October 12, 2017

Mr. Kelly Ruble Air Section Manager, Region 14 Texas Commission on Environmental Quality NRC Bldg, Ste 1200 6300 Ocean Dr, Unit 5839 Corpus Christi, Texas 78412-5839

Re: 40 CFR 60 Subpart JJJJ - Notification of Compliance Status BHP Billiton Petroleum (Eagle Ford Gathering) LLC, 1500 Post Oak Blvd, Houston, TX 77056 Black Hawk Central Gas Treating Facility Standard Permit Registration Number: 99822 Regulated Entity Number: RN106001126 Customer Reference Number: CN603964339

Dear Mr. Ruble:

As required by 40 CFR 60.4243(b)(2)(ii), BHP Billiton Petroleum (Eagle Ford Gathering) LLC, conducted performance testing on the below Black Hawk Central Gas Treating Facility engine on Tuesday, August 22, 2017 in DeWitt County.

EPN	Internal Identifier	Make and Model	Туре	Serial Number	HP Rating	Fuel	Control
C2	K-201	Waukesha L-7044 GSI ESM	4SRB	5283700882	1680	Field Gas	AFRC and Catalyst

Performance test results are provided as Attachment A to this cover letter as required by 40 CFR 60.4245(d) within the 60-day submittal time requirement. Should vou have any questions, please contact me directly by phone at (361) 274-3145 or by email at

Sincerely,

Leigh Barr

Leigh Barr Principal Environmental Specialist BHP Billiton Petroleum

Attachment A

Emission Test Report

Emission Test Report Compressor Engine Testing

40 CFR Part 60 Subpart JJJJ 30 TAC §106.512 Waukesha K-201 L-7044 GSI ESM, SN: 5283700882 EPN: C2 Black Hawk Central Gas Treating Facility DeWitt County, Texas Test Date: 8/22/2017

BHP Billiton Houston, TX 77056

GHD

1755 Wittington Place, Suite 500 Dallas, Texas 75234

October 2017 • 11114838 • Report No. 43

Page

Table of Contents

Section 1.0	Test Results Summary		
	1.1	Certification	1
	1.2	Test Program Personnel	2
Section 2.0	Samplir	ng Procedures and Equipment	2
	2.1	Oxygen Measurement	3
	2.2	Exhaust Flow Rate Measurement	3
Section 3.0	Quality	Assurance and Quality Control (QA/QC)	3

List of Tables (Following Text)

- Table 1.1 Engine Results
- Table 1.2Engine Parameters During Testing
- Table 2.1 Equipment Data
- Table 3.1 Instrument Calibration
- Table 3.2 FTIR Calibrations

List of Figures

Figure 1.1 GHD FTIR Sampling System Diagram

List of Appendices

- Appendix A Field Data and Calculations Sheets
- Appendix B Calibration Gas Certification Sheets
- Appendix C Tester CV

Section 1.0 Test Results Summary

BHP Billiton (BHP) contracted GHD Services, Inc. (GHD), to conduct compliance emission testing on a compressor engine at the Black Hawk Central Gas Treating Facility, DeWitt County, Texas. The purpose of this test program was to demonstrate compliance with emission limits contained in the United States Code of Federal Regulations, Title 40, Part 60, Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines and Texas Administrative Code, Title 30, Part 1, Chapter 106, Subchapter W, Rule §106.512. Three 60-minute test runs were performed at the highest achievable load conditions. The testing was completed on Tuesday, August 22, 2017. There were no issues or problems encountered during the testing. The results are summarized and compared to the regulation limits in Table 1.1 and in the following table. Engine parameters are summarized in Table 1.2.

Test Information:

Test Location: Black Hawk Central Gas Treating Facility Source: Gas Compressor Engine Unit: K-201 Serial Number: 5283700882 Rated Horsepower: 1680 Engine Controls: AFRC and Catalyst Test Date: Tuesday, August 22, 2017

Test Results:

Parameter	Average Result	Permit Limit	Average Result	Regulation Limit
	(g/hp-hr)	(g/hp-hr)	(ppmvd @ 15%O ₂)	(ppmvd @ 15%O ₂)
NOx	0.009	0.274	0.539	82.00
СО	0.022	0.254	2.089	270.00
VOC	0.021	0.128	1.285	60.00

1.1 Certification

We certify that to the best of our knowledge that the source test report has been checked for completeness, and that the results presented are accurate, error-free, and representative of the actual emissions measured during testing.

Signed for:

las late

Michael J. Tahirak GHD Services, Inc.

1.2 Test Program Personnel

The GHD Project Manager is:

Michael J. Tahirak GHD Services, Inc. 1755 Wittington Place, Suite 500, Dallas, Texas 75234 972-331-8500

The GHD Site Supervisor is:

Michael Tahirak GHD Services, Inc. 1755 Wittington Place, Suite 500, Dallas, Texas 75234 972-331-8500

Michael Tahirak's CV is included in Appendix C.

The BHP Billiton contact is:

Leigh Barr BHP Billiton 1714 West Schmidt Drive Pecos, TX 79772 361-274-3145

Section 2.0 Sampling Procedures and Equipment

A continuous sample was extracted from the source and analyzed for oxides of nitrogen (NO_x), carbon monoxide (CO), volatile organic compounds (VOC), moisture, and oxygen (O₂). This test program was conducted in accordance with the reference methods (RMs) described in the United States Code of Federal Regulations, Title 40 Part 60 (40 CFR 60) Appendix A and the American Society for Testing and Materials (ASTM) Method D6348-12. The most current revisions of the reference methods were obtained from the United States Environmental Protection Agency (USEPA) Emission Measurement Center (EMC) website (www.epa.gov/ttn/emc) and the testing methods were obtained from the American Society for Testing and Materials (ASTM). A table of equipment and calibration gases used can be found in Table 2.1. The TCEQ Central Office has

provided a confirmation correspondence approving the use of the ASTM Method D6348-12 as a valid methodology for testing NOx and CO for engines permitted under 30 TAC §106.512.

A GHD climate controlled, mobile sampling truck was brought onsite for the testing. A continuous sample of the effluent exhaust was extracted from the source via a stainless steel probe equipped with an in-stack sintered filter. The gas sample was transported via heated Teflon[™] line to the MKS Multigas 2030 Fourier Transformation Infrared (FTIR) analyzer to determine the concentrations of CO, NOx, moisture and VOC. A schematic of the FTIR sampling system used during the test is presented in Figure 1.1.

2.1 Oxygen Measurement

A slip stream of the exhaust gas was directed into the BrandGaus wet oxygen analyzer and the concentration was determined instrumentally by EPA Reference Method (RM) 3A. Data was recorded on a data acquisition system (DAS) at 1 minute intervals. O₂ concentration data was used to correct CO, NO_x and non-methane VOC concentrations to 15 percent O₂. Field data sheets can be found in Appendix A.

2.2 Exhaust Flow Rate Measurement

Exhaust volumetric flow rate was determined for the test runs on a dry basis by using RM 2, in accordance with 40 CFR Part 60 Subpart JJJJ.

For RM 2, the gas velocity was determined from the average velocity head with a type-S pitot tube, gas density, stack temperature, and stack pressure. The average velocity head was determined using an inclined manometer and a type-S pitot tube with a known coefficient of 0.84, or a standard pitot tube with a known coefficient of 0.99 that is determined geometrically by standards set forth in RM 2. Stack temperature was taken at each traverse point using a type-K thermocouple. Static pressure was determined using a straight tap and an inclined manometer.

Fuel usage of the engine tested is determined through the use of engine manufacturer specifications.

Section 3.0 Quality Assurance and Quality Control (QA/QC)

Calibration of GHD's emissions monitoring system was performed in accordance with RM 3A, and ASTM D6348-12. All calibrations were within specified limits. Calibration results are included in Table 3.1 and Table 3.2. Field data sheets used for calibration are included in Appendix A. Calibration Gas Certification sheets for all gases used are included in Appendix B.

For RM 3A, linearity and calibration error (CE) determinations were performed prior to each engine test. The purpose of this procedure was to establish an initial calibration curve and to assure that each calibration point was accurate to within 2 percent of the analyzer span value. This was accomplished by first introducing the zero calibration gas and adjusting the instrument to read zero. Next, the span gas was introduced and the analyzer's response was adjusted to match this calibration gas certified concentration. Following the zero and span adjustment, the low, mid and high-level calibration gases were injected, and the responses were recorded to verify instrument linearity.

A system bias check was performed after the linearity and CE determinations. For the system bias check, the calibration gases were introduced to the sample probe prior to the filter. The gases were transported to the analyzers in the same manner as the source sample gas. The system responses were recorded and compared to the CE values. In the event that the two measurements differ by 5 percent or more, the sources of bias are identified and eliminated before repeating the bias check. The system bias check data are presented with the field calculations in Appendix A.

A drift check was performed immediately after each test run following procedures outlined in RM 7E. Zero gas was introduced into the system and the monitor's response recorded. This procedure was repeated for the upscale calibration gas. The system bias was determined and may not drift from the previous run system bias by more than 3 percent.

The RM 3A QA/QC data is included in Table 3.1.

The FTIR QA/QC procedure consists of daily checks of the instrument half height peak widths, laser frequency and instrument monitor.

For ASTM D6348-12, a calibration transfer standard (CTS), 100 ppm ethylene standard, was analyzed daily before and after testing. The concentrations determined for all CTS were within plus/minus 5 percent of the certified value of the standard. The ethylene was passed through the entire system (system purge) to verify the sampling system response and to ensure the sampling system was leak-free from the sampling location to the FTIR. Nitrogen was also purged through the sampling system to confirm the system was free of contaminants.

Analyte dynamic spiking was performed before each test series to verify the ability of the sampling system to quantitatively deliver a sample from the base of the probe to the FTIR, and to confirm the ability of the FTIR to quantify each spike in the presence of effluent gas. Analyte spiking consisted of CO, NO, and propane (surrogate for VOC). The spiking gases contained a low concentration of sulfur hexafluoride (SF6). The determined SF6 concentration in the spiked sample was used to calculate the dilution factor of the spike and thus used to calculate the

concentration of the spiked gases. The dilution factor for all analyte spikes was less than 1:10. All spike recoveries were within the ASTM D6348-12 allowance of plus/minus 30 percent.

The QA/QC data for ASTM D6348-12 is included in Table 3.2.

The QA/QC procedure for data reduction includes using computer spreadsheet programs to generate tables of results. Data input files and equations are double-checked by a second person and tables are checked for transposition errors with spot calculations being performed by hand.

Tables

Table 1.1

Engine Results BHP Billiton Company Black Hawk Central Gas Treating Facility Engine ID 5283700882 August 22, 2017

Results

	NC)x	C	0	VO	C
Run Number	Engine <u>(ppmvd@</u>	Limit 15% 02)	Engine <u>(ppmvd@</u>	Limit 15% 02)	Engine <u>(ppmvd@</u>	Limit <u>15% O2)</u>
1	0.633		4.853		1.461	
2	0.214		0.849		1.185	
3	0.771		0.565		1.208	
Average	0.539	82.00	2.089	270.00	1.285	60.00

	NC	Эх	CC)	VO	С
Run Number	Engine	Limit	Engine	Limit	Engine	Limit
	<u>(g/h</u>	<u>p-hr)</u>	<u>(g/hp</u>	<u>-hr)</u>	<u>(g/hp</u>	-hr <u>)</u>
1	0.011		0.051		0.024	
2	0.004		0.009		0.019	
3	0.013		0.006		0.020	
Average	0.009	0.274	0.022	0.254	0.021	0.128

NOTE: Limits in ppmvd @15% O2 shown above are representative of the applicable 40 CFR Part 60 Subpart JJJJ limits. Limits in g/hp-hr shown above are representative of the engine's permitted limits under its Permit to Operate.

Table 1.2

Engine Parameters During Testing BHP Billiton Company Black Hawk Central Gas Treating Facility Engine ID 5283700882 August 22, 2017

Engine Parameters						
Run Number	Suction Pressure (psi)	Discharge Pressure (psi)	Engine Speed (RPM)	Engine Load (%)	Engine Run Time Hours (hrs)	Engine Horsepower (hp)
1	576	1075	1160	92%	46742	1545
2	580	1075	1168	93%	46743	1562
3	581	1070	1163	92%	46744	1545
Average	579	1073	1164	92%		1551

Run Number	Manifold Pressure (psi)	Manifold Temperature (deg F)	Ambient Temperature (deg F)	Barometric Pressure (in. Hg)	
1	38.0	123	85	30.05	
2	38.0	124	91	30.06	
3	38.0	129	93	30.06	
Average	38.0	125	90	30.06	

The engine load was determined by the following formula: ((current HP) / (rated HP) x 100).

Table 2.1

Equipment Data BHP Billiton Company Black Hawk Central Gas Treating Facility Engine ID 5283700882 August 22, 2017

Parameter	Instrument ID	Calibration Gas Used
0 ₂	Brand Gaus Wet O2 Analyzer	19.96% and 11.9 % O2
NOx	MKS Multigas 2030	3000 ppm NO
СО	MKS Multigas 2030	3000 ppm CO
Ethylene	MKS Multigas 2030	100 ppm Ethylene
Total VOC	MKS Multigas 2030	1000 ppm Propane

Table 3.1

Instrument Calibration BHP Billiton Company Black Hawk Central Gas Treating Facility Engine ID 5283700882 August 22, 2017

ACE Limit	< 2% Span
System Bias Limit	< 5% Span
Drift Limit	< 3% Span

Analyzer Calibration				
	3A/02			
Analyzer Calibration Error Zero	0.20%			
Analyzer Calibration Error Mid	1.60%			
Analyzer Calibration Error High	1.85%			
System Bias Zero	0.05%			
System Bias Mid	0.05%			
System Bias High	0.75%			

	Calibration Drift/BiasCheck				
	Run 1				
Zero Drift	-0.05%				
Zero Bias	0.00%				
Span Drift	0.95%				
Span Bias	1.00%				
	Run 2				
Zero Drift	0.00%				
Zero Bias	0.00%				
Span Drift	-0.10%				
Span Bias	0.90%				
	Run 3				
Zero Drift	0.00%				
Zero Bias	0.00%				
Span Drift	-0.05%				
Span Bias	0.85%				

Table 3.2

FTIR Calibrations BHP Billiton Company Black Hawk Central Gas Treating Facility Engine ID 5283700882 August 22, 2017

Pre-Test FTIR Calibration - Direct				
	Cylinder	FTIR	Difference	
	Value (ppm)	Response (ppm)	(%)	
Ethylene Zero	0.00	0.10	n/a	
NO Zero	0.00	-0.10	n/a	
CO Zero	0.00	-0.20	n/a	
Propane Zero	0.00	0.23	n/a	
Ethylene High	100.00	99.04	0.96%	
NO High	3000.00	2962.00	1.27%	
CO High	3000.00	2938.00	2.07%	
Propane High	1000.00	990.00	1.00%	

Pre-Test FTIR Calibration - System								
	Direct FTIR	System FTIR	Difference					
	Response	Response	(%)					
Ethylene Zero	0.10	-0.20	n/a					
NO Zero	-0.10	1.00	n/a					
CO Zero	-0.20	1.30	n/a					
Propane Zero	0.23	-0.60	n/a					
Ethylene High	99.04	98.63	0.41%					
NO High	2962.00	2905.00	1.92%					
CO High	2938.00	2895.00	1.46%					
Propane High	990.00	1023.00	3.33%					

FTIR Response Time				
	Response Time			
	(seconds)			
High Ethylene	30			
Zero Ethylene	30			

Table 3.2

FTIR Calibrations BHP Billiton Company Black Hawk Central Gas Treating Facility Engine ID 5283700882 August 22, 2017

FTIR Pre-Test Ana	alyte Dynamic Spiking	
	Pre Test Spike	
Concentration of CO Cylinder	3000.00	
Concentration of NO Cylinder	3000.00	
Concentration of Propane Cylinder	1000.00	
Concentration of SF ₆ Cylinder	10.20	
Stack CO Concentration	224.00	
Stack NO Concentration	5.30	
Stack Propane Concentration	1.70	
Stack SF6 Concentration	0.00	
Stack + Spike CO Concentration	651.00	
Stack + NO Concentration	429.00	
Stack + Propane Concentration	225.00	
Stack + SF ₆ Concentration	1.80	
Spike Dilution from SF ₆	0.176	
Percent Recovery CO	88.12%	
Percent Recovery NO	80.21%	
Percent Recovery Propane	126.71%	

Post-Test FTIR Calibration - Direct								
	Cylinder	FTIR	Difference					
	Value (ppm)	Response	(%)					
Ethylene Zero	0	0.17	n/a					
NO Zero	0	-1.00	n/a					
CO Zero	0	1.70	n/a					
Ethylene High	100	99.16	0.84%					
NO High	3000	2930.00	2.33%					
CO High	3000	2899.00	3.37%					
Propane High	1000	1003.00	0.30%					

Figures

11114838-043-Figure 1.1

Appendix A

Field Data and Calculations Sheets

\triangleleft
E
\triangleleft
\Box
\geq
٩,
R
Ľ
ш
N
~
\triangleleft
->
<
\triangleleft

RESPONSE TIME

Client:	BHP Billiton	Site:	Hawk Central Gas Treating Fa	County:	DeWitt County
Project #:	11114838	Source:	Waukesha L-7044 GSI ESM	Date:	8/22/2017
Operator:	Michael Tahirak	Method/Gas:	System	Time:	9:20 AM

		Upscale	Response (s	ec.)	Downscale Response (sec.)				Response
Analyzer (ID)	1	2	3	Average	1	2	3	Average	Time ¹
FTIR/O2	75	75	75	75.00	75	75	75	75.00	75.00
								- 2	FF 00

System Response Time²: 75.00

Notes:

1 Greater value of average upscale response and average downscale response.

2 Maximum value of all analyzer response times.

SUMMARY DATA SHEET

Client: BHP Billiton	Site: k Ha	wk Central Gas Treating Fac	County:	DeWitt County	
Project #: 11114838	Source: Wat	ıkesha L-7044 GSI ESM	Date:	8/22/2017	
	Temperature _{STD} : 68		Molar Volume:	24.055	
Run Information			_		
	1	2	3		
Stack Parameter					
Horsepower, hp	1545	1562	1545		
mmBtu of Fuel (Fd)					
Moisture %	19.2	19.2	18.9		
Dry Std. Flow Rate				Avg.	
DSCFM	2309	2311	2305	2308.6	
O2 (dry, drift corrected)					
%	0.04%	0.05%	0.07%	0.05%	
СО					
ppmvd	17	3	2	7	
ppmvd @ 15%O2	4.853	0.849	0.565	2.089	
lb/hr	0.17	0.03	0.02	0.07	
g/hp-hr	0.051	0.009	0.006	0.022	
NOx					
ppmvd	2	1	3	2	
ppmvd @ 15%O2	0.633	0.214	0.771	0.539	
lb/hr	0.04	0.01	0.04	0.03	
g/hp-hr	0.011	0.004	0.013	0.009	
VOC					
ppmvd	5.2	4	4	5	
ppmvd @ 15%O2	1.461	1.185	1.208	1.285	
lb/hr	0.08	0.07	0.07	0.07	
g/hp-hr	0.024	0.019	0.020	0.021	

D	1
K11n	
run	-

Client: BHP I Project #: 1111	HP Billiton 11114838		Site: a Source:	Site: ack Hawk Central Gas Treating Facili Source: Waukesha L-7044 GSI ESM			DeWitt County 8/22/2017
(Gas	02	VOC	СО	NOx	Moisture	
Calibration Drift Check							
Ti	ime	10:13					
SI	pan	19.96					
Drift li	imit	< 3.0%					
Zero							
Ini	itial	0.03					
F	Final	0.04					
Average	(C_0)	0.035					
Certified Va	alue	0					
% L	Drift	-0.1%					
% Sys. I	Bias	0.0%					
Upscale (Cma)	Carr	Ma					
Opscale C	Gas:	12.22					
	litial Singl	12.23					
Average ((C)	12.02					
Certified Va	alue	11.125					
% F	Drift	10%					
% Sys. 1	Bias	1.0%					
Run Data Calculations							
Number of Sample Poin	nts:	60	60	60	60	60	
Average Concentration	(C):	0.07	5.17	17.15	2.24	19.24	
Drift Corrected Average ((-)	0.04	0.17	17.10		1/.21	
Maximum Concentrati	-gas)	0.01					
Minum Concentrati	1011:	0.09					
Minumum Concentrati	10 n :	0.07					

		02	VOC	CO	NOx	Moisture	
DATE	10.12.50	% (wet)	ppmvd	ppmvd	ppmvd	⁰ / ₀	
8/22/2017	10:13:59	0.08	5.85	1.64	16.24	18.64	
8/22/2017	10:14:59	0.09	5.19	1.47	25.29	18.73	
8/22/2017	10:15:59	0.09	4.20	1.09	28.07	18.77	
0/22/2017	10:16:59	0.07	4.56	3.03	1.22	19.60	
0/22/2017	10:17:59	0.07	4.09	10.70	1.13	19.56	
0/22/2017	10:10:59	0.07	0.02	37.19	1.70	19.78	
0/22/2017	10.19.59	0.07	5.30	65 20	1.01	19.01	
8/22/2017	10.20.39	0.07	5.75	62 30	2.09	19.72	
8/22/2017	10.21.59	0.07	6 55	65.69	2.03	19.04	
8/22/2017	10.22.59	0.07	0.00 4 4 1	85.09	2.10	19.50	
8/22/2017	10:24:59	0.07	5 29	81 14	2.20	19.01	
8/22/2017	10:25:59	0.07	6.24	76.95	2.11	19.10	
8/22/2017	10:26:59	0.07	4.95	32.55	1.48	18.94	
8/22/2017	10:27:59	0.07	6.22	26.32	1.35	18.97	
8/22/2017	10:28:59	0.07	6.06	20.15	1.70	18.91	
8/22/2017	10:29:59	0.07	4.51	12.68	1.36	18.98	
8/22/2017	10:30:59	0.07	6.88	12.83	1.65	18.91	
8/22/2017	10:31:59	0.07	4.02	12.91	0.86	19.12	
8/22/2017	10:32:59	0.07	5.39	12.65	1.10	19.41	
8/22/2017	10:33:59	0.07	4.42	10.75	1.30	18.82	
8/22/2017	10:34:59	0.07	3.73	11.15	1.11	18.71	
8/22/2017	10:35:59	0.07	4.41	10.02	1.15	18.85	
8/22/2017	10:36:59	0.07	5.43	11.33	1.06	18.68	
8/22/2017	10:37:59	0.07	6.00	10.57	1.11	19.07	
8/22/2017	10:38:59	0.07	6.37	10.43	0.94	21.20	
8/22/2017	10:39:59	0.07	6.32	12.08	0.99	19.97	
8/22/2017	10:40:59	0.07	5.83	11.42	1.07	19.39	
8/22/2017	10:41:59	0.07	5.91	8.79	0.91	19.50	
8/22/2017	10:42:59	0.07	6.38	8.07	0.80	19.47	
8/22/2017	10:43:59	0.07	4.52	8.70	1.11	19.20	
8/22/2017	10:44:59	0.07	5.55	9.70	0.66	19.04	
8/22/2017	10:45:59	0.07	3.35	12.36	0.91	19.13	
8/22/2017	10:46:59	0.07	3.54	12.23	1.26	19.24	
8/22/2017	10:47:59	0.07	4.60	9.36	1.17	19.05	
8/22/2017	10:48:59	0.07	3.95	7.27	1.21	19.04	
8/22/2017	10:49:59	0.07	4.40	7.74	1.13	18.58	
8/22/2017	10:50:59	0.07	4.25	8.18	0.80	19.05	
8/22/2017	10:51:59	0.07	4.76	9.87	1.16	19.41	
8/22/2017	10:52:59	0.07	6.08	10.87	1.00	20.01	
8/22/2017	10:53:59	0.07	5.56	12.25	0.99	19.22	
8/22/2017	10:54:59	0.07	4.77	13.76	1.29	18.99	
8/22/2017	10:55:59	0.07	4.27	11.73	0.82	18.97	
8/22/2017	10:56:59	0.07	5.46	9.31	0.64	18.81	
8/22/2017	10:57:59	0.07	5.09	10.65	1.05	18.68	
8/22/2017	10:58:59	0.07	6.95	10.40	1.02	18.71	
8/22/2017	10:59:59	0.07	4.91	8.09	0.44	18.66	
8/22/2017	11:00:59	0.07	6.85	6.95	0.64	19.35	
8/22/2017	11:01:59	0.07	3.63	8.30	0.60	19.56	
8/22/2017	11:02:59	0.07	4.45	8.69	0.53	19.20	
8/22/2017	11:03:59	0.07	3.50	6.90	0.89	18.90	
8/22/2017	11:04:59	0.07	6.34	5.01	1.20	19.13	
8/22/2017	11:05:59	0.07	3.61	5.64	0.39	18.91	
8/22/2017 9/00/0047	11:06:59	0.07	6.41	b.10 7 00	0.59	19.14	
8/22/2017 8/22/2017	11:07:59	0.07	5.17	7.33	0.89	19.28	
0/22/2017	11:08:59	0.07	5.09	5.86	0.92	19.42	
0/22/2017	11:09:59	0.07	0.50	0.09	0.68	19.35	
0/22/2017	11:10:59	0.07	3.81	4.47	0.80	21.11 10 55	
0/22/2017	11.11.09	0.07	4.19 1 60	3.83 1 20	0.62	19.00	
0/22/2017	11:12:59	0.07	4.00	4.20	0.89	19.01	

Client: BHP B Project #: 1111	illiton 4838	Site: Source:	Black Hawk Central Waukesha L-	Gas Treating Facility 7044 GSI ESM	County: Date:	DeWitt County 8/22/2017
Gas	02	VOC	СО	NOx	Moisture	
Calibration Drift Check						
Time	11:26					
Span	19.96					
Drift limit	< 3.0%					
Zero						
Initial	0.03					
Final	0.04					
Average (C _o)	0.035					
Certified Value	0					
% Drift	0.0%					
% Sys. Bias	0.0%					
Upscale (Cma)						
Upscale Gas:	Mid					
Initial	12.23					
Final	12.04					
Average (C _m)	12.135					
Certified Value	11.9					
% Drift	-0.1%					
% Sys. Bias	0.9%					
Run Data Calculations						
Number of Sample Points:	60	60	60	60	60	
Average Concentration (C):	0.08	4.19	3.00	0.76	19.23	
Drift Corrected Average (C _{gas})	0.04					
Maximum Concentration:	0.09					
Minumum Concentration:	0.07					

		02	VOC	СО	NOx	Moisture	
DATE	TIME	% (wet)	ppmvd	ppmvd	ppmvd	%	
8/22/2017	11:26:59	0.07	3.55	4.08	0.53	18.07	
8/22/2017	11:28:00	0.07	2.41	3.41	1.44	18.06	
8/22/2017	11:28:59	0.08	4.27	2.87	2.44	18.12	
8/22/2017	11:29:59	0.08	4.42	2.91	0.50	18.93	
8/22/2017	11:30:59	0.08	4.32	3.74	0.37	19.47	
8/22/2017	11:31:59	0.08	3.46	3.19	0.40	19.51	
8/22/2017	11:32:59	0.08	1.95	3.28	0.25	19.56	
8/22/2017	11:33:59	0.08	4.90	3.09	0.95	19.36	
8/22/2017	11:34:59	0.08	3.80	2.89	0.79	19.77	
8/22/2017	11:35:59	0.08	5.44	3.10	0.26	19.45	
8/22/2017 8/22/2017	11:30:39	0.08	4.54	3.20	0.70	19.40	
8/22/2017	11:38:59	0.08	4.44	2.04	0.30	19.15	
8/22/2017	11:30:59	0.08	4.03	2.34	0.39	19.10	
8/22/2017	11:40:59	0.08	4 44	3.03	0.20	19.48	
8/22/2017	11:41:59	0.08	2.88	3.42	0.34	19.38	
8/22/2017	11:43:00	0.08	3.26	3.51	0.36	19.33	
8/22/2017	11:44:00	0.08	4.51	3.26	0.50	19.31	
8/22/2017	11:44:59	0.08	3.87	3.02	0.91	19.22	
8/22/2017	11:46:00	0.08	5.09	3.12	0.87	19.22	
8/22/2017	11:46:59	0.08	3.44	2.86	0.68	19.07	
8/22/2017	11:47:59	0.08	6.68	2.89	0.45	18.83	
8/22/2017	11:48:59	0.08	4.36	3.01	0.44	18.66	
8/22/2017	11:50:00	0.08	4.93	3.49	0.77	18.86	
8/22/2017	11:50:59	0.08	3.80	3.09	0.52	18.69	
8/22/2017	11:51:59	0.08	2.74	3.03	0.30	18.83	
8/22/2017	11:52:59	0.08	2.25	3.21	0.16	18.88	
8/22/2017	11:53:59	0.08	3.79	3.02	0.74	18.90	
8/22/2017	11:55:00	0.08	4.19	2.58	1.45	19.15	
8/22/2017	11:55:59	0.09	5.94	3.70	0.57	19.93	
8/22/2017	11:56:59	0.08	4.13	3.23	-0.58	21.73	
8/22/2017	11:57:59	0.08	5.57	3.17	0.23	20.25	
8/22/2017 8/22/2017	11:56:59	0.08	3.29	2.90	0.37	19.72	
8/22/2017	12.00.59	0.08	3.04	3.15	0.52	19.32	
8/22/2017	12:00:59	0.08	3.25	3.15	0.74	19.30	
8/22/2017	12:02:59	0.08	4 52	3.12	0.02	19.04	
8/22/2017	12:03:59	0.08	2.37	3.03	0.10	19.07	
8/22/2017	12:04:59	0.08	4.38	2.87	0.50	18.95	
8/22/2017	12:05:59	0.08	4.80	2.50	3.09	18.91	
8/22/2017	12:06:59	0.08	5.43	2.11	1.89	18.81	
8/22/2017	12:08:00	0.08	5.19	2.41	1.46	19.05	
8/22/2017	12:09:00	0.08	6.05	2.93	0.52	19.32	
8/22/2017	12:09:59	0.08	5.23	2.57	0.95	19.46	
8/22/2017	12:11:00	0.08	4.68	2.80	0.08	19.27	
8/22/2017	12:11:59	0.08	2.10	2.94	0.17	18.90	
8/22/2017	12:12:59	0.08	4.84	3.40	1.04	18.90	
8/22/2017	12:13:59	0.08	4.98	2.65	1.27	18.81	
8/22/2017	12:14:59	0.08	5.35	2.56	0.39	19.25	
8/22/2017	12:16:00	0.08	5.68	3.04	0.48	19.14	
8/22/2017	12:17:00	0.08	3.51	2.87	1.16	19.01	
8/22/2017	12:17:59	0.08	3.45	2.51	2.23	18.91	
δ/22/2017 8/22/2017	12:18:59	0.08	5.00	2.58	0.99	19.07	
8/22/2017 8/22/2017	12:20:00	0.09	4.98	3.33	0.80	19.96	
0/22/2017 8/22/2017	12.21.00	0.09	4.38	2.30	0.91	20.33 10.78	
8/22/2017	12.22:00	0.09	5.10 2.17	2.00 2.20	0.95	19.70	
8/22/2017	12.23.00	0.09	2.14	2.30	1.40	19.01	
8/22/2017	12:24:59	0.09	4 40	2.50	0.57	19.20	
8/22/2017	12:25:59	0.09	4 17	2.00	0.53	19.21	
-,, -01,		0.00	-r. i /	2.00	0.00		

Client: Project #:	BHP Bil 111148	liton 838	Site: Source:	Black Hawk Central Waukesha L-	Gas Treating Facility 7044 GSI ESM	County: Date:	DeWitt County 8/22/2017
	Gas	02	VOC	СО	NOx	Moisture	
Calibration Drif	t Check						
Cultoration Din	Time	12:39					
	Span	19.96					
	Drift limit	< 3.0%					
Zero							
	Initial	0.03					
	Final	0.04					
	Average (C _o)	0.035					
Cer	rtified Value	0					
	% Drift	0.0%					
	% Sys. Bias	0.0%					
Upscale (Cma)	-						
1	Upscale Gas:	Mid					
	Initial	12.23					
	Final	12.05					
1	Average (C _m)	12.14					
Cer	rtified Value	11.9					
	% Drift	-0.1%					
	% Sys. Bias	0.9%					
Run Data Calcu	lations						
Number of Sam	ple Points:	60	60	60	60	60	
Average Concen	tration (C):	0.09	4.27	1.99	2.72	18.86	
Drift Corrected A	verage (C _{gae})	0.05					
Maximum Cor	centration:	0.09					
Minumum Cor	centration:	0.08					
Williumum Col	icentiation.	0.00					

		02	VOC	СО	NOx	Moisture	
DATE	TIME	% (wet)	ppmvd	ppmvd	ppmvd	%	
8/22/2017	12:39:00	0.09	4.11	1.73	7.75	17.15	
8/22/2017	12:40:00	0.09	4.55	1.59	1.47	17.86	
8/22/2017	12:40:59	0.09	1.20	1.55	2.85	18.31	
8/22/2017	12:41:59	0.09	3.58	1.87	1.93	18.51	
8/22/2017	12:42:59	0.09	4.75	1.94	3.05	18.43	
8/22/2017	12:43:59	0.09	3.43	2.10	0.64	18.27	
8/22/2017	12:44:59	0.09	6.74	1.91	1.48	18.33	
8/22/2017	12:46:00	0.09	3.62	2.24	1.28	18.74	
8/22/2017	12:47:00	0.09	5.52	2.19	1.77	19.16	
8/22/2017	12:47:59	0.09	4.08	1.65	4.18	19.00	
8/22/2017	12:48:59	0.09	3.50	1.18	13.00	19.21	
8/22/2017	12:49:59	0.09	3.64	1.62	2.71	19.29	
8/22/2017	12:50:59	0.09	4.77	1.24	14.94	19.27	
8/22/2017	12:51:59	0.09	4.58	0.75	16.37	19.21	
8/22/2017	12:53:00	0.09	6.63	1.28	5.43	19.14	
8/22/2017	12:54:00	0.09	4.16	1.78	1.01	18.90	
8/22/2017	12:55:00	0.09	3.19	2.06	1.09	18.90	
8/22/2017	12:55:59	0.09	2.19	1.90	1.54	18.88	
8/22/2017	12:57:00	0.09	5.49	2.16	0.46	19.02	
8/22/2017	12:58:00	0.09	4.05	2.25	0.78	19.28	
8/22/2017	12:58:59	0.09	6.19	3.37	0.67	20.10	
8/22/2017	12:59:59	0.09	3.73	2.59	0.84	19.95	
8/22/2017	13:00:59	0.09	5.92	2.44	1.76	19.52	
8/22/2017	13:01:59	0.09	3.67	2.21	1.66	19.05	
8/22/2017	13:02:59	0.08	5.26	2.26	0.56	18.66	
8/22/2017	13:04:00	0.09	5.62	1.99	1.78	18.83	
8/22/2017	13:05:00	0.09	2.10	1.98	1.84	18.76	
8/22/2017	13:06:00	0.09	4.39	1.98	1.77	18.88	
8/22/2017	13:07:00	0.09	6.24	1.71	5.25	19.06	
8/22/2017	13:07:59	0.09	3.50	1.41	4.35	18.75	
8/22/2017	13:09:00	0.09	3.65	1.64	2.63	18.68	
8/22/2017	13:10:00	0.09	4.78	1.95	1.47	18.87	
8/22/2017	13:10:59	0.09	4.48	2.08	1.57	18.86	
8/22/2017	13:11:59	0.09	6.31	1.88	4.50	18.85	
8/22/2017	13:13:00	0.09	4.86	1.58	4.58	19.13	
8/22/2017	13:14:00	0.09	2.90	2.02	0.89	18.99	
8/22/2017	13:15:00	0.09	4.07	2.07	0.98	18.78	
8/22/2017	13:16:00	0.09	4.32	2.22	1.18	18.82	
8/22/2017	13:16:59	0.08	3.35	2.47	-0.05	18.80	
8/22/2017	13:17:59	0.08	5.44	2.53	0.57	18.79	
8/22/2017	13:19:00	0.08	5.02	2.60	0.73	18.88	
8/22/2017	13:19:59	0.09	3.62	3.12	0.70	18.94	
8/22/2017	13:21:00	0.08	0.15	2.28	0.75	18.69	
8/22/2017	13:22:00	0.08	1.82	2.09	0.00	19.36	
0/22/2017 8/22/2017	13:23:00	0.09	3.00	2.13	0.00	19.00	
0/22/2017 8/22/2017	13:24:00	0.09	2.05	2.10	0.46	18.87	
8/22/2017 8/22/2017	13:23:00	0.09	2.00	2.37	0.40	10.34	
8/22/2017	13.20.00	0.08	5.75	2.49	1.07	10.09	
8/22/2017	13.27:00	0.09	2.00	2.55	1.37	18.70	
8/22/2017	13.20.00	0.09	5.70	1.75	2.02	18.20	
8/22/2017	13.29.00	0.09	2 70	2.02	0.70	10.02	
8/22/2017	13.30.00	0.03	J Ω1	2.02	1 00	18.87	
8/22/2017	13.31.00	0.09	5 76	1 06	2 00	18.76	
8/22/2017	13.32.00	0.03	3 08	2 07	1 52	18.93	
8/22/2017	13.34.00	0.00	4 55	1 90	1 47	18.65	
8/22/2017	13.35.00	0.03	3.34	1.50	2 07	18.84	
8/22/2017	13.36.00	0.03	4 26	1.55	2.37	18.83	
8/22/2017	13.37.00	0.09	4.04	1.53	1.37	18.86	
8/22/2017	13:38:00	0.09	4 25	1.87	13.61	18.84	
0/22/2017	10.00.00	0.00	1.20	1.07	10.01	10.01	

BHP Billiton NOx Stratification Test Results Black Hawk Central Gas Treating Facility Waukesha L-7044 GSI ESM

	Point 1		Point 2			Point 3		
		Conc.	Conc.				Conc.	
	Time	(ppmv)	Time	(ppmv)		Time	(ppmv)	
	10:13:59	16.24	10:33:59	1.30	Г	10:53:59	0.99	
	10:14:59	25.29	10:34:59	1.11	Г	10:54:59	1.29	
	10:15:59	28.07	10:35:59	1.15	Г	10:55:59	0.82	
	10:16:59	1.22	10:36:59	1.06	Γ	10:56:59	0.64	
	10:17:59	1.13	10:37:59	1.11	Г	10:57:59	1.05	
	10:18:59	1.78	10:38:59	0.94	Г	10:58:59	1.02	
	10:19:59	1.61	10:39:59	0.99		10:59:59	0.44	
	10:20:59	1.99	10:40:59	1.07		11:00:59	0.64	
	10:21:59	2.09	10:41:59	0.91		11:01:59	0.60	
	10:22:59	2.10	10:42:59	0.80		11:02:59	0.53	
	10:23:59	2.20	10:43:59	1.11		11:03:59	0.89	
	10:24:59	2.14	10:44:59	0.66		11:04:59	1.20	
	10:25:59	2.11	10:45:59	0.91		11:05:59	0.39	
	10:26:59	1.48	10:46:59	1.26		11:06:59	0.59	
	10:27:59	1.35	10:47:59	1.17		11:07:59	0.89	
	10:28:59	1.70	10:48:59	1.21		11:08:59	0.92	
	10:29:59	1.36	10:49:59	1.13		11:09:59	0.68	
	10:30:59	1.65	10:50:59	0.80		11:10:59	0.80	
	10:31:59	0.86	10:51:59	1.16		11:11:59	0.62	
	10:32:59	1.10	10:52:59	1.00		11:12:59	0.89	
Point average (ppmv)		4.9		1.0	~		0.8	
Difference from mean (%)		-117.87%		53.39%			64.48%	
Overall average		2.236456						

Overall average

Client: BHP Billiton Site: ack Hawk Central Gas Treating Facility Project #: 11114838 Source: Waukesha L-7044 GSI ESM County: DeWitt County Operator: Michael Tahirak

Date: 8/22/2017 Run #: 1 Method: 2

EQUIPMENT IDS A	ND INFO		TEMPERATURE / PRESSURE					STACK	DATA	
			Те	emperature _{STD} :	68	(ºF)		Shape: C	ircle	
Barometer Con. #:	BE04921		Temp	erature _{AMBIENT} :	86	(°F)		Area:	1.07	(ft ²)
T-couple			Press	sure _{BAROMETRIC} :	30	(in. Hg.)		Diameter:	14.00	(in.)
Pitot Con. #:	ET1									
Pitot ID. #			F	Pressure _{STATIC} :	-0.58	(in. H20.)				
C _P	0.84			RUN VALUES				TEST INFOR	RMATIO	N
Manometer:	ET-1	Bws:	0.18	(fraction)	N ₂ :	89.92	(%)	Number of Ports:	2	
Meter Box:		CO ₂ :	10.00	(%)	Md:	29.60	lb/lb-mole	Points / Port	8	
		O ₂ :	0.08	(%)	Ms:	27.51	lb/lb-mole	Reads / Point	1	

Run 1 Pre	
Vs - ft/sec.	119.66
Qa - ACFM	7675.2
Qs - WSCFM	2813.1
Qs - DSCFM	2306.7

Time	Title
8:45	Run 1 Pre

Traverse	Distance	Τs			Null
Pt. No.	(inches)	(°F)	ΔP	SQRT(∆P)	Angle
1	0.45	984	1.60	1.26	
2	1.47	985	1.60	1.26	
3	2.72	985	1.60	1.26	
4	4.52	985	1.50	1.22	
5	9.48	986	1.60	1.26	
6	11.28	986	1.60	1.26	
7	12.53	985	1.50	1.22	
8	13.55	983	1.50	1.22	
1	0.45	984	1.70	1.30	
2	1.47	986	1.70	1.30	
3	2.72	986	1.70	1.30	
4	4.52	986	1.60	1.26	
5	9.48	985	1.60	1.26	
6	11.28	985	1.60	1.26	
7	12.53	983	1.50	1.22	
8	13.55	983	1.50	1.22	

985

1.59

1.26

#DIV/0!

Average

Client: Site: ck Haw Project #:	BHP Billiton Source: Waukesha L-7044 GS k Central Gas Treating Facility County: DeWitt County 11114838 Operator: Michael Tahirak	SI ESM Date: 8/22/2017 Run #: 2 Method: 2
EQUIPMENT IDS AND INF	D TEMPERATURE / PRESSURE	STACK DATA
	Temperature _{STD} : 68 (°F)	Shape: Circle
Barometer Con. #: BE0492	1 Temperature _{AMBIENT} : 91 (°F)	Area: 1.07 (ft ²)
T-couple 0.00	Pressure _{BAROMETRIC} : 30 (in. Hg.)	Diameter: 14.00 (in.)
Pitot Con. #: ET1		
Pitot ID. # 0.0	Pressure _{static} : -0.58 (in. H20.)	
Съ 0.84	RUN VALUES	TEST INFORMATION

89.92

29.60

27.51

(%)

lb/lb-mole

lb/lb-mole

 N_2 :

Md:

Ms:

Number of Ports:

Points / Port

Reads / Point

2

8

1

Run 1 Post Run 2 Pre		Run 1 Average Flo	ow.	
Vs - ft/sec.	119.85	Vs - ft/sec.	119.75	
Qa - ACFM	7687.1	Qa - ACFM	7681.18	
Qs - WSCFM	2819.6	Qs - WSCFM	2816.33	
Qs - DSCFM	2312.1	Qs - DSCFM	2309.39	

(fraction)

(%)

(%)

Time	Title
11:15	Run 1 Post Run 2 Pre

Bws:

CO₂:

O₂:

Manometer:

Meter Box:

ET-1

0.0

0.18

10.00

0.08

1.26

#DIV/0!

Traverse	Distance	Ts			Null
Pt. No.	(inches)	(°F)	ΔP	SQRT(∆P)	Angle
1	0.45	980	1.50	1.22	
2	1.47	983	1.50	1.22	
3	2.72	985	1.60	1.26	
4	4.52	985	1.50	1.22	
5	9.48	986	1.60	1.26	
6	11.28	985	1.70	1.30	
7	12.53	984	1.60	1.26	
8	13.55	984	1.50	1.22	
1	0.45	984	1.60	1.26	
2	1.47	985	1.70	1.30	
3	2.72	986	1.70	1.30	
4	4.52	985	1.70	1.30	
5	9.48	985	1.60	1.26	
6	11.28	984	1.60	1.26	
7	12.53	983	1.60	1.26	
8	13.55	983	1.50	1.22	
1					

984

1.59

Average

VELOCITY AND VOLUMETRIC FLOW DETERMINATION SPREADSHEET

Client:	BHP Billiton	Source	: Waukesha L-7044 GSI ESN	Date:	8/22/2017		
Site: ack Hawk	Central Gas Treating Facility (County	: DeWitt County	Run #:	3		
Project #:	11114838 Op	erator	: Michael Tahirak	Method:	2		
EQUIPMENT IDS AND INFO	TEMPERATURE / PR	TEMPERATURE / PRESSURE			STACK DATA		
	Temperature _{std}	68	(°F)	Shape: Ci	rcle		
Barometer Con. #: BE04921	Temperature _{AMBIENT}	93	(°F)	Area:	1.07 (ft ²)		
T counte 0.00	Brocouro	20	(in Ha)	Diamotory	1100 (im)		

T-couple	0.00		Pres	sure _{BAROMETRIC} :	30 ((in. Hg.)		Diameter:	14.00 (in.)
Pitot Con. #:	ET1								
Pitot ID. #	0.00			Pressure _{static} :	-0.58 ((in. H20.)			
C _P	0.84			RUN VALUES				TEST INFO	RMATION
Manometer:	ET-1	Bws:	0.18	(fraction)	N ₂ :	89.92	(%)	Number of Ports:	2
Meter Box:	0.00	CO ₂ :	10.00	(%)	Md:	29.60	lb/lb-mole	Points / Port	8
		O ₂ :	0.08	(%)	Ms:	27.51	lb/lb-mole	Reads / Point	1

Run 2 Post Run 3 Pre		Run 2 Average Flow	
Vs - ft/sec. 1	19.91	Vs - ft/sec. 119.88	
Qa - ACFM 7	691.1	Qa - ACFM 7689.12	
Qs - WSCFM 2	817.4	Qs - WSCFM 2818.49	
Qs - DSCFM 2	310.3	Qs - DSCFM 2311.16	

Time	Title
11:27	Run 2 Post Run 3 Pre

Traverse	Distance	Τs			Null
Pt. No.	(inches)	(°F)	ΔP	SQRT(AP)	Angle
1	0.45	984	1.50	1.22	
2	1.47	985	1.60	1.26	
3	2.72	987	1.60	1.26	
4	4.52	987	1.60	1.26	
5	9.48	987	1.60	1.26	
6	11.28	986	1.50	1.22	
7	12.53	986	1.50	1.22	
8	13.55	985	1.40	1.18	
				•	
1	0.45	985	1.70	1.30	
2	1.47	985	1.70	1.30	
3	2.72	986	1.70	1.30	
4	4.52	987	1.70	1.30	
5	9.48	987	1.70	1.30	
6	11.28	987	1.60	1.26	
7	12.53	987	1.60	1.26	
8	13.55	986	1.50	1.22	

Average	986	1.59	1.26	#DIV/0!

Client: Site: ck Hawk C Project #:	BHP Billiton entral Gas Treating Facility 11114838	Source: Waukesha County: DeWitt Cou Operator: Michael Tal	L-7044 GSI ESM Date: nty Run #: nirak Method:	8/22/2017 Post Run 3 2
EQUIPMENT IDS AND INFO	TEMPERATURE	/ PRESSURE	STACK	DATA
	Temperature	e _{stD} : 68 (⁰F)	Shape: (Circle
Barometer Con. #: BE04921	Temperature	BIENT: 93 (°F)	Area:	1.07 (ft ²)
T-couple 0 Bitot Con. #: ET1	Pressure _{BARAME}	TRIC: 30 (in. Hg.)	Diameter:	14.00 (in.)

Pitot Con. #:	ET1								
Pitot ID. #	0		I	Pressure _{static} :					
C _P	0.84			RUN VALUES	6			TEST INFOR	MATION
Manometer:	ET-1	Bws:	0.19	(fraction)	N ₂ :	89.92	(%)	Number of Ports:	2
Meter Box:	0	CO ₂ :	10.00	(%)	Md:	29.60	lb/lb-mole	Points / Port	8
		O ₂ :	0.08	(%)	Ms:	27.40	lb/lb-mole	Reads / Point	1

Run 3 Post		Run 3 Average Flow	N	
Vs - ft/sec.	120.91	Vs - ft/sec.	120.41	
Qa - ACFM	7755.1	Qa - ACFM	7723.10	
Qs - WSCFM	2840.0	Qs - WSCFM	2828.68	
Qs - DSCFM	2300.4	Qs - DSCFM	2305.32	

Time	Title
13:42	Run 3 Post

Traverse	Distance	Τs			Null
Pt. No.	(inches)	(°F)	ΔP	SQRT(∆P)	Angle
1	0.45	985	1.60	1.26	
2	1.47	986	1.60	1.26	
3	2.72	986	1.60	1.26	
4	4.52	986	1.60	1.26	
5	9.48	987	1.60	1.26	
6	11.28	987	1.60	1.26	
7	12.53	987	1.60	1.26	
8	13.55	987	1.50	1.22	
1	0.45	986	1.70	1.30	
2	1.47	987	1.70	1.30	
3	2.72	988	1.70	1.30	
4	4.52	988	1.70	1.30	
5	9.48	987	1.70	1.30	
6	11.28	987	1.60	1.26	
7	12.53	985	1.50	1.22	
8	13.55	985	1.50	1.22	

Average 987 1.61

1.27

#DIV/0!

Stack Flow Example Calculations

Run 1

Gas Velocity	119.66	Average stack temperature, °R	1446
Barometric pressure	30.05	Absolute stack pressure, in. Hg	30.02
Static pressure (in. H ₂ O)	-0.58	Stack gas molecular weight, wet	27.51
Stack moisture, B _{ws} , %	18.00%		
Stack flow, Q, dscfm	2312		
Pitot tube correction factor	0.84		

4

1. Absolute stack pressure, in. Hg

Applicable? Yes

$$P_s = P_{\text{bar}} + (Pg * \frac{1}{13.6}) = 30.01 \text{ (in. Hg)}$$

Where:

Pbar = barometric pressure, inches Hg Pg = gas static pressure, inches H₂O $\frac{1}{13.6}$ = conversion, inches H₂O to inches H_§

2. Square root of DP_{avg}

Applicable? Yes

$$\sqrt{\Delta P}_{\text{avg}} = \frac{\sum_{i=1}^{n} \Delta p_{i}}{n} = 1.26 \text{ (in. H2O)}$$

Where:

 ΔP = individual velocity pressure reading, inches H₂O n = number of individual traverse points

3. Average stack temperature, °R

Applicable? Yes

$$= t_{\rm s} + 460$$
 = 1444.8125 (deg. R)

Where:

t_s = Average stack temperature, °F 460 = Conversion, °F to °R 4. Stack gas velocity, ft/sec

Applicable? Yes

$$= 85.49 * C_{p} * \sqrt{\Delta P}_{avg} * \sqrt{\frac{T_{s}}{P_{s} * M_{s}}} = 119.69 \text{ ft/sec}$$

Where:

85.49 = Pitot tube constant, $\frac{\text{ft}}{\text{sec}} \sqrt{\frac{(\text{lb} / \text{lb} - \text{mole})(\text{inches Hg})}{(^{\circ} R)(\text{inches H}_2 O)}}$

Cp = Pitot tube correction factor, dimensionless

 $\sqrt{\Delta P_{avg}}\,$ = average square root of velocity pressure, inches H2O

Ts = stack temperature, degrees R

Ps = stack pressure, inches Hg

Ms = stack gas molecular weight, wet, pounds per pound-mole

5. Stack gas volumetric flow rate, dscfh

Applicable? Yes

$$= 3600^{*}(1 - B_{ws})^{*}V_{s}^{*}A_{s}^{*}\frac{T_{std}}{T_{s}}^{*}\frac{P_{s}}{P_{std}} = 138486.0 \text{ dscf/hr}$$

Where:

3600 = seconds per minute

1-B_{ws =} Dry fraction of stack gas

Vs = stack gas velocity, ft/sec

As = stack area, ft2

_{Tstd} = standard temperature, 528 °R

T_s = average stack temperature, °R

 P_s = Absolute stack pressure, inches Hg

 P_{std} = standard pressure, 29.92 inches Hg

GHD Reciprocating Engine Data Collection Sheet

Client: BHP Billiton	Test Reg/Permit:
Site: Black Hawk Central Gas Treating Facility	Unit Make: Waukesha
County, State: DeWitt County,TX	Unit Model: L-7044 GSI ESM
Job Number: 11114838	Unit Number:K-201
GPS LAT: 29.118692	Unit S/N: 5283700882
GPS LONG: -97.401375	Rated hp: 1680
	Rated Speed:

Test Run Number	1	2	3
Date	8/22/2017	8/22/2017	8/22/2017
Start Time	10:13	11:26	12:39
Stop Time	11:12	12:25	13:38
Engine Data			
Fuel Pressure (psia)			
Fuel Temp. (°F)			
Fuel Flow (scf/hr)			
Load % ((current HP / rated HP) x 100)	92%	93%	92%
Engine Speed (rpm)	1160	1168	1163
Ignition Timing (°BTDC)	12	12	12
Intake Manifold Press. (psi)	38	38	38
Intake Manifold Temp (°F)	123	124	129
Air to Fuel Ratio			
Engine Oil Pressure (psi)	59	59	58
Engine Oil Temp. (°F)	186	185	188
Exhaust Temp. (°F)			
Test Run Time (hrs)	1	1	1
Engine Run Time (hrs)	46742	46743	46744
Engine Controls	AFRC and Catalyst	AFRC and Catalyst	AFRC and Catalyst
Compressor Data			
Gas Production (MMscfd)			
Suction Pressure (psig)	576	580	581
1 st Stage Discharge Pressure (psig)	1050	1050	1050
2 nd Stage Discharge Pressure (psig)	1050	1050	1050
3 rd Stage Discharge Pressure (psig)	1075	1075	1070
Compressor Oil Pressure (psi)	60	60	58
Compressor Oil Temp. (°F)			
Ambient Conditions			
Altitude (ft)			
Temperature (°F)	85	91	93
Barometric Pressure (inches)	30.05	30.06	30.06

NO_x Emissions Example Calculations

Run 1

Run average NOx concentration, ppmv	2.24
Run average O2 concentration, %	0.04%
Horsepower, hp	1545
NO _x Molecular weight, lb/lb-mole	46.01
Stack flow, Q, dscfm	2309

1. Concentration corrected to 15% Oxygen, dry basis Yes

Applicable?

$$C_c = C_d * \frac{20.9\% - 15\%}{20.9\% - \%O_2} = 0.63 \text{ (ppmv)}$$

Where:

 $C_c = Oxygen$ corrected run average pollutant concentration, ppmv, dry basis

 C_d = Run average pollutant concentration, ppmv, dry basis

20.9 = Theoretical ambient oxygen concentration, percent

15 = Oxygen correction, percent

 $%O_2 = Run$ average oxygen concentration, dry basis, percent

2. NOx Emission rate (g/hp-hr)

Applicable? Yes

$$E = \frac{C_c * 1.194 * 10^{-7} * Q * 60 * 453592}{hp} = 0.01 \text{ g/hp-hr}$$

Where:

E = pollutant emission rate, g/ hp-hr

Cc = Oxygen corrected run average pollutant concentration, ppmv, dry basis

 $1.194 \text{ X } 10^{-7} = \text{conversion, ppm NO}_{x}$ to lb/scf

Q = Stack flowrate, dscfm

453.592 =conversion, g to lb

hp = Horsepower

CO Emissions Example Calculations

Run 1

Run average CO concentration, ppmv	17.15
Run average O2 concentration, %	0.04%
Horsepower, hp	1545
CO Molecular weight, lb/lb-mole	28
Stack flow, Q, dscfm	2309

1. Concentration corrected to 15% Oxygen, dry basis

Applicable? Yes

$$C_c = C_d * \frac{20.9\% - 15\%}{20.9\% - \%O_2} = 4.85 \text{ (ppmv)}$$

Where:

 C_c = Oxygen corrected run average pollutant concentration, ppmv, dry basis

 C_d = Run average pollutant concentration, ppmv, dry basis

20.9 % = Theoretical ambient oxygen concentration, percent

15% = Oxygen correction, percent

 $%O_2 = Run$ average oxygen concentration, dry basis, percent

2. CO Emission rate (g/hp-hr)

Applicable? Yes

$$E = \frac{C_c * 0.726 * 10^{-7} * Q * 60 * 453592}{hp} = 0.05 \text{ g/hp-hz}$$

Where:

$$\begin{split} E &= \text{ pollutant emission rate, } g/\text{ hp-hr}\\ Cc &= Oxygen corrected run average pollutant concentration, ppmv, dry basis\\ 0.726 X 10^{-7} &= \text{conversion, ppm CO to lb/scf}\\ Q &= \text{Stack flowrate, dscfm}\\ 453.592 &= \text{conversion, g to lb}\\ \text{hp} &= \text{Horsepower} \end{split}$$

VOC Emissions Example Calculations

Run 1

Run average VOC concentration, ppmv	5.17
Run average O2 concentration, %	0.04%
Horsepower, hp	1545
Propane Molecular weight, lb/lb-mole	44.1
Stack flow, Q, dscfm	2309

Note: VOCs quantified and expressed as C₃H₈

1. Concentration corrected to 15% Oxygen, dry basis Applicable? Yes

$$C_c = C_d * \frac{20.9\% - 15\%}{20.9\% - \% O_2} = 1.46 \text{ (ppmv)}$$

Where:

C_c = Oxygen corrected run average pollutant concentration, ppmv, dry basis

 C_d = Run average pollutant concentration, ppmv, dry basis

20.9 % = Theoretical ambient oxygen concentration, percent

15% = Oxygen correction, percent

 $%O_2 = Run$ average oxygen concentration, dry basis, percent

2. VOC Emission rate (g/hp-hr)

Applicable? Yes

$$E = \frac{C_c * 1.142 * 10^{-7} * Q * 60 * 453592}{hp} = 0.02 \text{ g/hp-hr}$$

Where:

$$\begin{split} E &= \text{ pollutant emission rate, g/ hp-hr} \\ Cc &= \text{ Oxygen corrected run average pollutant concentration, ppmv, dry basis} \\ 1.142 \text{ X } 10^{-7} &= \text{ conversion, ppm VOC to lb/scf} \\ Q &= \text{ Stack flowrate, dscfm} \\ 453.592 &= \text{ conversion, g to lb} \\ hp &= \text{ Horsepower} \end{split}$$

Appendix B

Calibration Gas Certification Sheets

EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS

Cylinder Number: Product ID Number: Cylinder Pressure: COA # Customer PO. NO.: Customer:

EB0078973 122020 1900 PSIG EB0078973.20160314-0

Certification Date: Expiration Date: MFG Facility: Lot Number: Tracking Number: Previous Certification Dates:

03/24/2016	
03/22/2024	
RBTGS-Shreveport-LA	
EB0078973.20160314	
084269959	

This calibration standard has been certified per the May 2012 EPA Traceability Protocol, Document EPA-600/R-12/531, using procedure G1.

Do Not Use This Cylinder Below 100 psig (0.7 Megapascal).

Certified Concentration(s)										
Component Concentration Uncertainty Analytical Principle Assayed On										
Oxygen	19.96 %	±0.08 %	MPA	03/24/2016						
Nitrogen Balance Analytical Measurement Data Available Online.										

 Reference Standard(s)								
Serial Number	Lot	Expiration	Туре	Balance	Component	Concentration	Uncertainty(%)	NIST Reference
EB0055387	EB0055387.20140228G	10/07/2022	GMIS	N2	O2	23.79 %	0.505	071001
EB0055407	EB0055407.20140228Ga	10/07/2022	GMIS	N2	O2	19.92 %	0.508	071001

Analytical Instrumentation									
Component	Analytical Principle	Make	Model	Serial	MPC Date				
02	MPA	Horiba	VA-3013	H0000P11	03/01/2016				

Jul Holt

Fred Holt Analyst

EPA PROTOCOL GAS CERTIFICATE OF ANALYSIS EB0041551 10/20/2016 Cylinder Number: Certification Date: Product ID Number: 125338 Expiration Date: 10/18/2024 Cylinder Pressure: 1900 PSIG MFG Facility: RBTGS-Shreveport-LA EB0041551.20161012-0 Lot Number: EB0041551.20161012 COA # Customer PO. NO .: Tracking Number: 065124248 Previous Certification Dates: Customer: This calibration standard has been certified per the May 2012 EPA Traceability Protocol, Document EPA-600/R-12/531, using procedure G1 Do Not Use This Cylinder Below 100 psig (0.7 Megapascal). Certified Concentration(s) Concentration Component Analytical Principle Assayed On Uncertainty Oxygen 11.90 % ±0.09 % MPA 10/20/2016 Nitrogen Balance Analytical Measurement Data Available Online.

Reference Standard(s)								
Serial Number	Lot	Expiration	Туре	Balance	Component	Concentration	Uncertainty(%)	NIST Reference
EB0055387	EB0055387.20140228G	10/07/2022	GMIS	N2	O2	23.79 %	0.505	071001
EB0032246	LD131022.115903.1G	10/07/2022	GMIS	N2	O2	11.97 %	0.527	071001
Analytical Instrumentation								

Analytical modulientation									
Component	Analytical Principle	Make	Model	Serial	MPC Date				
O2	MPA	Horiba	VA-3013	H0000P11	09/26/2016				
		ant Company		- Fe	2				

Red Ball Technical Gas Service PGVP Vendor ID # G12016 Information and Ordering 800-551-8150 Fax (318-425-6309)

She

Brandon Theus Analytical Chemist

This is to certify the gases referenced have been calibrated/tested, and verified to meet the defined specifications. This calibration/test was performed using Gases or Scales that are traceable through National Institute of Standards and Technology (NIST) to the International System of Units (SI). The basis of compliance stated is a comparison of the measurement parameters to the specified or required calibration/testing process. The expanded uncertainties use a coverage factor of k=2 to approximate the 95% confidence level of the measurement, unless otherwise noted. This calibration certificate applies only to the item described and shall not be reproduced other than in full, without written approval from Red Ball Technical Gas Services. If not included, the uncertainty of calibrations are available upon request and were taken into account when determining pass or fail.

Assay Laboratory: Red Ball TGS 555 Craig Kennedy Way Shreveport, LA 71107 800-551-8150

CERTIFICATE OF ANALYSIS (Zero Ambient Nitrogen)

Cylinder Number: Product ID Number: Cylinder Pressure: COA # Customer PO. NO.: Customer: EB0081125 121026 1900 PSIG EB0081125.20170818-0 Certification Date: Expiration Date: MFG Facility: Lot Number: Tracking Number: Previous Certification Dates: 08/18/2017 08/16/2025 RBTGS-Shreveport-LA EB0081125.20170818 083079775

This mixture is for laboratory use only, not for drug, household or other use.	
This mixture is certified in Mole $\%$ to be within $\pm 2\%$ of the actual number reported with a confidence of 95%.	
This mixture was manufactured by scale; weights traceable to N.I.S.T. Certificate #822/266926-02.	
Do Not Use This Cylinder Below 100 psig (0.7 Megapascal).	

	Composing	Material: Zero	Ambient Nitrogen	, Cert., Sz152
--	-----------	----------------	------------------	----------------

Component	Specification	Concentration
Nitrogen	Balance	Balance
Oxygen as Impurity	<1.0 PPM	<1.0 PPM
Carbon Dioxide as Impurity	<0.5 PPM	<0.5 PPM
Carbon Monoxide as Impurity	<0.5 PPM	<0.5 PPM
Total Oxides of Nitrogen as Impurity	<0.1 PPM	<0.1 PPM
Sulfur Dioxide as Impurity	<0.1 PPM	<0.1 PPM
Total Hydrocarbons as Impurity	<0.1 PPM	<0.1 PPM

Red Ball Technical Gas Service PGVP Vendor ID # G12017 Information and Ordering 800-551-8150 Fax (318-425-6309)

Thens

Brandon Theus Analytical Chemist

Version 02-B, Revised on 2015-05-27

Assay Laboratory: Red Ball TGS 555 Craig Kennedy Way Shreveport, LA 71107 800-551-8150

CERTIFIED GAS CERTIFICATE OF ANALYSIS

Cylinder Number: Product ID Number: Cylinder Pressure: COA # Customer PO. NO.: Customer: EB0073342 124838 1900 PSIG EB0073342.20160222-0 Certification Date: Expiration Date: MFG Facility: Lot Number: Tracking Number: Previous Certification Dates:

02/22/2016	
02/21/2018	
RBTGS-Shreveport-LA	
EB0073342.20160222	
084249308	

This mixture is for laboratory use only, not for drug, household or other use.
This mixture is certified in Mole % to be within ±2% of the actual number reported with a confidence of 95%.
This mixture was manufactured by scale; weights traceable to N.I.S.T. Certificate #822/266926-02.
Do Not Use This Cylinder Below 100 psig (0.7 Megapascal).

Certified Concentration(s)

Component	Concentration	Uncertainty	Analytical Principle	
Ethylene	99.0 PPM	± 2% NIST	FTIR	
Nitrogen	Balance			
Analytical Measurement Data Available Online.				

Reference Standard(s) Uncertainty(%) NIST Reference Balance Component Lot Expiration Туре Concentration EB0055702.BL1509079 09/14/2016 PS N2 C2H4 100.6 PPM 2 BL1509079

Analytical Instrumentation					
Component	Analytical Principle	Make	Model	Serial	
C2H4	FTIR	MKS	MKS 2031DJG2EKVS13T	017146467	

Jul Holt

Fred Holt Analyst

Version 02-B, Revised on 2015-05-27

Assay Laboratory: Red Ball TGS 555 Craig Kennedy Way Shreveport, LA 71107 800-551-8150

CERTIFIED GAS CERTIFICATE OF ANALYSIS

Cylinder Number: Product ID Number: Cylinder Pressure: COA # Customer PO. NO .: Customer:

EB0046571
125571
1900 PSIG
EB0046571.20170503-0

Certification Date: Expiration Date: MFG Facility: Lot Number: Tracking Number: Previous Certification Dates:

05/11/2017	_
05/11/2019	
RBTGS-Shreveport-LA	
EB0046571.20170503	
065272484	

This mixture is for laboratory use only, not for drug, household or other use. This mixture is certified in Mole % to be within ±2% of the actual number reported with a confidence of 95%. This mixture was manufactured by scale; weights traceable to N.I.S.T. Certificate #822/266926-02. Do Not Use This Cylinder Below 100 psig (0.7 Megapascal).

	Certified C	Concentration(s)	
Component	Concentration	Uncertainty	Analytical Principle
Propane	1000 PPM	± 2% NIST	FTIR
Carbon Monoxide	3000 PPM	± 2% NIST	GCF
Nitric Oxide	3000 PPM	± 2% NIST	Chemiluminescence
Sulfur Hexafluoride	10.2 PPM	± 2% NIST	FTIR

Total Oxides of Nitrogen Nitrogen

3020 PPM Balance

Analytical	Measurement	Data	Available	Online.

Reference Standard(s)							
Lot	Expiration	Туре	Balance	Component	Concentration	Uncertainty(%)	NIST Reference
47-G-29	02/20/2022	SRM	N2	NO	2989 PPM	0.217	2631a
EB0003465.20160718	03/21/2025	GMIS	N2	NO	2860 PPM	0.181	2631A
EB0013721	05/05/2025	GMIS	N2	CO	2333 PPM	0.347	2639a
EB0031829.20160114g	05/17/2024	GMIS	N2	C3H8	2461 PPM	0.57	2647a
EB0043392.20160721	07/21/2017	PS	N2	SF6	10.1 PPM	5	BL1108098
EB0063630.20161027	03/07/2024	GMIS	N2	CO	4930 PPM	0.388	2639A
GC1302210752	06/14/2021	GMIS	N2	C3H8	1003 PPM	0.549	2647a

Analytical Instrumentation					
Component	Analytical Principle	Make	Model	Serial	
NO	Chemiluminescence	Thermo	42i-HL	1162380008	
C3H8	FTIR	MKS	MKS 2031DJG2EKVS13T	017146467	
SF6	FTIR	MKS	MKS 2031DJG2EKVS13T	017146467	
CO	GCF	Thermo	T48C	0414606441	

Red Ball Technical Gas Service PGVP Vendor ID # G12017 Information and Ordering 800-551-8150 Fax (318-425-6309)

hat Eleder

Nate Fielder Anaylst

Version 02-B. Revised on 2015-05-27

Appendix C

Tester CV

Michael Tahirak Project Manager

Qualified (Education): Attended State University of New York at Buffalo, Physical Geography and Cartography.

Connected (professional affiliations):

QSTI (Qualified Source Testing Individual) I: Manual Gas Volume Measurements & Isokinetic PM Sampling Methods QSTI II: Hazardous Metals Measurement Sampling Methods

QSTI III: Manual Gaseous Pollutants Source Sampling Methods

QSTI IV: Gaseous Pollutants Instrumental Sampling Methods

Professional Summary: Michael has nearly 25 years of source testing experience at all levels of the work, from Field Technician to Project Manager on hundreds of source tests, including international testing.

Project Manager

Tynes Bay Municipal Waste Incinerator | Ministry of Works and Environment | Bermuda

Michael has managed this annual contract for regulatory compliance stack testing. It includes multiple parameters and air toxics along with the challenges of international travel and shipments of equipment and hazardous goods. An annual project performed for 16 years.

Project Manager Owens Corning | Owens Corning Environmental Management Office | Granville, Ohio

 Michael has managed many stack testing projects at multiple facilities for this major manufacturing firm. Programs have included regulatory compliance issues and in-house studies for research and development, and optimization cost-effectiveness studies. Testing performed at both fiberglass production and asphalt/roofing products facilities. Work has included facilities in New ark, Columbus, and Mt. Vernon, Ohio; Albany, NY; Atlanta, GA; Baltimore, MD; Kansas City, MO; and others.

Project Manager

Eastman Kodak Company | Rochester, New York

• Project Manager for this major firm on many high profile projects. The projects for this firm have been wide-ranging and performed at multiple

locations at three of their major facilities. Has been project manager of all HSE work performed by 4 former Kodak employees at the Kodak Park, Rochester location since it was outsourced 12 years ago. Works in close conjunction with Kodak HSE manager to ensure all required and requested projects are completed properly and within budget.

Project Manager Sabin Metals | Sabin Metal Corporation | Rochester, New York

 Managed multiple and repeat projects for this specialty metals client. Projects including compliance testing, pilot model testing, and optimization testing. Facilities include Scottsville, NY, a pilot kiln in Wisconsin, and Williston, ND. A repeat client for over 5 years.

Project Manager

Engine Testing | Various Clients | Throughout Texas

Manages and performs 40 CFR Part 60 Subpart JJJJ; 30 TAC 106.512; 40 CFR Part 63, Subpart ZZZZ and other engine testing, utilizing FTIR throughout Texas, including dozens of tests in the Permian and Eagle Ford Basins.

Work history

2002 – present	GHD (formerly Conestoga-Rovers & Associates), Niagara Falls, NY			
1992 - 2002	E3 Killam, Buffalo, NY			

www.ghd.com

