N2O	PPH						
	PPH						
	PPH						
TOTALS	PPH						
EL MONTONIO DE LA MACONTENE	Y YA YYON O						
EMISSIONS TO ATMOSPHERE	UNITS	TOTAL	FLARE1				
NOx	TPY	TOTAL	FLARE1				
NOx CO	TPY TPY	TOTAL	FLARE1				
NOx CO SO2	TPY TPY TPY	TOTAL	FLARE1				
NOx CO SO2 PM10	TPY TPY TPY TPY	TOTAL	FLARE1				
NOx CO SO2 PM10 PM2.5	TPY TPY TPY TPY TPY	TOTAL	FLARE1				
NOx CO SO2 PM10 PM2.5 H2S	TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLARE1				
NOx CO SO2 PM10 PM2.5 H2S VOC	TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOx CO SO2 PM10 PM2.5 H2S VOC HAP POLLUTANTS	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOx CO SO2 PM10 PM2.5 H2S VOC HAP POLLUTANTS BENZENE	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOx CO SO2 PM10 PM2.5 H2S VOC HAP POLLUTANTS BENZENE ETHYLBENZENE	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOx CO SO2 PM10 PM2.5 H2S VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOX CO SO2 PM10 PM2.5 H2S VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOX CO SO2 PM10 PM2.5 H2S VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOX CO SO2 PMI0 PM2.5 H2S VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOX CO SO2 PMI0 PM2.5 H2S VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOX CO SO2 PM10 PM2.5 H2S VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-O	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOX CO SO2 PMI0 PM2.5 H2S VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOX CO SO2 PM10 PM2.5 H2S VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-O	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOx CO SO2 PMI0 PM2.5 H2S VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-M XYLENE-O XYLENE-P	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOx CO SO2 PM10 PM2.5 H2S VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-O XYLENE-P	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOx	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOx	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOx	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOx	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOx	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOx	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOX CO SO2 PM10 PM2.5 H2S VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-O XYLENE-P VOC(HAP)-u GHG POLLUTANTS METHANE CO2 N2O	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				
NOX CO SO2 PM10 PM2.5 H2S VOC HAP POLLUTANTS BENZENE ETHYLBENZENE FORMALDEHYDE HEXANE-N METHANOL TOLUENE XYLENE-M XYLENE-O XYLENE-P VOC(HAP)-u GHG POLLUTANTS METHANE CO2 N2O	TPY TPY TPY TPY TPY TPY TPY TPY TPY TPY	TOTAL	FLAREI				

COMPANY: Ineos USA Oil & Gas LLC SITE: Mckenzie-Foley Unit B MCM Pad

ACTION: PI-7-CERT Registration DATE: 2/26/2024

WORKSHEET: COMBUSTION CONTROL 1 - 6

EXAMPLE CALCULATIONS:

AS AN EXAMPLE, CALCULATE THE NOX EMISSIONS FROM THE COMBUSTION OF THE COMBINED GAS STREAM.

USE THE AP-42 NOX EMISSION FACTOR FOR NATURAL GAS COMBUSTION

FLARE1 0.064

NOX EMISSION FACTOR

LBS/MMBTU

MMBTU/HR

HEAT INPUT

OPERATION

HRS/YR PPH

NOX EMISSIONS

NOX E.F., LBS/MMBTU X HEAT INPUT, MMBTU/HR

NOX EMISSIONS

PPH

NOX EMISSIONS

NOX EMISSIONS, PPH X OPERATION, HRS/YR 2,000 LBS/TON TPY

FLARE1

NOX EMISSIONS

TPY

AS AN EXAMPLE, CALCULATE BENZENE EMISSIONS FROM THE COMBUSTION OF THE COMBINED GAS STREAM:

BENZENE INPUT

PPH

CONTROL DRE

%

BENZENE EMISSIONS BENZENE EMISSIONS PPH

PPH

BENZENE EMISSIONS

TPY

BENZENE EMISSIONS, PPH X OPERATION, HRS/YR 2,000 LBS/TON

BENZENE INPUT, PPH X (1 - DRE,%)

BENZENE EMISSIONS

TPY

2.5 NAAQS Review

NAAQS modeling not required

2.6 Regulatory Analysis

The Mckenzie-Foley Unit B MCM Pad facility as presented in this documentation meets the TCEQ requirements for each PBR referenced in **Section 2.1.** Checklists have been provided in **Section 2.9**.

• The site will comply with all rules and regulations of the TCEQ and with the intent of the Texas Clean Air Act (TCAA), including protection of public health and property. All emissions control equipment will be maintained in good condition and properly operated during plant operation; and,

The following state/federal regulations are applicable:

Regulation	Description	Applicable	Reason
	Т	TITLE V APPLICABI	ILITY
30 TAC 122	Title V Site	NO	Not applicable. Emissions below Title V major
			source status.
	APF	PLICABLE NSPS (40	CFR 60)
NSPS 60.18	Flares	NO	Not applicable. No on-site flares.
NSPS GG	Turbines	NO	Not applicable. No on-site turbines.
NSPS JJJJ	Engines	YES	Applicable. Engines will comply with MACT ZZZZ.
NSPS KKKK	Turbines	NO	Not applicable. No on-site turbines.
NSPS OOOOa	Tanks	YES	Applicable. VOC <6.0 tpy; comply with
			record-keeping.
	APP	LICABLE MACT (40	O CFR 63)
MACT HH	TEG Unit	NO	Not applicable. No on-site TEG units
MACT ZZZZ	Engines	YES	Applicable. Engines located at HAP area
			source.

2.7 Analytical Data

Representative analytical sampling was used to evaluate emissions in this document. Analytical samples were taken from the same area and geological formation as this facility.

LAB ANALYSES

Certificate of Analysis Number: 1030-23070954-002A **Houston Laboratories** 8820 Interchange Drive Houston, TX 77054 Phone 713-660-0901

Eric Knape INEOS USA Oil & Gas LLC 1164 FM 2361 Carrizo Springs, TX 78834

Aug. 03, 2023

Station Name: Snowmass HC1 DIM A 2H

Sample Point: Gas Meter

Cylinder No: 4030-003659

Analyzed: 07/31/2023 20:47:08 by EKK Sampled By:

Sample Of: Sample Date: 07/27/2023 11:00

Sample Conditions: 134 psig, @ 94.1 °F Method: GPA 2286

Analytical Data

Components	Mol. %	Wt. %	GPM at 14.696 psia			
Nitrogen	0.178	0.225		GPM TOTAL C2+	6.854	
Methane	74.756	54.155		GPM TOTAL C3+	3.235	
Carbon Dioxide	0.864	1.717		GPM TOTAL iC5+	0.588	
Ethane	13.513	18.348	3.619			
Propane	6.393	12.730	1.764			
Iso-Butane	0.843	2.213	0.276			
n-Butane	1.923	5.047	0.607			
Iso-Pentane	0.424	1.381	0.155			
n-Pentane	0.458	1.492	0.166			
Hexanes	0.337	1.325	0.139			
Heptanes Plus	0.311	1.367	0.128			
	100.000	100.000	6.854			

Calculated Physical Properties	Total	C7+
Relative Density Real Gas	0.7673	3.4074
Calculated Molecular Weight	22.15	98.69
Compressibility Factor	0.9960	
GPA 2172 Calculation:		
0 1 1 1 1 0		

Calculated Gross BTU per ft³ @ 14.696 psia & 60°F Real Gas Dry BTU 1318

5254 Water Sat. Gas Base BTU 1295 5162

Comments: Hydrogen Sulfide Field Analysis by Stain Tube = 12 ppm(v).

Data reviewed by: Patrick Weber, Analyst

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality **Quality Assurance:**

assurance, unless otherwise stated.

Powered By SURECHEM

Page 5 of 8

LAB ANALYSES (CONTINUED)

Certificate of Analysis

Number: 1030-23070954-002A

Houston Laboratories 8820 Interchange Drive Houston, TX 77054 Phone 713-660-0901

Eric Knape INEOS USA Oil & Gas LLC 1164 FM 2361 Carrizo Springs, TX 78834

Station Name: Snowmass HC1 DIM A 2H

Sample Point: Gas Meter Cylinder No: 4030-003659

07/31/2023 20:47:08 by EKK Analyzed:

Sampled By: Sample Of:

Spot Sample Date: 07/27/2023 11:00 Sample Conditions: 134 psig, @ 94.1 °F Method: GPA 2286

Aug. 03, 2023

Analytical Data

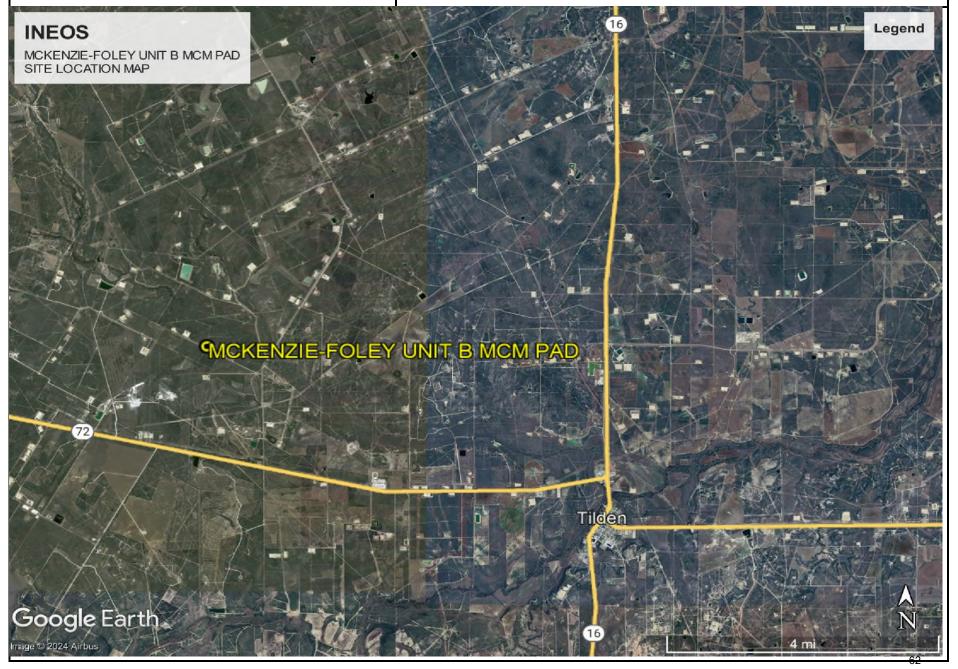
Components	Mol. %	Wt. %	GPM at 14.696 psia			
Nitrogen	0.178	0.225		GPM TOTAL C2+	6.854	
Methane	74.756	54.155				
Carbon Dioxide	0.864	1.717				
Ethane	13.513	18.348	3.619			
Propane	6.393	12.730	1.764			
Iso-Butane	0.843	2.213	0.276			
n-Butane	1.923	5.047	0.607			
Iso-Pentane	0.424	1.381	0.155			
n-Pentane	0.458	1.492	0.166			
i-Hexanes	0.206	0.795	0.084			
n-Hexane	0.131	0.530	0.055			
Benzene	0.017	0.060	0.005			
Cyclohexane	0.028	0.106	0.010			
i-Heptanes	0.115	0.480	0.047			
n-Heptane	0.035	0.158	0.016			
Toluene	0.014	0.059	0.005			
i-Octanes	0.062	0.287	0.027			
n-Octane	0.008	0.043	0.004			
Ethylbenzene	0.001	0.007	NIL			
Xylenes	0.005	0.030	0.002			
i-Nonanes	0.014	0.067	0.006			
n-Nonane	0.002	0.014	0.001			
i-Decanes	0.007	0.036	0.003			
n-Decane	0.001	0.004	NIL			
Undecanes	0.002	0.016	0.002			
Dodecanes	NIL	NIL	NIL			
Tridecanes	NIL	NIL	NIL			
Tetradecanes Plus	NIL	NIL	NIL			
	100.000	100.000	6.854			

2.8 Maps

21 WATERWAY AVENUE

THE WOODLANDS, TX 77380

TEL: 832-244-2486


WEBSITE: WWW.ENTECHSERVICE.COM

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad

PI-7-CERT Registration

DATE: 2/26/2024

SITE LOCATION MAP

21 WATERWAY AVENUE SUITE 300

THE WOODLANDS, TX 77380

TEL: 832-244-2486

WEBSITE: WWW.ENTECHSERVICE.COM

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad

PI-7-CERT Registration

DATE: 2/26/2024

SITE PLOT PLAN

2.9 Checklists/Tables

Texas Commission on Environmental Quality Permit by Rule Applicability Checklist Title 30 Texas Administrative Code 106.4 Mckenzie-Foley Unit B MCM Pad

The following checklist was developed by the Texas Commission on Environmental Quality (TCEQ), **Air Permits Division**, to assist applicants in determining whether or not a facility meets all of the applicable requirements. Before claiming a specific Permit by Rule (PBR), a facility must first meet all of the requirements of **Title 30 Texas Administrative Code § 106.4** (30 TAC § 106.4), "Requirements for Permitting by Rule." Only then can the applicant proceed with addressing requirements of the specific Permit by Rule being claimed.

The use of this checklist is not mandatory; however, it is the responsibility of each applicant to show how a facility being claimed under a PBR meets the general requirements of 30 TAC § 106.4 and also the specific requirements of the PBR being claimed. If all PBR requirements cannot be met, a facility will not be allowed to operate under the PBR and an application for a construction permit may be required under 30 TAC § 116.110(a).

Registration of a facility under a PBR can be performed by completing **Form PI-7** (Registration for Permits by Rule) or **Form PI-7-CERT** (Certification and Registration for Permits by Rule). The appropriate checklist should accompany the registration form. Check the most appropriate answer and include any additional information in the spaces provided. If additional space is needed, please include an extra page and reference the question number. The PBR forms, tables, checklists, and guidance documents are available from the TCEQ, Air Permits Division Web site at: www.tceq.texas.gov/permitting/air/nav/air_pbr.html.

List e	emissions i	n TPY for	each facility (add addition	nal pages or ta	able if neede	d.								
OTE 1	SO2=	0.015	PM10=	0.050	VOC=	24.961	NOX=	0.736	CO=	12.756	HAI	P=	0.7	28	
OTE 2	SO2=		PM10=		VOC=	-	NOX=		CO=		HAI	P=			
	SO2=		PM10=		VOC=		NOX=		CO=		HAI	P=			
TOT	AL	0.015		0.050		24.961		0.736		12.756	_		0.7	28	
OTE 1: '	THIS 106.:	512 REGIS	TRATION		NOT	E 2: OTHER	R NON-REG	STERED 10	06.352 SO	URCES	_				
• Are t	he SO2, Pl	M10, VOC	, or other air o	contaminant	emissions cla	nimed for eac	ch facility in	this PBR sul	bmittal less	s than 25 tpy?	?	X	YES		NO
Are t	he NOx an	d CO emis	sions claimed	I for each fa	cility in this F	PRR submitta	ıl less than 25	60 tnv?				X	YES		NO
									- DDD			21	TES	L	110
	answer to aimed.	both is "Y	es," continue	to the quest	ion below. If	tne answer to	o eitner quest	ion is "No,"	a PBK ca	nnot					
or pe	rmit renew	al? (This c	perty had publication points of the publication perturns of the publication perturns per per publication per p	de public no									YES	X	NO
			If "No," con		questions bel	ow.							<u> </u>	_	<u> </u>
If the	site has h	ad no publi	c notice, plea	se answer th	e following;										
• Are t	he SO2, Pl	M10, VOC	, or other emi	ssions claim	ed for all fac	ilities in this	PBR submitt	al less than	25 tpy?			X	YES		NO
• Are t	he NOx an	d CO emis	sions claimed	l for all facil	ities in this P	BR submitta	l less than 25	0 tpy?				X	YES		NO
If the	answer to	both quest	tions is "Yes",	continue to	Section 2.								•		
If the	answer to	either que	stions is "No'	, a PBR ca	nnot be claim	ned . A perm	it will be req	uired under	Chapter 1	16.					
30 T.	AC 106.4(a)(2): Nor	nattainment c	heck											
			med under the					t county?					YES	X	NO
-			ers, Fort Bend					er counties.					HGB		•
) - Collin,	Dalla, Den	ton, Ellis, Joh	nson, Kaufn	nan, Parker, F	Rockwall, Ta	rrant and Wis	se counties.					DFW		
1oderate															

TCEQ - 10149 (APDG 4999v14, Revised 02/18) 106.4 Checklist for PBR General Requirements This form for use by facilities subject to air quality permits requirements and may be revised periodically.

● Does this project trigger a nonattainment review? To determine the answer, review the information below:		YES		NO		
 Is the project's potential to emit (PTE) for emissions of VOC or NOx increasing by 100 tpy or more? 		YES		NO		
PTE is the maximum capacity of a stationary source to emit any air pollutant under its worst-case physical and operational design unless limited by a permit, rule, or made federally enforceable by a certification.						
 Is the site an existing major nonattainment site and are the emissions of VOC or NOx increasing by 40 tpy or more? 		YES		NO		
If needed, attach contemporaneous netting calculations per nonattainment guidance.	<u> </u>	J	_	1		
Additional information can be found at:						
www.tceq.state.tx.us/permitting/air/forms/newsourcereview/tables/nsr_table8.html						
www.tceq.state.tx.us/permitting/air/nav/air_docs_newsource.html If "Yes," to any of the above, the project is a major source or a major modification and a PBR may not be used. A Nonattainment Permit review must be completed to authorize this project. If "No," continue to Section 3.						
3. 30 TAC 106.4(a)(3): Prevention of Significant Deterioration (PSD) check						
Does this project trigger a review under PSD? To determine the answer, review the information below:						
• Are emissions of any regulated criteria pollutant increasing by 100 tpy of any criteria pollutant at a named source?		YES	X	NO		
• Are emissions of any criteria pollutant increasing by 250 tpy of any criteria pollutant at an unnamed source?		YES	X	NO		
● Are emissions increasing above significance levels at an existing major site?		YES	X	NO		
PSD information can be found at:				,		
www.tceq.state.tx.us/permitting/air/forms/newsourcereview/tables/nsr_table9.html www.tceq.state.tx.us/permitting/air/nav/air_docs_newsource.html If "Yes," to any of the above, a PBR may not be used. A PSD Permit review must be completed to authorize this project. If "No," continue to Section 4.						
4. 30 TAC 106.4(a)(6): Federal Requirements		_				
• Will all facilities under this PBR meet applicable requirements of Title 40 Code of Federal Regulations (40 CFR) Part 60, New Source Performance Standards (NSPS)? If "Yes," which Subparts are applicable?:	X	YES		NO N/A		
NSPS: NSPS 60.18 NSPS GG X NSPS JJJJ NSPS KKKK X NSPS OOOOa REFER TO TEXT FO	OR API	PLICABI	LITY	DESCRIPTION.		
Will all facilities under this PBR meet applicable requirements of 40 CFR Part 63, Hazardous Air Pollutants Maximum Achievable Control Technology (MACT)? If "Yes," which Subparts are applicable?:	X	YES		NO N/A		
MACT: MACT HH X MACT ZZZZ REFER TO TEXT FO	OR API	LICABI	LITY	DESCRIPTION.		
Will all facilities under this PBR meet applicable requirements of 40 CFR Part 61, National Emissions Standards fokr Hazardous Air Pollutants (NESHAP)? If "Yes," which Subparts are applicable?:		YES		NO X N/A		
NESHAP:			_	<u> </u>		
If "Yes" to any of the above, please attach a discussion of how the facilities will meet any applicable standards.						
5. 30 TAC 106.4(a)(7): PBR prohibition check						
• Are there any permits at the site containing conditions which prohibit or restric the use of PBRs?		YES	X	NO		
If "Yes", PBRs may not be used or their use must meet th restrictions of the permit. A new permit or permit amendment may be required.						
List permit number(s):						

TCEQ - 10149 (APDG 4999v14, Revised 02/18) 106.4 Checklist for PBR General Requirements This form for use by facilities subject to air quality permits requirements and may be revised periodically.

Page 2 of 3

6.	30 TAC 106.4(a)(8): NOX Cap and Trade				
	• Is the facility located in Harris, Brazoria, Chambers, Fort Bend, Galveston, Liberty, Montgomery, or Waller County?		YES	X	NO
	If "Yes," answer the question below. If "No," continue to Section 7.				
	• Will the proposed facility or group of facilities obtain required allowances for NOx if they are subject to 30 TAC Chapter 101, Subchapter H, Division 3 (relating to the Mass Emissions Cap and Trade Program)?		YES		NO
7.	Highly Reactive Volatile Organic Compounds (HRVOC) check				2
	• Is the facility located in Harris County? If "Yes," answer the next question. If "No," skip to the box below.		YES	X	NO
	• Will the project be constructed after June 1, 2006? If "Yes," answer the next question. If "No," skip to the box below.		YES		NO
	• Will one or more of the following HRVOC be emitted as a part of thhis project?		YES		NO
If	"Yes," complete the information below:			-	
		lbs	/hr		tpy
	- 1,3 -butadiene				
١.	all isomers kof butene (eg. Isobutene [2-methylpropene or isobutylene])				
	alpha-butylene (ehtylethylene)				
	beta-butylene (dimethylene, including both cis- and trans-isomers)				
	- ethylene				
	- propylene				
	• Is the facility located in Brazoria, Chambers, Fort Bend, Galveston, Liberty, Montgomery, or Waller County? If "Yes," answer the next question. If "No," the checklist is complete.		YES	X	NO
	Will the project be constructed after June 1, 2006? If "Yes," answer the next question. If "No," the checklist is complete.		YES		NO
	• Will one or more of the following HRVOC be emitted as a part of this project?		YES		NO
	If "Yes", complete the information below:	s, Brazoria, Chambers, Fort Bend, Galveston, Liberty, Montgomery, or Waller County? yes x No below. If "No," continue to Section 7. group of facilities obtain required allowances for NOx if they are subject to 30 TAC Chapter 101, ating to the Mass Emissions Cap and Trade Program)? yes No ganic Compounds (HRVOC) check s County? If "Yes," answer the next question. If "No," skip to the box below. yes No d after June 1, 2006? If "Yes," answer the next question. If "No," skip to the box below. yes No below: bs/hr tpy			
		lbs/hr		tpy	
	- ethylene				
	- propylene				

Oil and Gas Handling and Production Facilities Title 30 Texas Administrative Code 106.352(l) www.TexasOilandGasHelp.org

Check the most appropriate answer and include any technical information in the spaces provided. If additional space is needed, please include an extra page that references this checklist. The forms, checklists, and guidance documents are available from the Texas Commission on Environmental Quality (TCEQ), Air Permits Division Web site at: www.tceq.texas.gov/permitting/air/permitbyrule/subchapter-o/oil_and_gas.html.

If you have any questions, or need additional assistance, please contact the Air Permits Division at (512) 239-1250.

The facility can register by submitting this application and any supporting documentation. Below is a checklist to ensure you have provided all appropriate documentation. For sites that require registration or if the company chooses to register the site with the TCEQ, a Core Data Form (TCEQ - 10400) is required with this checklist.

This cl	necklist is for use by the operator to ensure a complete application.						
Have y	ou included each of the following items in the application?						
X	Process description						
X	Plot plan or area map.						
X	TCEQ Oil and Gas Emission Calculation Spreadsheet (or equivalent).						
X	Detailed summary of maximum emissions estimates with supporting reports from any emission estimation computer p	rogram	l.				
X	Gas and Liquid analyses. If a site-specific a representative site was used.						
X	Technical documents (manufacturer's specification sheet, operational design sheets)						
X	State and Federal applicability						
X	Core Data Form (for new sites that have never been registered with TCEQ).						
Genera	General Information and Questions/Descriptions						
Is the project located in one of the Barnett Shale counties and did the start of construction or modification begins on or after April 1, 2011? Note: Counties included in the Barnett Shale area: Cooke, Dallas, Denton, Ellis, Erath, Hill, Hood, Jack, Johnson, Montague, Palo Pinto, Parker, Somervell, Tarrant, and Wise counties. For what is considered start of construction see: www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/factsheet-const.pdf				X No)		
If ' rec are	Yes," do not complete this checklist. The project is subject to the quirements of §106.352(a)-(k). Additional information for Barnett Shale as projects can be found: w.tceq.texas.gov/permitting/air/permitbyrule/subchaptero/oil_and_gas.html.						

TCEQ 10128 (Revised 02/13) 106.352(l) Registration Checklist This form for use by facilities subject to air quality permits requirements and may be revised periodically. (APDG 5026v8)

Oil and Gas Handling and Production Facilities

Title 30 Texas Administrative Code 106.352(l)

www. Texas Oil and Gas Help.org

G	eneral Information and Questions/Descriptions (continued)		
2.	Are the total site-wide emissions from all facilities claimed under §106.352 less than 25 tpy VOC, 250 tpy NOX , 250 tpy CO, 25 tpy SO2 , 25 tpy PM, 15 tpy PM10 , 10 tpy PM2.5 , and 25 tpy of any other air contaminant?	X Yes	No
3.	Are there flares, engines, or turbines at the site?	X Yes	No
	If "Yes," attach supporting documentation to demonstrate compliance with the requirements.		
	Additional information and checklists can be found at: \$106.492 Flares: www.tceq.texas.gov/permitting/air/permitbyrule/subchapter-v/flares.html \$106.512 Stationary Engines and turbines: www.tceq.texas.gov/permitting/air/permitbyrule/subchapterw/stationary_eng_turb.html		
4.	Does any facility at the site handle a stream with more than 24 ppm hydrogen sulfide (H ₂ S)? If "Yes," proceed to question (4)(a) and (4)(b) and then proceed to questions 5 and 6. If "No," skip questions 5 through 6.	X Yes	No
4a	What is the actual H2S content of the stream?	30.000	ppm
4b	. Indicate the actual distance from the nearest emissions point to the nearest offsite receptor:	>3,000	ft.
ш	ote: An offsite receptor includes any recreational area, residence, or other structure not occupied or used solely by the facility handling sour gas must be located at least 1/4 mile from the nearest offsite receptor.	owner or operator o	of the facility.
5.	Indicate the total actual emission rate of sulfur compounds, excluding sulfur oxides, from all vents	0.01	lb/hr
6.	Does the height of all vents at the site emitting sulfur compounds meet the minimum required height based on the H emission rate in 106.352(1)(4)?	2S 20.00	feet
No	ote: Truck loading and fugitive sources are not considered vents.		

Recordkeeping: To demonstrate compliance with the requirements of the PBR, sufficient records must be maintained at all times. The records must be made available immediately upon request to the commission or any air pollution control program having jurisdiction. If you have any questions about the recordkeeping requirements, contact the Air Permits Division or the Air Program in the TCEQ Regional Office for the region in which the site is located.

Stationary Engines and Turbines Air Permits by Rule (PBR) Checklist Title 30 Texas Administrative Code § 106.512

Ineos USA Oil & Gas LLC
Mckenzie-Foley Unit B MCM Pad
RN NO.: RN106552607
DATE: 02/26/2024

Check the most appropriate answer and include any additional information in the spaces provided. If additional space is needed, please include an extra page and reference the question number. The PBR forms, tables, checklists, and guidance documents are available from the TCEQ, Air Permits Division Web site at: www.tceq.state.tx.us/permitting/air/nav/air_pbr.html.

This PBR (§ 106.512) requires registration with the commission's Office of Permitting, Remediation, and Registration in Austin before construction if the horsepower (hp) of the facility is greater than 240 hp. Registration of the facility can be performed by completing a Form PI-7, "Registration for Permits by Rule," or Form PI-7-CERT, "Certification and Registration for Permits by Rule." This checklist should accompany the registration form.

Definitions:

The following words and terms, when used in this section, shall have the following meanings, unless the context clearly indicates otherwise.

- A. Rich-burn Engine: A rich-burn engine is a gas-fired, spark-ignited engine that is operated with an exhaust oxygen content less than four percent by volume.
- B. Lean-burn Engine: A lean-burn engine is a gas-fired, spark-ignited engine that is operated with an exhaust oxygen content of four percent by volume, or greater.
- C. Rated Engine Horsepower: Engine rated horsepower shall be based on the engine manufacturer's maximum continuous load rating at the lesser of the engine or driven equipment's maximum published continuous speed.
- D. <u>Turbine Horsepower</u>: Turbine rated horsepower shall be based on turbine base load, fuel power heating value, and International Standards Organization Standard Day Conditions of 59 degrees Fahrenheit, 1.0 atmosphere pressure, and 60 percent relative humidity.

CHECK THE MOST APPROPRIATE ANSWERS AND FILL IN THE BLANKS				
Rule	Questions/Descriptions	Information	Response	
	Will the engine or turbine be used as a replacement at an oil and gas site and does it meet all the requirements of the policy memo entitled, "Replacement of All Engine and Turbine Components for Oil and Gas Production?" If "YES," registration is not required for like-kind replacements of engine or turbine components. If "NO," please continue.	EPN ENG2	YES NO X	
(1)	Is the engine or turbine rated less than 240 hp? If "YES," then registration is not required, but the facility must comply with conditions (5) and (6) of this rule. If "NO," then registration is required and the facility must be registered by submitting a completed Form PI-7 and Table 29 or Table 31, as applicable, within 10 days after construction begins.	EPN ENG2	YES NO X	
(1)	Indicate the type of equipment (pick one): If an engine, go to Question (2). If a turbine, go to Question (3).	EPN ENGINE TURBINE ENG2	YES NO	

TCEQ 10146 (Revised 05/07) PBR Checklist 106.512 - Stationary Engines and Turbines This form is used by sources subject to air quality permit standards and may be revised periodically. (APDG 5042 v6).

Stationary Engines and Turbines Air Permits by Rule (PBR) Checklist Fitle 30 Texas Administrative Code § 106.51 Ineos USA Oil & Gas LLC
Mckenzie-Foley Unit B MCM Pad
RN NO.: RN106552607
DATE: 02/26/2024

Title 30 Texas Administrative Code § 106.512 CHECK THE MOST APPROPRIATE ANSWERS AND FILL IN THE BLANKS Questions/Descriptions Information Respo EPN Is the engine rated at 500 hp or greater? ENG2 YES NO YES NO If "NO," the engine is between 240 hp and 500 hp. The engine must be registered by YES NO submitting a completed Form PI-7 and a Table 29 within 10 days after construction begins and must comply with conditions (5) and (6) of this rule. YES NO (2) YES NO If "YES," in addition to registration, the engine must operate in compliance with the YES NO following nitrogen (NOx) emission limit(s). Check the limit(s) applicable to this engine by answering the following: NO_X G/HP-HR ENG2 YES NO YES NO The engine is a gas-fired, rich-burn engine and will not exceed 2.0 grams per (2)(A)(i)YES NO horsepower hour (g/hp-hr) under all operating conditions. YES NO YES NO YES NO NO_x G/HP-HR EPN ENG2 YES NO The engine is a spark-ignited, gas-fired, lean-burn engine or any compression-YES NO ignited, dual fuel-fired engine manufactured new after June 18, 1992, and will not (2)(A)(ii) exceed 2.0 g/hp-hr NOx at manufacturer's rated full load and speed at all times; YES NO except, the engine will not exceed 5.0 g/hp-hr NOx under reduced speed and 80% YES NO and 100% of full torque conditions. YES NO YES NO NO_X G/HP-HR ENG2 YES NO The engine is any spark-ignited, lean-burn two-cycle or four-cycle engine or any YES NO compression-ignited, dual fuel-fired engine rated 825 hp or greater and (2)(A)(iii) YES NO manufactured between September 23, 1982 and June 18, 1992, and will not YES NO exceed 5.0 g/hp-hr NOx under all operating conditions. YES NO YES NO NO_v G/HP-HR EPN YES X NO The engine is any spark-ignited, gas-fired, lean-burn, four-cycle engine or YES NO compression-ignited, dual-fuel-fired engine that was manufactured before June 18 YES NO 1992, and is rated less than 825 hp, or was manufactured before September 23, (2)(A)(iv) 1982, and will not exceed 5.0 g/hp-hr NOx at manufacturer's rated full load and YES NO speed at all times; except, the engine will not exceed 8.0 g/hp-hr NOx under YES NO reduced speed and 80% and 100% of full torque conditions. YES NO NO_x G/HP-HR EPN YES NO The engine is any spark-ignited, gas-fired, two-cycle, lean-burn engine that was YES NO manufactured before June 18, 1992, and is rated less than 825 hp, or was YES (2)(A)(v)NO manufactured before September 23, 1982, and will not exceed 8.0 g/hp-hr NOx YES NO under all operating conditions. YES NO YES NO NO_X G/HP-HR ENG2 YES NO YES NO The engine is any compression-ignited, liquid-fired engine and will not exceed (2)(A)(vi) YES NO 11.0 g/hp-hr NOx under all operating conditions. YES NO YES NO YES NO EPN ENG2 YES X NO YES NO Does the engine require an automatic air-fuel ratio controller to meet the NOx (2)(B)YES NO limit(s) above? YES NO YES NO YES NO EPN ENG2 NO YES For spark-ignited gas-fired or compression-ignited dual fuel-fired engines, is the YES NO (2)(B) engine required to have an automatic air-fuel ratio controller under condition YES NO (2)(B) of the PBR? YES NO YES NO

YES

NO

Stationary Engines and Turbines Air Permits by Rule (PBR) Checklist Title 30 Texas Administrative Code § 106.512

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad RN NO.: RN106552607

DATE: 02/26/2024

ICECK	Title 30 Texas Administrative Code § 106.512 CHECK THE MOST APPROPRIATE ANSWERS AND	FILL IN THE BLANKS	
Rule	Questions/Descriptions	Information	Response
(2)(C)	Are you aware of and accept responsibility for the record and testing requirements as specified in (2)(C) of the PBR?		X YES NO
(3)	Is the turbine rated 500 hp or more? If "NO," the turbine is between 240 hp and 500 hp. The engine only needs to be registered by submitting a completed Form Pl-7 and a Table 31 within 10 days after construction begins. If "YES," in addition to registration, the turbine must operate in compliance with the following emission limit(s).	EPN	YES NO YES NO YES NO YES NO YES NO YES NO
(3)(A)	Will the emissions of NOx exceed 3.0 g/hp-hr for gas-firing?	EPN	YES NO YES NO YES NO YES NO YES NO YES NO YES NO
(3)(B)	Will the turbine meet all applicable NOx and sulfur dioxide (or fuel sulfur) emission limitations, monitoring requirements, and reporting requirements of 40 CFR Part 60, NSPS Subpart GG?	EPN	YES NO YES NO YES NO YES NO YES NO YES NO
(4)	Is the engine or turbine rated less than 500 hp or used for temporary replacement purposes? If "NO," go to Question (5). If "YES," the equipment does not have to meet the emission limits of (2) and (3). However, the temporary replacement equipment can only remain in service for a maximum of 90 days.	EPN ENG2	X YES X NO YES YES
(5)	What type of fuel will be used and will the fuel meet the requirements of the PBR? Indicate the fuel(s) used.	EPN FUEL ENG2 GASOLINE	X
(6)	Does the installation comply with the National Ambient Air Quality Standards (NAAQS)? Note: Indicate which method is used and attach the modeling report and/or calculations and diagrams to support the selected method.	X MODELING STACK HEIGHT FACILITY EMISSIONS & PROPERTY LINE DISTANCE	X YES NO
(6)	Have you included a modeling report and/or calculations and diagrams to support the selected NAAQS compliance determination method?		X YES NO
	For the following questions, please refer to the Electric Generators under Permit by Rule policy memo from October 2006.		
(7)	Is the engine or turbine used to generate electricity? If "NO," the following do not apply.	EPN ENG2	YES NO YES NO YES NO YES NO YES NO YES NO YES NO

Stationary Engines and Turbines Air Permits by Rule (PBR) Checklist Title 30 Texas Administrative Code § 106.512 Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad RN NO.: RN106552607 DATE: 02/26/2024

ICLX	Title 30 Texas Administrative Code § 106.512 CHECK THE MOST APPROPRIATE ANSWERS AND	EILT IN THE DIANIZE	
Rule	Questions/Descriptions	Information	Poenonco
Kule	Questions/Descriptions	EPN Information	Response
(7)	Will the engine or turbine be used to generate electricity to operate facilities authorized by a New Source Review Permit? If "YES," the engine or turbine does not qualify for this PBR and authorization must be obtained through a permit amendment.	ENG2	YES NO YES NO YES NO YES NO YES NO YES NO YES NO
(7)	If the engine or turbine is used to generate electricity, will it be exclusively for onsite use at locations which cannot be connected to an electric grid? REFER TO PROCESS DESCRIPTION IN APPLICATION. If "YES," describe why access to the electric grid is not available. If "NO," the engine or turbine does not qualify for this PBR.	EPN ENG2	YES NO YES NO YES NO YES NO YES NO YES NO YES NO
(7)	Has an Electric Generating Unit Standard Permit been issued for one of the following activities for which the engine or turbine will only be used to generate electricity? Engines or turbines used to provide power for the operation of facilities registered under the Air Quality Standard Permit for Concrete Batch Plants. Engines or turbines satisfying the conditions for facilities permitted by rule under 30 TAC 106, Subchapter E (relating to Aggregate and Pavement). Engines or turbines used exclusively to provide power to electric pumps used for irrigating crops. If "NO," the engine or turbine does not qualify for this PBR.	EPN ENG2	YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO
Rule	Other Applicable Rules and Regulations	Why or Why Not?	Response
	If the engine or turbine is located in the Houston/Galveston nonattainment area, is the site subject to the Mass Emission Cap and Trade Program? NOTE: REFER TO APPLICATION TEXT/DISCUSSION	EPN ENG2 SEE NOTE	YES X NO YES NO YES NO YES NO YES NO YES NO YES NO
	Is the facility subject to 30 TAC Chapter 115? NOTE: REFER TO APPLICATION TEXT/DISCUSSION	EPN ENG2 SEE NOTE	YES X NO YES NO YES NO YES NO YES NO YES NO YES NO
	Is the facility subject to 30 TAC Chapter §§ 117.201-223? NOTE: REFER TO APPLICATION TEXT/DISCUSSION	EPN ENG2 SEE NOTE	YES X NO YES NO YES NO YES NO YES NO YES NO YES NO
	Is the facility subject to 40 CFR Part 60, NSPS Subpart D? NOTE: REFER TO APPLICATION TEXT/DISCUSSION	EPN ENG2 SEE NOTE	YES X NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO
	Is the facility subject to 40 CFR Part 60, NSPS Subpart Da? NOTE: REFER TO APPLICATION TEXT/DISCUSSION	EPN ENG2 SEE NOTE	YES X NO YES NO YES NO YES NO YES NO YES NO YES NO

Stationary Engines and Turbines

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad RN NO.: RN106552607

TCEQ	Air Permits by Rule (PBR) Checklis Title 30 Texas Administrative Code § 100	5.512	DATE: 02/26/	/2024
	CHECK THE MOST APPROPRIATE ANSWER			
Rule	Other Applicable Rules and Regulations		Why or Why Not?	Response
	Is the facility subject to 40 CFR Part 60, NSPS Subpart Db? NOTE: REFER TO APPLICATION TEXT/DISCUSSION	EPN ENG2	SEE NOTE	YES X NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO
	Is the facility subject to 40 CFR Part 60, NSPS Subpart Dc? NOTE: REFER TO APPLICATION TEXT/DISCUSSION	EPN ENG2	SEE NOTE	YES X NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO
	Is the facility subject to 40 CFR Part 60, NSPS Subpart GG? NOTE: REFER TO APPLICATION TEXT/DISCUSSION	EPN ENG2	SEE NOTE	YES X NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO
	Is the facility subject to 40 CFR Part 60, NSPS Subpart IIII? NOTE: REFER TO APPLICATION TEXT/DISCUSSION	EPN ENG2	SEE NOTE	YES X NO YES NO YES NO YES NO YES NO YES NO YES NO
	Is the facility subject to 40 CFR Part 60, NSPS Subpart JJJJ? NOTE: REFER TO APPLICATION TEXT/DISCUSSION	EPN ENG2	SEE NOTE	X
	Is the facility subject to 40 CFR Part 63, MACT Subpart YYYY? NOTE: REFER TO APPLICATION TEXT/DISCUSSION	EPN ENG2	SEE NOTE	YES X NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO
	Is the facility subject to 40 CFR Part 63, MACT Subpart 7277? NOTE: REFER TO APPLICATION TEXT/DISCUSSION	EPN ENG2	SEE NOTE	X YES
	Is the facility subject to 40 CFR Part 63, MACT Subpart PPPPP? NOTE: REFER TO APPLICATION TEXT/DISCUSSION	EPN ENG2	SEE NOTE	YES X NO YES NO YES NO YES NO

Record Keeping: In order to demonstrate compliance with the general and specific requirements of this PBR, sufficient records must be maintained to demonstrate that all requirements are met at all times. If the engine or turbine is rated greater than 500 horsepower, all records must be maintained as required by 30 TAC \$ 106.512(2)(C). The registrant should also become familiar with the additional record keeping requirements in 30 TAC \$ 106.8. The records must be made available immediately upon request to the commission or any air pollution control program having jurisdiction. If you have any questions about the type of records that should be maintained or testing requirements, contact the Air Program in the TCEO Regional Office for the region in which the site is located.

Recommended Calculation Method: In order to demonstrate compliance with this PBR, emission factors for each air contaminant from the EPA Compilation of Air Pollutant Emission Factors (AP-42), Fifth Edition, Volume 1, Section 3.1: Stationary Gas Turbines for Electricity Generation at: www.epa.gov/ttn/chief/ap42/index.html should be used, including, the specific air contaminant's emission limit listed on the table below.

YES

YES

NO

Stationary Engines and Turbines Air Permits by Rule (PBR) Checklist Title 30 Texas Administrative Code § 106.512

		, ,		1					1		
		After 6/18/92	>500*	Reduced 80-100%		2.0 5.0 5.0	5.0	3.0	Yes Biennial		
		After	×	Full NA		2.0 2.0 2.0	2.0	3.0	Yes Biennial		
		23/82 to 6/18/92	9/23/82 to 6/18/92)2	>825	NA		2.0 5.0 5.0	5.0	3.0	Yes Biennial
				500-824*	Reduced 80-100%		2.0 8.0 8.0	8.0 11.0	3.0	Yes Biennial	
		//6	-009	Full NA		2.0 5.0 8.0	5.0 11.0	3.0	Yes Biennial		
		/23/82	*(Reduced 80-100%		2.0 8.0 8.0	8.0	3.0	Yes Biennial		
eneral Guidelines	mits	Before 9/23/82	*005<	Full NA		2.0 5.0 8.0	5.0 11.0	3.0	Yes Biennial		
TCEQ Exemption 30 TAC 106.512 General Guidelines	NO x g/hp-hr Emission Limits	NA	>240 <500	NA		NA NA NA	NA NA NA	NA	Yes Biennial		
TCEQ Ex		NA	<240	NA		NA NA NA	NA NA NA	NA	No No		
		ınufacture	sepower	paed.	Engine Combustion Design	Rich Bum ++ Lean Bum** 2-Cycle	Dual Fuel Liquid Fuel	Turbines+	ation sting		
	Date Original Manufacture		Mfg. Rate Horsepower	Operating Speed Operating Torque	Ignition Type	Spark	Compression		PL7 Registration Emission Testing		

Notes:

TCEQ 10146 (Revised 05/07) PBR Checklist 106.512 - Stationary Engines and Turbines.
This form is used by sources subject to air quality permit standards and may be revised periodically. (APDG 5042 v6).

Page 6 of 6

^{*} Lower emission rates apply to lean-burn engine operationg: Full Speed & Any Torque or Any Speed & <80% or >100% Torque

⁺ Turbine emissions are also regulated by EPA NSPS Standards for NOx and SO2

^{**} Lean-Burn > 4% exhaust O2

⁺⁺ Rich-Burn <= 4% exhaust O2

		AIR CONTAMINANT DATA	_		
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamin	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
нті	нті	; MAKE: UNKNOWN; MODEL: UNKNOWN; NATURAL GAS; 1.000 MMBTU/HR; 8,760.000 HRS/YR; UNCONTROLLED; HEATER-TREATER; VENTING TO ATMOSPHERE; 106.352(L)	NOX	0.098	0.429
			CO	0.082	0.361
			SO2	0.001	0.003
			PM10	0.007	0.033
			PM2.5	0.007	0.033
-			H2S	0.000	0.000
-			Lead	0.000	0.000
-			VOC-total	0.005	0.024
-			VOC-u		
			VOC-HAP-total	0.002	0.008
			ACETALDEHYDE	0.002	0.000
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE	0.000	0.000
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE	0.000	0.000
			HEXANE-N	0.002	0.008
			METHANOL	0.002	0.000
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O	0.000	0.000
			XYLENE-P	0.000	0.000
			VOC(HAP)-u	+	
			VOC(NAF)-u	+	
				+	
				+	
			-	+	1
			-	+	1
				+	1
			METHANE	0.002	0.010
			ETHANE	0.002	0.010
			CO2	117.647	515.294
	t Number; FIN = Facility Iden		CO2	117.857	516.215

		AIR CONTAMINANT DATA				
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamin	3. Air Contaminant Emission Rate	
EPN	FIN	NAME		PPH	TPY	
(A)	(B)	(C)		(A)	(B)	
ANKI	TANKI	: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 10.646 TURN-OVERS/YR; 11.667 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	NOX			
			CO			
			SO2	+	-	
	_		PM10		 	
	_				 	
			PM2.5	0.000	0.000	
			H2S	0.000	0.000	
			Lead	0.126	0.554	
			VOC-total	0.126	0.554	
			VOC-u	0.002	0.008	
			VOC-HAP-total	0.003	0.014	
			ACETALDEHYDE			
			ACROLEIN			
			BENZENE	0.000	0.001	
			DICHLOROBENZENE			
			ETHYLBENZENE	0.000	0.000	
			FORMALDEHYDE			
			HEXANE-N	0.003	0.011	
			METHANOL			
			TOLUENE	0.000	0.001	
			XYLENE-M	0.000	0.001	
			XYLENE-O			
			XYLENE-P			
			VOC(HAP)-u			
_						
			METHANE			
			ETHANE			
			CO2	0.042	0.184	

		AIR CONTAMINANT DATA	2. Component or Air		
		1. Emission Point	Contaminant Name	3. Air Contamina	
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
ΓANK2 TAN	TANK2	: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 10.646 TURN-OVERS/YR; 11.667 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			CO		
			SO2		
			PM10		
			PM2.5		
			H2S	0.000	0.000
			Lead	0.000	
			VOC-total	0.126	0.554
			VOC-u	0.002	0.008
			, , , ,	0.002	0.000
			VOC-HAP-total	0.003	0.014
			ACETALDEHYDE	0.002	0.011
			ACROLEIN		
			BENZENE	0.000	0.001
			DICHLOROBENZENE		0.000
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE		
			HEXANE-N	0.003	0.011
			METHANOL		
			TOLUENE	0.000	0.001
			XYLENE-M	0.000	0.001
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
			METHANE		
			ETHANE		
			CO2	0.042	0.184

		AIR CONTAMINANT DATA	2 G Ai		
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamina	
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
'ANK5	TANK5	: PRODUCED WATER @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 0.160 TURN-OVERS/YR; 0.175 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: PRODUCED WATER TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			CO		
			SO2		
			PM10		
			PM2.5		
			H2S	0.000	0.001
-			Lead		
			VOC-total	0.175	0.765
-			VOC-u	0.002	0.011
					0.022
			VOC-HAP-total	0.004	0.020
			ACETALDEHYDE	0.001	0.020
			ACROLEIN		
			BENZENE	0.000	0.002
			DICHLOROBENZENE		*****
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE		
			HEXANE-N	0.003	0.015
			METHANOL		*****
			TOLUENE	0.000	0.002
			XYLENE-M	0.000	0.001
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
			` ′		
			METHANE		
			ETHANE		
			CO2	0.058	0.254

		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamin	ant Emission Rate
EPN	FIN	NAME	Contaminant Name	PPH	TPY
(A)	(B)	(C)	1	(A)	(B)
ΓANK3	TANK3	: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 10.646 TURN-OVERS/YR; 11.667 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			CO		
			SO2		
			PM10		
			PM2.5		
			H2S	0.000	0.000
			Lead		
-			VOC-total	0.126	0.554
			VOC-u	0.002	0.008
			VOC-HAP-total	0.003	0.014
			ACETALDEHYDE		
			ACROLEIN		
			BENZENE	0.000	0.001
			DICHLOROBENZENE		
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE		
			HEXANE-N	0.003	0.011
			METHANOL		
			TOLUENE	0.000	0.001
			XYLENE-M	0.000	0.001
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
			1		
				1	
			 		
			METHANE	-	
			ETHANE		
			CO2	0.042	0.184
	nt Number; FIN = Facility Io		CO2	0.042	0.184

		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamina	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)	1	(A)	(B)
C LOAD I	C LOAD I	LOADING 1: STABILIZED CRUDE @ 8.74553752 PSIA; THROUGHPUT: 536,550.000 GALLONS/YR; 35.000 BBLS/D; 70.972 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; COMMENTS: CRUDE LOADING; VENTING TO ATMOSPHERE; 106.352(L)	NOX		
			CO		
			SO2		
			PM10 PM2.5		
				0.000	2 222
			H2S	0.000	0.000
			Lead		
			VOC-total	34.272	1.216
			VOC-u	0.006	0.000
				1	
			VOC-HAP-total	0.012	0.000
			ACETALDEHYDE		
			ACROLEIN		
			BENZENE	0.001	0.000
			DICHLOROBENZENE		
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE		
			HEXANE-N	0.009	0.000
			METHANOL		
			TOLUENE	0.001	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
				-	
				-	
			METHANIE		
			METHANE		
	ı		ETHANE	1	I

34.302 1.217

	2. Component or Air Contaminant Name	3. Air Contaminant Emission			
EPN	FIN	NAME	Contaminant Name	PPH	TPY
			-		
(A)	(B)	(C)		(A)	(B)
PW LOAD 1	PW LOAD 1	LOADING 2: PRODUCED WATER @ 8.74553752 PSIA; THROUGHPUT: 268,275.000 GALLONS/YR; 17.500 BBLS/D; 35.486 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; COMMENTS: PRODUCED WATER LOADING; ASSUMED 1% CRUDE BY VOLUME; VENTING TO ATMOSPHERE; 106.352(L)	NOX		
			CO		
			SO2		
			PM10		
			PM2.5		
			H2S	0.000	0.000
			Lead		
			VOC-total	0.343	0.006
			VOC-u	0.000	0.000
			VOC-HAP-total	0.000	0.000
			ACETALDEHYDE		
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE		
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE		
			HEXANE-N	0.000	0.000
			METHANOL		
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
			METHANE		
			ETHANE		
			CO2		

0.343 0.006

		AIR CONTAMINANT DATA 1. Emission Point	2. Component or Air	3. Air Contamin	ant Emission Rate
			Contaminant Name		
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
HTI-FLASH HT	HT1-FLASH	FLASH 1: CRUDE/NATURAL GAS; THROUGHPUT: 12,838.875 BBLS/YR; 35.175 BBLS/D; FLASHING FROM 111.400 PSIG TO 14.270 PSIG; PRIMARY/SECONDARY CONTROLS: TO ATMOSPHERE / TO ATMOSPHERE; COMMENTS: HEATER-TREATER CRUDE FLASH VAPORS; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			CO		
			SO2		
-			PM10	1	
-			PM2.5		
-			H2S	0.004	0.016
-			Lead	0.004	0.010
			VOC-total	4.070	17.827
			VOC-total	0.057	0.251
			VOC-u	0.037	0.231
			_		
			+		
			VOC-HAP-total	0.104	0.456
			ACETALDEHYDE	0.104	0.430
			ACROLEIN	1	
			BENZENE	0.009	0.042
			DICHLOROBENZENE	0.009	0.042
			ETHYLBENZENE	0.001	0.003
			FORMALDEHYDE	0.001	0.003
			HEXANE-N	0.081	0.354
			METHANOL	0.061	0.554
			TOLUENE	0.009	0.040
			XYLENE-M	0.004	0.017
			XYLENE-O	0.004	0.017
			XYLENE-P		
			VOC(HAP)-u		
			VOC(IIII) u		
			METHANE		
			ETHANE		
			CO2	1.353	5.927
DM - Emission Dele	t Number; FIN = Facility I	Lutification Number	1002	5.692	24.932

Contaminant Name					ant Emission Rat
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
UG	FUG	FUGITIVES 1; LIGHT-LIQUID COMPONENTS / NATURAL GAS COMPONENTS /: 8,760.000 HRS/YR; MONITORING PROGRAM: ///; COMMENTS: SITE FUGITIVE EMISSIONS; 106.352(I)	NOX		
			CO		
			SO2		
			PM10		
			PM2.5	0.000	0.000
			H2S	0.000	0.000
			Lead		
			VOC-total	0.682	2.985
			VOC-u	0.000	0.001
			VOC-HAP-total	0.000	0.001
			ACETALDEHYDE		
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE		
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE		
			HEXANE-N	0.000	0.001
			METHANOL		
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
			METHANE		
	+		ETHANE		
			CO2	†	

		AIR CONTAMINANT DATA			
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamin	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
1SS 1	MSS 1	BLOW DOWNS 1: THROUGHPUT: 25.000 SCF/BLOWDOWN @ 25.00 BLOWDOWNS/MONTH; 0.008 MMSCF/YR; 300.000 HRS/YR; COMMENTS: MSS ACTIVITY; VAPORS VENTED TO ATMOSPHERE DURING MSS ACTIVITIES; 106.359	NOX		
			CO		
		1	SO2		
		1	PM10		
			PM2.5		
			H2S	0.000	0.000
		+	Lead	0.000	0.000
		+	VOC-total	0.074	0.011
			VOC-u	0.001	0.000
			VOC-u	0.001	0.000
			VOC-HAP-total	0.002	0.000
			ACETALDEHYDE		
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE	0.000	0.000
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE	0.000	0.000
			HEXANE-N	0.001	0.000
			METHANOL	0.001	0.000
			TOLUENE	0.000	0.000
		+	XYLENE-M	0.000	0.000
			XYLENE-O	0.000	0.000
			XYLENE-P		
			VOC(HAP)-u	1	
			v OC(HAF)-u		
				+	
				 	-
				 	-
				-	
			METHANIE		
			METHANE		
			ETHANE	0.025	0.004
	Number; FIN = Facility Ide		CO2	0.025 0.104	0.004 0.016

		AIR CONTAMINANT DATA		1	
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamina	
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
ISS 2	MSS 2	BLOW DOWNS 2: THROUGHPUT: 5,620.000 SCF/BLOWDOWN @ 0.08 BLOWDOWNS/MONTH; 0.006 MMSCF/YR; 1.000 HRS/YR; COMMENTS: MSS ACTIVITY; STORAGE TANK DE-GASSING DURING MAINTENANCE ACTIVITY; ASSUME DE-GASSING 1 TANK/YEAR; VENTS TO ATMOSPHERE; 106.359	NOX		
			CO		
			SO2		
			PM10		
			PM2.5		
			H2S	0.000	0.000
			Lead	0.000	
			VOC-total	16.676	0.008
-			VOC-u	0.234	0.000
			VOC-HAP-total	0.426	0.000
			ACETALDEHYDE	0	0.000
			ACROLEIN		
			BENZENE	0.039	0.000
			DICHLOROBENZENE		
			ETHYLBENZENE	0.003	0.000
			FORMALDEHYDE		
			HEXANE-N	0.331	0.000
			METHANOL		
			TOLUENE	0.038	0.000
			XYLENE-M	0.016	0.000
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
			METHANE		
			ETHANE		
			CO2	5.544	0.003

		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamina	
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
ISS 3	MSS 3	BLOW DOWNS 3: THROUGHPUT: 1,200.000 SCF/BLOWDOWN @ 1.00 BLOWDOWNS/MONTH; 0.115 MMSCF/YR; 96.000 HRS/YR; COMMENTS: MSS ACTIVITIES; MISC. ABRASIVE BLASTING/COATING ACTIVITIES; VENTS TO ATMOSPHERE; AREA SOURCE; 106.359	NOX		
			CO		
			SO2		
			PM10	0.062	0.003
			PM2.5	0.062	0.003
			H2S	0.000	0.000
			Lead	0.000	0.000
			VOC-total	2.989	0.143
			VOC-u	2.707	0.145
			700 0		
			VOC-HAP-total	2.335	0.112
			ACETALDEHYDE		
			ACROLEIN		
			BENZENE	0.467	0.022
			DICHLOROBENZENE		
			ETHYLBENZENE	0.467	0.022
			FORMALDEHYDE		
			HEXANE-N	0.467	0.022
			METHANOL		
			TOLUENE	0.467	0.022
			XYLENE-M	0.467	0.022
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
				1	
				ļ	
			METHANE		
			ETHANE		
			CO2		

		AIR CONTAMINANT DATA	T • • • • • • • • • • • • • • • • • • •	1	
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamin	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
ENTING I	VENTING 1	BLOW DOWNS 4: THROUGHPUT: 2.250 SCF/BLOWDOWN @ 182.50 BLOWDOWNS/MONTH; 0.005 MMSCF/YR; 2,190.000 HRS/YR; COMMENTS: PNEUMATIC DEVICE; VENTING TO ATMOSPHERE; 106.352(I)	NOX		
			CO		
			SO2		
			PM10		
			PM2.5		
-			H2S	0.000	0.000
			Lead		
			VOC-total	0.007	0.007
			VOC-u	0.000	0.000
			VOC-HAP-total	0.000	0.000
			ACETALDEHYDE		0.000
			ACROLEIN		
			BENZENE	0.000	0.000
			DICHLOROBENZENE		
			ETHYLBENZENE	0.000	0.000
			FORMALDEHYDE		
			HEXANE-N	0.000	0.000
			METHANOL		
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
			, ,		
			METHANE		
			ETHANE		
			CO2	0.002	0.002

		AIR CONTAMINANT DATA	1	1	
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamina	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
ENG2	ENG2	LQUID FUEL ENGINE 1: HONDA GX160; SERIAL NO.: GCBPT-1482867; 4.8 HP; FUEL: GASOLINE; 4S-RB; CONTROL: NONE; 8,760.000 HRS/YR; PERMIT STATUS: UN-MODIFIED; COMMENTS: GASOLINE POWERED PUMP ENGINE	NOX	0.070	0.307
			CO	2.830	12.395
			SO2	0.003	0.012
			PM10	0.003	0.015
			PM2.5		
-			H2S	0.000	0.000
			Lead		
			VOC-total	0.070	0.306
			VOC-u		
			VOC-HAP-total	0.020	0.088
			ACETALDEHYDE	0.000	0.000
			ACROLEIN	0.000	0.000
			BENZENE	0.000	0.000
			DICHLOROBENZENE		
			ETHYLBENZENE		
			FORMALDEHYDE	0.020	0.088
			HEXANE-N		
			METHANOL		
			TOLUENE	0.000	0.000
			XYLENE-M	0.000	0.000
			XYLENE-O		
			XYLENE-P		
			VOC(HAP)-u		
			METHANE	0.000	0.000
			ETHANE	0.000	0.000
			CO2	5.174	22.664

			2.0 4 ***		
		1. Emission Point	2. Component or Air Contaminant Name	3. Air Contamina	ant Emission Rate
EPN	FIN	NAME		PPH	TPY
(A)	(B)	(C)		(A)	(B)
TE-WIDE TOTAL	SITE-WIDE TOTAL	SITE-WIDE TOTAL	NOX	0.168	0.736
IL-WIDE TOTAL	SITE-WIDE TOTAL		11021	0.100	0.730
			CO	2.912	12.756
			SO2 PM10	0.003	0.015
				0.073	0.050
			PM2.5	0.070	0.036
			H2S	0.005	0.018
			Lead	0.000	0.000
			VOC-total	59.741	24.961
			VOC-u	0.307	0.286
			VOC-HAP-total	2.915	0.728
			ACETALDEHYDE	0.000	0.000
			ACROLEIN	0.000	0.000
			BENZENE	0.518	0.070
			DICHLOROBENZENE	0.000	0.000
			ETHYLBENZENE	0.471	0.026
			FORMALDEHYDE	0.020	0.088
			HEXANE-N	0.902	0.434
			METHANOL	0.502	0.151
			TOLUENE	0.517	0.069
			XYLENE-M	0.487	0.041
			XYLENE-O	0.000	0.000
			XYLENE-P	0.000	0.000
			VOC(HAP)-u		
			v octinii) u		
		1		1	
		1		1	
	1	1		1	
	1	1		1	
	1	1	METHANE	0.002	0.010
			ETHANE	0.003	0.013
		1	CO2	129.930	544.700

Note:

Permit Number:	PI-7-CERT Registration		RN Number:	RN106552607	Date:	2/26/2024
Company Name:		Ineos USA Oil & Gas LLC				

Review of applications		its will be expedited by supplying all necessary information requeste CONTAMINANT DATA	d on this Tabl	e.	1	EMISSION I	POINT DISC	HADCE DA	DAMETED	C		
	AIR	1. Emission Point	4 UTM Co	ordinates of	Emission Point		OINI DISC	HARGEIA	Source	<u> </u>		
		1. Limssion I ont	4. CTM Coordinates of Emission Font			5. 6. Stack Exit Data 7. Fugitives						
EPN (A)	FIN (B)	NAME (C)	Zone	East (Meters)	North (Meters)	Ht. AGL (Feet)	Dia. (Feet) (A)	Velocity (fps) (B)	Temp. (f) (C)	Len. (ft.) (A)	Wid. (ft.) (B)	Axis Degrees (C)
HTI	HTI	; MAKE: UNKNOWN; MODEL: UNKNOWN; NATURAL GAS; 1.000 MMBTU/HR; 8,760.000 HRS/YR; UNCONTROLLED; HEATER-TREATER; VENTING TO ATMOSPHERE; 106.352(L)		534,830	3,152,876	20.00	1.00	8.94	850	()	(=)	, c,
TANKI	TANKI	: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 10.646 TURN-OVERS/YR; 11.667 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	14R	534,830	3,152,876	21.00	0.50	0.00	90			
TANK2	TANK2	: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 10.646 TURN-OVERS/YR; 11.667 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(1)	14R	534,830	3,152,876	21.00	0.50	0.00	90			

Note:

Permit Number:	PI-7-CERT Registration		RN Number:	RN106552607	Date:	2/26/2024
Company Name:		Ineos USA Oil & Gas LLC	2			

Review of application		its will be expedited by supplying all necessary information requeste	d on this Tab	le.									
	AIR	R CONTAMINANT DATA				EMISSION	POINT DISC	CHARGE PA	RAMETER	S			
		1. Emission Point	4. UTM Co	oordinates of	Emission Point	Source							
						5.	6.	7. Fugitives					
EPN (A)	FIN (B)	NAME (C)	Zone	East (Meters)	North (Meters)	Ht. AGL (Feet)	Dia. (Feet) (A)	Velocity (fps) (B)	Temp. (f) (C)	Len. (ft.) (A)	Wid. (ft.) (B)	Axis Degrees (C)	
TANK5	TANK5	: PRODUCED WATER @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 0.160 TURN-OVERS/YR; 0.175 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: PRODUCED WATER TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	14R	534,830	3,152,876	21.00	0.50	0.00	90				
TANK3	TANK3	: STABILIZED CRUDE @ 9.610 PSIA; SERIAL NO.: UNKNOWN; TYPE/SIZE: VFR; 16,800.000 GALLONS; THROUGHPUT: 10.646 TURN-OVERS/YR; 11.667 BBLS/D; 8,760.000 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; STATUS: EXISTING; COMMENTS: CRUDE TANK; 400 BBL; VENTING TO ATMOSPHERE; 106.352(I)	14R	534,830	3,152,876	21.00	0.50	0.00	90				
C LOAD 1	C LOAD 1	LOADING 1: STABILIZED CRUDE @ 8.74553752 PSIA; THROUGHPUT: 536,550.000 GALLONS/YR; 35.000 BBLS/D; 70.972 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; COMMENTS: CRUDE LOADING; VENTING TO ATMOSPHERE; 106.352(L)	14R	534,830	3,152,876	8.00	0.50	0.23	90				

Note:

Permit Number:	PI-7-CERT Registration		RN Number:	RN106552607	Date:	2/26/2024
Company Name:		neos USA Oil & Gas LLC	2			

Review of applications		its will be expedited by supplying all necessary information requeste	d on this Tab	le.								
	AIR	CONTAMINANT DATA]	EMISSION I	POINT DISC	HARGE PA	RAMETER	<u>s</u>		
		1. Emission Point	4. UTM Co	ordinates of	Emission Point	Source						
						5.	6.	Stack Exit I	7. Fugitives			
EPN (A)	FIN (B)	NAME (C)	Zone	East (Meters)	North (Meters)	Ht. AGL (Feet)	Dia. (Feet) (A)	Velocity (fps) (B)	Temp. (f) (C)	Len. (ft.) (A)	Wid. (ft.) (B)	Axis Degrees (C)
PW LOAD 1	PW LOAD 1	LOADING 2: PRODUCED WATER @ 8.74553752 PSIA; THROUGHPUT: 268,275.000 GALLONS/YR; 17.500 BBLS/D; 35.486 HRS/YR; PRIMARY/SECONDARY CONTROLS: TO AIR / TO AIR; COMMENTS: PRODUCED WATER LOADING; ASSUMED 1% CRUDE BY VOLUME; VENTING TO ATMOSPHERE; 106.352(L)	14R	534,830	3,152,876	8.00	0.50	0.00	90			
HT1-FLASH	HT1-FLASH	FLASH 1: CRUDE/NATURAL GAS; THROUGHPUT: 12,838.875 BBLS/YR; 35.175 BBLS/D; FLASHING FROM 111.400 PSIG TO 14.270 PSIG; PRIMARY/SECONDARY CONTROLS: TO ATMOSPHERE / TO ATMOSPHERE; COMMENTS: HEATER-TREATER CRUDE FLASH VAPORS; VENTING TO ATMOSPHERE; 106.352(1)	14R	534,830	3,152,876	30.00	1.00	0.02	80			
FUG	FUG	FUGITIVES 1; LIGHT-LIQUID COMPONENTS / NATURAL GAS COMPONENTS /: 8,760.000 HRS/YR; MONITORING PROGRAM: ///; COMMENTS: SITE FUGITIVE EMISSIONS; 106.352(l)	14R	534,830	3,152,876	3.00	0.01	0.01	90			

Note:

Permit Number:	PI-7-CERT Registration	RN Number:	RN106552607	Date:	2/26/2024	
Company Name:		Ineos USA Oil & Gas LLC	2			

		nits will be expedited by supplying all necessary information requested R CONTAMINANT DATA	EMISSION POINT DISCHARGE PARAMETERS										
		1. Emission Point	4. UTM Co	ordinates of	Emission Point			-	Source	-			
						5.	6.	Stack Exit I) Data		7. Fugitive	s	
EPN (A)	FIN (B)	NAME (C)	Zone	East (Meters)	North (Meters)	Ht. AGL (Feet)	Dia. (Feet) (A)	Velocity (fps) (B)	Temp. (f) (C)	Len. (ft.) (A)	Wid. (ft.) (B)	Axis Degrees (C)	
MSS 1	MSS 1	BLOW DOWNS 1: THROUGHPUT: 25.000 SCF/BLOWDOWN @ 25.00 BLOWDOWNS/MONTH; 0.008 MMSCF/YR; 300.000 HRS/YR; COMMENTS: MSS ACTIVITY; VAPORS VENTED TO ATMOSPHERE DURING MSS ACTIVITIES; 106.359	14R	534,830	3,152,876	20.00	0.50	0.00	90				
MSS 2	MSS 2	BLOW DOWNS 2: THROUGHPUT: 5,620.000 SCF/BLOWDOWN @ 0.08 BLOWDOWNS/MONTH; 0.006 MMSCF/YR; 1.000 HRS/YR; COMMENTS: MSS ACTIVITY; STORAGE TANK DE-GASSING DURING MAINTENANCE ACTIVITY; ASSUME DE-GASSING 1 TANK/YEAR; VENTS TO ATMOSPHERE; 106.359	14R	534,830	3,152,876	20.00	0.50	0.26	90				
MSS 3	MSS 3	BLOW DOWNS 3: THROUGHPUT: 1,200.000 SCF/BLOWDOWN @ 1.00 BLOWDOWNS/MONTH; 0.115 MMSCF/YR; 96.000 HRS/YR; COMMENTS: MSS ACTIVITIES; MISC. ABRASIVE BLASTING/COATING ACTIVITIES; VENTS TO ATMOSPHERE; AREA SOURCE; 106.359	14R	534,830	3,152,876	3.00	0.25	0.08	90				

Note:

Permit Number:	PI-7-CERT Registration		RN Number:	RN106552607	Date:	2/26/2024
Company Name:		neos USA Oil & Gas LLC	2			•

	AIF	R CONTAMINANT DATA	EMISSION POINT DISCHARGE PARAMETERS										
		1. Emission Point	4. UTM Co	ordinates of	Emission Point				Source				
EPN (A)				Zone East North (Meters) (Meters)			6. Dia. (Feet) (A)	Stack Exit D Velocity (fps) (B)	Temp. (f) (C)	Len. (ft.) (A)	7. Fugitive Wid. (ft.) (B)	Axis Degrees (C)	
VENTING 1	VENTING 1	BLOW DOWNS 4: THROUGHPUT: 2.250 SCF/BLOWDOWN @ 182.50 BLOWDOWNS/MONTH; 0.005 MMSCF/YR; 2,190.000 HRS/YR; COMMENTS: PNEUMATIC DEVICE; VENTING TO ATMOSPHERE; 106.352(1)	14R	534,830	3,152,876	3.00	0.25	0.00	90				
ENG2	ENG2	LQUID FUEL ENGINE 1: HONDA GX160; SERIAL NO.: GCBPT-1482867; 4.8 HP; FUEL: GASOLINE; 4S-RB; CONTROL: NONE; 8,760.000 HRS/YR; PERMIT STATUS: UN- MODIFIED; COMMENTS: GASOLINE POWERED PUMP ENGINE	14R	534,830	3,152,876	2.00	0.08	3,080.36	1,200				

Texas Commission on Environmental Quality Table 29 Reciprocating Engines

I. E	ngine Data																						
Man	ufacturer:				Me	odel N	Vo.:						Seria	ıl No.:						Man	ufacture Da	ıte:	
HON	IDA				GΣ	X160							GCB	PT-14	82867	,					3/1/	2013	
Reb	uild Date:				No	o. of C	ylinde	rs:					Com	pressi	on Ra	tio:				EPN	:		
		NA						1	1							9.01:	1			ENG	2		
App	lication:		Gas	Compress	sion					Elect	tric G	eneratio	on			Refrige	ratio	on			Emergency	/Stand	l-by
X	4 Stroke Cy	cle		2 Stroke	Cycle		X	Carb	ureted	l	X	Spark	Ignite	ed		D	ual	Fuel		Fuel Injected			
	Diesel		X	Naturally	y Aspi	irated			Blow	er/Pu	Pump Scavenged Tu				Turbo (Turbo Chared and I.C.			Turbo Charged				
	Intercooled I.C. Water Temperature				ure									Lean Burn				X Rich Burn					
Ignition/Injection Timing: Fixed: Yes					es	Variable:																	
Manufacture Horsepower Rating: 4.8							Proposed Horsepower Rating: 4.80																
										Discl	harge	Paran	neters	;									
Stack Height (Feet) Stack Diameter (Feet)							Stac	k Tem	perat	ure (d	eg. F))			Exit	t Velocity (FPS)							
	:	2.00					0.08	8						1,	,200.0	0					3,080.3	61	
II. I	Fuel Data																						
Туре	of Fuel:		Field	Gas			Lan	ndfill Ga	s		LP (Gas				Natural	Ga	S	Dige	ster G	as		Diesel
Fuel Use (BTU/bhp-hr): #### Hea				at Valu	Value 132,000.00				(HHV	7) 132,000.0			00.00)		(LHV	<i>I</i>)						
Sulfu	ır Content (gr	ains/100 s	cf - we	ight %):																			
III.	Emission Fa	ctors (Bef	ore Co	ontrol)																			
	NO x			CO					SO2					voc			F-aldehyde				PM1	0	
g/hp	-hr	ppmv	g/hp	-hr	pp	mv	g/h	p-hr		ppm	v	g/hp-	hr		ppm	v g	g/hp-hr pj		ppm	v	g/hp-hr		ppmv
6.62			267.4	14			2.66	2.667E-01				6.60	.60		1.8		1.890			0.318			
Sour	ce of Emissio	n Factors:			X	Ma	anufact	urer Da	ta		X	AP-4	2		Other	r (specif	y):						
IV.	Emission Fa	ctors (Pos	t Cont	rol)																			
	NO x			CO					SO2					voc	!			F-aldehyd	ie		PM10		
g/hp	-hr	ppmv	g/hp	-hr	pp	mv	g/hj	p-hr		ppm	v	g/hp-	hr		ppmv	v g	/hp-	hr	ppm	v	g/hp-hr		ppmv
6.62			267.4	14			2.60	67E-01				6.60				1	.890	١			0.318		
Meth	nod of Emissio	ons Contro	ol:		NS	SCR C	atalyst			Lean	Oper	ation			Paran	neter Ad	ljust	ment					
	Stratified Ch	narge			JL	CC C	atalyst			Othe	r (spe	cify):											
Note	: Must subm	it a copy o	of any i	manufactı	urer co	ontrol	inform	ation th	at den	nonstr	rates o	control	efficie	епсу.									
Is Fo	ormaldehyde i	ncluded in	VOC	,												X		Yes			No		
V. I	ederal and S	State Stan	dards	(check al	ll that	apply)																
X	NSPS JJJJ		X	MACT 2	ZZZZ			NSPS	S IIII				Title	30 Ch	apter 1	117 - Lis	st C	ounty:		Mc N	Mullen		
VI.	Additional I	nformatio	n																				
1.	Submit a cop	py of the e	ngine 1	manufactu	irer's s	ite rat	ing or g	general i	ating	specif	icatio	n data.											
2.	Submit a typ	oical fuel g	as anal	lysis, inclu	uding s	sulfur	content	and he	ating v	value.	For §	gasaeou	ıs fuel	s, prov	vide m	nole							
	percent of co	onstituents																					
3.	Submit desc	ription of	air/fuel	ratio con	ntrol sv	stem (manufa	acturer i	nform	nation	is acc	entable	:).										

TCEQ-10195 (Revised 11/11) Table 29 Reciprocationg Engines

This form is for use by facilities subject to air quality permit requirements and

may be revised periodically. (APDG 6002v3)

Ineos USA Oil & Gas LLC
Mckenzie-Foley Unit B MCM Pad
Tilden, Mc Mullen County, Texas
PI-7-CERT Registration

2.10 Supporting Documentation/Simulations

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad 02/26/24 VERTICLE FIXED ROOF UN-INSULATED COMPANY SITE NAME DATE

TANK TYPE
TANK TYPE
TANK TYPE
FILL TYPE
CITY/STATE
TANK PAINT CONE ROOF
SUBMERGED LOADING
SAN ANTONIO, TEXAS
BLACK

TANK CONDITION TANK CONTENTS AGED

CRUDE (RVP 10.5) TANK1: STABILIZED CRUDE

SYMBOL	EPN	UNITS	VALUE	AP-42 EQUATION REFERENCE	COMMENTS
Q		BBLS/YR	4,258.333		FILLING RATE
D _{VERT}		FT	12.000		DIAMETER (VERTICLE TANKS)
H _s		FT	19.860		SHELL HEIGHT
H_L K_P		FT DIMENSIONLESS	9.930 0.750		LIQUID HEIGHT (1/2 OF SHELL HEIGHT) PRODUCT FACTOR (0.75 FOR CRUDE, 1.0 FOR ALL OTHER PRODUCTS)
Кр		DIMENSIONLESS	0.730		PRODUCT FACTOR (0.75 FOR CRODE, 1.0 FOR ALL OTHER PRODUCTS)
	OTAL TANK LOSS				
L_{T}	LT = LS + LW	LBS/YR	1,477.275	1-1	TOTAL ROUTINE LOSSES
L_S	$365*V_V*W_V*K_E*K_S$	LBS/YR	354.332	1-2	STANDING LOSSES
L_{W}	$V_{Q}*K_{N}*K_{P}*W_{V}*K_{B}$	LBS/YR	1,122.943	1-35	WORKING LOSSES
CALCULATE ST	TANDING LOSS				
V_{v}	$[(PI*D^2)/4]*H_{VO}$	CF	1,137.194	1-3	VAPOR SPACE VOLUME
W_{V}	$(M_V*P_{VA}/(R*T_V)$	LBS/CF	0.063		STOCK VAPOR DENSITY
K_{E}	DELTA T_V/T_{LA} +(DELTA P_V -DELTA	FPER DAY	0.338	1-5	VAPOR SPACE EXAPNSION FACTOR
K_E	$0.0018*[0.7*(T_{AX}-T_{AN})+0.02*a*I]$	PER DAY	0.077	1-12	VAPOR SPACE EXAPNSION FACTOR (IF TANK LOCATION, COLOR & CO
K_S	$1/(1+0.053*P_{VA}*H_{VO})$	DIMENSIONLESS	0.177	1-21	VENTED VAPOR SATURATION FACTOR
$H_{VO-VERT}$	H_S - H_L + H_{RO}	FT	10.055	1-16	VAPOR SPACE OUTAGE (VERTICLE TANKS)
T_{AX}		DEG. R	539.500		AVERAGE DAILY MAXIMUM AMBIENT TEMPERATURE
T_{AN}		DEG. R	519.200		AVERAGE DAILY MINIMUM AMBIENT TEMPERATURE
a		NONE	0.970		TANK SURFACE SOLAR ABSORBANCE
I		BTU/FT ² -DAY	1,477.000		AVE. DAILY TOTAL INSOLATION ON HORIZONTAL SURFACE
M_V		LBS/LB-MOLE	41.770		VAPOR MOLECULAR WT.
$H_{RO\text{-}CONE}$	1/3*0.0625*R _S	FT	0.125	1-17	ROOF OUTAGE (CONE ROOF)
R_S		FT	6.000		TANK SHELL RADIUS
K_S	$[1/(1+0.053*P_{VA}*H_{VO})]$	DIMENSIONLESS	0.177	1-21	VENTED VAPOR SATURATION FACTOR
P_{VA}		PSIA	8.746		V.P. @ AVE. DAILY LIQUID SURFACE TEMPERATURE
W_V	$M_V*P_{VA}/(R*T_V)$	LBS/CF	0.063		STOCK VAPOR DENSITY
R		PSIA*CF/(LB-MOLE			IDEAL GAS CONSTANT
T_V	$0.7*T_{AA}+0.30*T_{B}+0.009*a*I$	DEG. R	543.534		AVERAGE VAPOR TEMPERATURE
T _{AA}	$(T_{AX}+T_{AN})/2$	DEG. R	529.350		AVE. DAILY AMBIENT TEMP.
T_B	$T_{AA} + 0.003 * a * I$	DEG. R	533.648	1-31	LIQUID BULK TEMP.
T _{LA}	$0.4*T_{AA}+0.6*T_{B}+0.005*a*I$	DEG. R	539.092	1-28	AVE. DAILY LIQUID SURFACE TEMP
DELTA T _V	0.7*DELTA T _A +0.02*a*I	DEG. R	42.864	1-7	AVE. DAILY VAPOR TEMP. RANGE
DELTA T _A	T_{AX} - T_{AN}	DEG. R	20.300	1-7	AVE. DAILY AMBIENT TEMP. RANGE
P _{VX}		PSIA	9.610	1-9	AVE. DAILY MAXIMUM VAPOR PRESSURE
P_{VN}		PSIA	8.121	1-9	AVE. DAILY MINIMUM VAPOR PRESSURE
P _{BP}		PSIA	0.030		BREATHER VENT PRESSURE SETTING
P _{BV}	D D	PSIA	(0.030)		BREATHER VENT VACUUM SETTING
DELTA P _V	P_{VX} - P_{VN}	PSIA	1.489	1-9	AVE. DAILY VAPOR PRESSURE RANGE
DELTA P _B	P_{BP} - P_{BV}	par.	0.060	1-10	BREATHER VENT PRESSURE SETTING RANGE
P _A	T .0.05*DELT* T	PSIA	14.270		ATMOSPHERIC PRESSURE
T _{LX}	T_{LA} +0.25*DELTA T_V	DEG. R	549.808		MAXIMUM LIQUID TEMPERATURE
T _{LN}	T_{LA} -0.25*DELTA T_{V}	DEG. R	528.376		MINIMUM LIQUID TEMPERATURE
T _{LX}		DEG. F	90.108		MAXIMUM LIQUID TEMPERATURE
T_{LN}		DEG. F	68.676		MINIMUM LIQUID TEMPERATURE

COMPANY SITE NAME DATE TANK TYPE TANK TYPE TANK TYPE FILL TYPE CITY/STATE TANK PAINT	Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad 02/26/24 VERTICLE FIXED ROOF UN-INSULATED CONE ROOF SUBMERGED LOADING SAN ANTONIO, TEXAS BLACK				
TANK CONDITION TANK CONTENTS	AGED CRUDE (RVP 10.5)				
EPN	TANK1: STABILIZED CRUDE				
CALCULATE WOR		I DCAID	1 100	1.05	WODWING LOGGEG
$egin{array}{c} L_{ m W} & & & & \\ V_{ m O} & & & & & \end{array}$	$V_{Q}*K_{N}*K_{P}*W_{V}*K_{B}$ 5.614*Q	LBS/YR CF/YR	1,123 23,906	1-35	WORKING LOSSES NET WORKING LOSS THROUGHPUT
K _N	3.014 Q	DIMENSIONLESS	1.00		WORKING LOSS THROUGHFUT WORKING LOSS TURNOVER SATURATION FACTOR (FOR FLASHING TA
K _B		DIMENSIONLESS	1.00		VENT SETTING CORRECTION FACTOR; FOR OPEN VENTS & +/-0.03 PSIG
K_P		DIMENSIONLESS	0.750		PRODUCT FACTOR (1.0 FOR CRUDE, 0.75 FOR ALL OTHER PRODUCTS)
W_V	$(M_V * P_{VA} / (R * T_V)$	LBS/CF	0.063		STOCK VAPOR DENSITY
VAPOR PRESSURE	CALCULATIONS AT MAX. LIQUI	D TEMPERATURE			
T_{LX}		DEG. F	90.000		MAXIMUM LIQUID TEMPERATURE LOWER LIMIT
T_{LX}		DEG. F	100.000		MAXIMUM LIQUID TEMPERATURE UPPER LIMIT
T _{LN}		DEG. F	60.000		MINIMUM LIQUID TEMPERATURE LOWER LIMIT
T_{LN}		DEG. F	70.000		MINIMUM LIQUID TEMPERATURE UPPER LIMIT
DEG. F 40.000 50.000 60.000 70.000 80.000 90.000	PSIA 6.600 7.100 7.600 8.200 8.800 9.600				
100.000	10.500				
	DEG. F (LOWER LIMIT)	DEG. F (UPPER LIMIT	гVP @ Тгу	P_{VX}	
T_{LX}	90.000	100.000	9.6000	9.6097	
				_	
T_{LN}	60.000	70.000	VP @ T _{LN} 7.6000	P _{VN} 8.12058	
VADOD DDECCUDE	CALCIII ATIONE AT AME LIQUII	TEMBERATURE			
T _{LA}	C CALCULATIONS AT AVE. LIQUII 0.4*T _{AA} +0.6*T _B +0.005*a*I	DEG. F	79.0923		AVE. DAILY LIQUID SURFACE TEMP
T _{LX}	AA B	DEG. F	70.000		AVE. DAILY LIQUID SURFACE TEMP LOWER LIMIT
T_{LX}		DEG. F	80.000		AVE. DAILY LIQUID SURFACE TEMP UPPER LIMIT
DEG. F 40.000 50.000 60.000 70.000 80.000 90.000 100.000	PSIA 6.600 7.100 7.600 8.200 8.800 9.600 10.500				
T_{LA}	DEG. F (LOWER LIMIT) 70.000	DEG. F (UPPER LIMIT 80.000	T VP @ T _{LA} 8.2000	P _{VA} 8.7455	

Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad 02/26/24 VERTICLE FIXED ROOF COMPANY SITE NAME DATE

TANK TYPE
TANK TYPE
TANK TYPE
FILL TYPE
CITY/STATE
TANK PAINT UN-INSULATED CONE ROOF
SUBMERGED LOADING
SAN ANTONIO, TEXAS
BLACK

TANK CONDITION TANK CONTENTS AGED

CRUDE (RVP 10.5) TANK5: PRODUCED WATER

EPN	TANK5: PRODUCED WATER				
				AP-42	
SYMBOL	EPN	UNITS	VALUE	EQUATION REFERENCE	COMMENTS
Q		BBLS/YR	6,387.500		FILLING RATE
D_{VERT}		FT	12.000		DIAMETER (VERTICLE TANKS)
H_S		FT	19.860		SHELL HEIGHT
H_L		FT	9.930		LIQUID HEIGHT (1/2 OF SHELL HEIGHT)
K_{P}		DIMENSIONLESS	0.750		PRODUCT FACTOR (0.75 FOR CRUDE, 1.0 FOR ALL OTHER PRODUCTS
CALCULATE TO	OTAL TANK LOSS				
L _T	LT = LS + LW	LBS/YR	2,038.746	1-1	TOTAL ROUTINE LOSSES
L _S	$365*V_{V}*W_{V}*K_{E}*K_{S}$	LBS/YR	354.332	1-2	STANDING LOSSES
$L_{\rm W}$	$V_Q^*K_N^*K_P^*W_V^*K_B$	LBS/YR	1,684.414	1-35	WORKING LOSSES
CALCULATE ST	_	OF.	1 127 104	1.2	WADOD CDACE VOLUME
V _v	$[(PI*D^2)/4]*H_{VO}$	CF	1,137.194	1-3	VAPOR SPACE VOLUME
W_V	$(M_V*P_{VA}/(R*T_V))$	LBS/CF	0.063		STOCK VAPOR DENSITY
K _E	DELTA T _V /T _{LA} +(DELTA P _V -DELTA		0.338	1-5	VAPOR SPACE EXAPNSION FACTOR
K_E	$0.0018*[0.7*(T_{AX}-T_{AN})+0.02*a*I]$	PER DAY	0.077	1-12	VAPOR SPACE EXAPNSION FACTOR (IF TANK LOCATION, COLOR & C
K_S	$1/(1+0.053*P_{VA}*H_{VO})$	DIMENSIONLESS	0.177	1-21	VENTED VAPOR SATURATION FACTOR
H _{VO-VERT}	H_S - H_L + H_{RO}	FT	10.055	1-16	VAPOR SPACE OUTAGE (VERTICLE TANKS)
T_{AX}		DEG. R	539.500		AVERAGE DAILY MAXIMUM AMBIENT TEMPERATURE
T_{AN}		DEG. R	519.200		AVERAGE DAILY MINIMUM AMBIENT TEMPERATURE
a		NONE	0.970		TANK SURFACE SOLAR ABSORBANCE
I		BTU/FT ² -DAY	1,477.000		AVE. DAILY TOTAL INSOLATION ON HORIZONTAL SURFACE
M_V		LBS/LB-MOLE	41.770		VAPOR MOLECULAR WT.
H _{RO-CONE}	1/3*0.0625*R _S	FT	0.125	1-17	ROOF OUTAGE (CONE ROOF)
R_S		FT	6.000		TANK SHELL RADIUS
K_S	$[1/(1+0.053*P_{VA}*H_{VO})]$	DIMENSIONLESS	0.177	1-21	VENTED VAPOR SATURATION FACTOR
P_{VA}		PSIA	8.746		V.P. @ AVE. DAILY LIQUID SURFACE TEMPERATURE
W _v	$M_{V}*P_{VA}/(R*T_{V})$	LBS/CF	0.063		STOCK VAPOR DENSITY
R	, ,,,	PSIA*CF/(LB-MOLE			IDEAL GAS CONSTANT
T_{V}	$0.7*T_{AA}+0.30*T_{B}+0.009*a*I$	DEG. R	543.534		AVERAGE VAPOR TEMPERATURE
T_{AA}	$(T_{AX}+T_{AN})/2$	DEG. R	529.350		AVE. DAILY AMBIENT TEMP.
T _B	$T_{AA} + 0.003*a*I$	DEG. R	533.648	1-31	LIQUID BULK TEMP.
T _{LA}	$0.4*T_{AA}+0.6*T_{B}+0.005*a*I$	DEG. R	539.092	1-28	AVE. DAILY LIQUID SURFACE TEMP
DELTA T _V	0.7*DELTA T _A +0.02*a*I	DEG. R	42.864	1-7	AVE. DAILY VAPOR TEMP. RANGE
DELTA T _A	T _{AX} -T _{AN}	DEG. R	20.300	1-7	AVE. DAILY AMBIENT TEMP. RANGE
P _{VX}	AX AN	PSIA	9.610	1-9	AVE. DAILY MAXIMUM VAPOR PRESSURE
P _{VN}		PSIA	8.121	1-9	AVE. DAILY MINIMUM VAPOR PRESSURE
P _{BP}		PSIA	0.030		BREATHER VENT PRESSURE SETTING
P _{BV}		PSIA	(0.030)		BREATHER VENT VACUUM SETTING
DELTA P _V	P_{VX} - P_{VN}	PSIA	1.489	1-9	AVE. DAILY VAPOR PRESSURE RANGE
DELTA P _B	P_{BP} - P_{BV}		0.060	1-10	BREATHER VENT PRESSURE SETTING RANGE
P_A		PSIA	14.270		ATMOSPHERIC PRESSURE
T_{LX}	T_{LA} +0.25*DELTA T_{V}	DEG. R	549.808		MAXIMUM LIQUID TEMPERATURE
T_{LN}	T_{LA} -0.25*DELTA T_{V}	DEG. R	528.376		MINIMUM LIQUID TEMPERATURE
T_{LX}		DEG. F	90.108		MAXIMUM LIQUID TEMPERATURE
		DEG. F			

COMPANY SITE NAME DATE TANK TYPE TANK TYPE TANK TYPE FILL TYPE CITY/STATE TANK PAINT	Ineos USA Oil & Gas LLC Mckenzie-Foley Unit B MCM Pad 02/26/24 VERTICLE FIXED ROOF UN-INSULATED CONE ROOF SUBMERGED LOADING SAN ANTONIO, TEXAS BLACK				
TANK CONDITION TANK CONTENTS	AGED CRUDE (RVP 10.5)				
EPN	TANK5: PRODUCED WATER				
CALCULATE WORK		I DOMD	1.604	1.25	WODWING LOGGEG
L _w V _o	$V_{Q}*K_{N}*K_{P}*W_{V}*K_{B}$ 5.614*Q	LBS/YR CF/YR	1,684 35,859	1-35	WORKING LOSSES NET WORKING LOSS THROUGHPUT
K _N	3.014 Q	DIMENSIONLESS	1.00		WORKING LOSS TURNOVER SATURATION FACTOR (FOR FLASHING TA
K _B		DIMENSIONLESS	1.00		VENT SETTING CORRECTION FACTOR; FOR OPEN VENTS & +/-0.03 PSIG
K_P		DIMENSIONLESS	0.750		PRODUCT FACTOR (1.0 FOR CRUDE, 0.75 FOR ALL OTHER PRODUCTS)
W_{V}	$(M_V * P_{VA} / (R * T_V)$	LBS/CF	0.063		STOCK VAPOR DENSITY
VAPOR PRESSURE (CALCULATIONS AT MAX. LIQUID	TEMPERATURE			
T_{LX}		DEG. F	90.000		MAXIMUM LIQUID TEMPERATURE LOWER LIMIT
T _{LX}		DEG. F	100.000		MAXIMUM LIQUID TEMPERATURE UPPER LIMIT
T _{LN}		DEG. F	60.000		MINIMUM LIQUID TEMPERATURE LOWER LIMIT
T_{LN}		DEG. F	70.000		MINIMUM LIQUID TEMPERATURE UPPER LIMIT
DEG. F	PSIA				
40.000	6.600				
50.000 60.000	7.100 7.600				
70.000	8.200				
80.000	8.800				
90.000	9.600				
100.000	10.500				
	DEG. F (LOWER LIMIT)	DEG. F (UPPER LIMIT	VP @ T _{LX}	P_{VX}	
T_{LX}	90.000	100.000	9.6000	9.6097	
			VP @ T _{LN}	P_{VN}	
T_{LN}	60.000	70.000	7.6000	8.12058	
LIV				*******	
VADOD DDESSUDE	CALCULATIONS AT AVE. LIQUID	TEMBEDATUDE			
T _{LA}	$0.4*T_{AA}+0.6*T_{B}+0.005*a*I$	DEG. F	79.0923		AVE. DAILY LIQUID SURFACE TEMP
T _{LX}	AA B	DEG. F	70.000		AVE. DAILY LIQUID SURFACE TEMP LOWER LIMIT
T _{LX}		DEG. F	80.000		AVE. DAILY LIQUID SURFACE TEMP UPPER LIMIT
	Par.				
DEG. F 40.000	PSIA 6.600				
50.000	7.100				
60.000	7.600				
70.000	8.200				
80.000	8.800				
90.000 100.000	9.600 10.500				
				_	
т	DEG. F (LOWER LIMIT)	DEG. F (UPPER LIMIT		P _{VA}	
T_{LA}	70.000	80.000	8.2000	8.7455	