

Oil and Gas Emissions Spreadsheet with Impacts Analysis

Revised 12/08/2011

General Notes

*** Before beginning, make sure to enable macros, so that this spreadsheet will run properly. *** See the links below for more information on creating a trusted location and enabling macros for this spreadsheet.

Enable Macro Link

Trusted Location Link

See comments in individual cells and other written notes. Cells with red corners contain comments; place cursor anywhere in a cell which has a red corner, to view comment. These were added to guide you through using this spreadsheet and make it as easy as possible to use.

This spreadsheet should be used as follows: (1) Enter information into this Facility Information spreadsheet tab, (2) after running the macro (which is explained below), fill out the emission calculation tabs, (3) populate the Emissions Summary table (you press a button on the Emissions Summary tab and the macro will populate the table with the values from the emission calculation tabs), and (4) go through the impacts review tabs (if applicable). This basically means estimate what each of the individual source emissions are, then summarize them in a table, then evaluate the impact of the emissions (if impacts review is applicable).

If you want to use any of the impacts review tabs, you will need to have answered "Yes" to the initial question of "Are you using this to meet the new Barnett Shale area rule requirements?". You can press the "Reset" button at the bottom of this tab to have the question pop up again.

Yellow cells require information to be entered. Red cells contain calculated values.

Worst case emissions must be estimated on both an hourly and annual basis for air permitting purposes.

Hourly emissions must be based on worst case maximum parameters realistically expected to occur over the course of any one hour. As an example, where ambient temperature is used as a parameter to estimate <u>hourly</u> emissions, the maximum temperature from the hottest day of the year must be used.

<u>Annual</u> emissions can be based on average parameters. As an example, where ambient temperature is used as a parameter to estimate <u>annual</u> emissions, the average ambient temperature may be used.

This difference between hourly and annual emissions could potentially mean that separate calculations or program runs will have to be done to estimate hourly and annual emission rates.

<u>Planned Maintenance, Start-up, and Shutdown (MSS) versus Alternate Operating Scenarios</u>: Planned MSS emissions are not required to be registered for oil and gas sites until January 5, 2014. Before this date, it is voluntary to factor in planned MSS emissions. Alternate operating scenario emissions should be factored in now. Although historically alternate operating scenarios have sometimes been treated as planned MSS, it is actually different and should be addressed now to ensure that during these periods and continuously, the applicable emission limits are not exceeded. It is also encouraged that planned MSS emissions are addressed now because after the January 5, 2014 deadline, all emissions must continuously be shown not to exceed the applicable emission limits, even with planned MSS emissions factored in.

What is Different About Estimating Emissions for the Barnett Shale Area Rule Requirements?

There are level limits (or caps) for the different levels of authorization, which are: PBR Level 1, PBR Level 2, and Standard Permit. The level limits are emission limits of the following air pollutants: Total VOC, Total crude oil or condensate VOC, Total natural gas VOC, benzene, hydrogen sulfide (H_2S), sulfur dioxide (SO_2), nitrogen oxides (NOx), carbon monoxide (CO), and particulate matter (PM_{10} and $PM_{2.5}$). There are different level limits for hourly and annual emissions and within hourly emissions there are different level limits for steady state emissions versus periodic emissions.

There is an impacts review for both the Permit by Rule (PBR) and Standard Permit for the following air pollutants: benzene, H₂S, SO₂, and NOx.

VOC emissions need to be separated into (1) Crude Oil or Condensate VOC and (2) Natural Gas VOC.

Hourly and annual emissions need to be estimated. There are potentially three hourly emission types that need to be estimated (1) steady state hourly, (2) low pressure periodic, and (3) high pressure periodic. These are described in detail on the Emissions Summary tab.

Benzene emissions need to be speciated for all sources.

Oil and Gas Site General Information	
Administrative Inform	ation
Company Name	Chesapeake Operating, Inc.
Facility/Well Name	Mayfly B Pad
Field Name	
Nearest City/Town	Cleburne
API Number/SIC Code	614240, 614241, 614674, 730010
Latitude/Longitude	32.32245, -97.53974
County	Johnson
Are you using a Form PI-7, PI-7-CERT, APD-CERT, PI-7 and APD- CERT, or are you using ePermits?	ePermits
Customer Number, CNxxxxxxxx (if known)	CN600514004
Regulated Entity Number, RNxxxxxxxx (if known)	RN106524846
Technical Informati	<u>on</u>
Natural Gas Site Throughput (MMSCF/day):	
Oil/Condensate Site Throughput (bbl/day):	0
Produced Water Site Throughput (bbl/day):	400
Are there any sour gas streams at this site?	No
Is this site currently operational/producing?	No
What is the date of the site start of construction or the date that the project changes were implemented (whichever is applicable to this project, anticipated date if in the future)?	
Has this site been registered before?	Yes
Run Reset	

	quipment/Processes at Site	
***Before entering any numbers into the Equipment/Processes the table. These should make it clear what numbers need to be	section of the table below, please make sure t e entered and where they need to be entered.**	to review all of the comments in the cells of
Equipment/Process Types	How many for this project?	How many for this registration?
Fugitives	1	1
IC Engines	2	2
Turbines	0	0
Diesel Engines	0	0
Heaters-Boilers	0	0
Oil / Condensate Tanks	0	0
Produced Water Tanks	4	4
Miscellaneous Tanks	0	0
Loading Jobs	1	1
Glycol Units	0	0
Amine Units	0	0
Vapor Recovery Units	0	0
Flares-Vapor Combustors	0	0
Thermal Oxidizers	0	0
MSS	0	0
Other	1	1

When you are finished entering information on this tab, press the "Run" button below. When it is pressed, the spreadsheet tabs needed will be added and the "Emissions Summary" tab will also be added with the number of rows corresponding to the number of emission points in this registration.

Before pressing "Run", please make sure to review all of the comments in the cells of the table above. These should make it clear what numbers need to be entered and where they need to be entered.

The spreadsheet can be reset if needed by pressing the "Reset" button below. If the "Reset" button is pressed, everything will be cleared and you can start over (the added sheets will disappear along with any data entered into the sheets). When the "Reset" button is pressed and there is anything to clear, a question will pop up asking "Delete all macro created worksheets?". Then if you click "Yes", the question will pop back up asking "Are you using this to meet the new Barnett Shale area requirements?".

If the "Run" button is pressed a second time, everything will be cleared and you can start over (the added sheets will disappear along with any data entered into the sheets). When the "Run" button is pressed a second time, a question will pop up asking "Delete all macro created worksheets?". The question will <u>not</u> pop back up asking "Are you using this to meet the new Barnett Shale area requirements?".

Do not press "Run" again or "Reset", unless you intend to clear all of the added sheets (and any data entered into the sheets). This means that it is important to make sure the right numbers of each equipment/process type are entered. If it is possible that an extra piece of equipment could be included, include it because it is better to have too many entered than not enough.

Gas and Liquid Analyses

A) Enter information into the yellow boxes.

B) The purpose of this tab is to extract information from a lab analysis that will be used in emission calculations. Unlike the other other tabs which calculate emission from this tab gets pulled to the Emissions Summary table. The big pieces of information needed for emissions estimates are the VOC, benzene, and H₂S weight perce Sampling of gas and liquid streams from appropriate process sampling points is required in order to determine composition or other properties needed to estimate er such as heat content, specific gravity, and vapor pressure. It is essential that stream lab analyses/reports include a measurement of H₂S, individual HAPs, and at least hydrocarbons up to at least 10 carbon atoms per molecule (C10+).

C) There are two boxes on the left, for gas and liquid analyses, which take component weight percent inputs and there are two boxes on the right, for gas and liquid au which take component mole percent inputs. You can either fill out the weight percent box <u>OR</u> the mole percent box, depending on what informaton you have available

The boxes are set up in the following arrangement:

Gas Analysis Wt% Inputs	Gas Analysis Mol% Inputs
Liquid Analysis Wt% Inputs	Liquid Analysis Mol% Inputs

D) If weight percents are provided on the lab report, use the boxes on the left. If only mole percents are provided on the lab report, use the boxes on the right.

E) Make sure to select whether you are inputting weight percents or mole percents from the pull down menus below.

F) If you are using the weight percent boxes (left two), in addition to the component weight percents, you need to enter the gas molecular weight (molecular weight of sample) and the gas and liquid H₂S content in parts per million by volume (H₂S ppmv). This will allow for the calcultion of the gas specific gravity and the long tons of day in the gas, and the determination of sweet versus sour gas.

G) If you are using the mole percent boxes (right two), in addition to the component mole percents, you need to enter a real value, specific to this sample, for the mole of the deacnes plus (C10+) fraction. You may use the default values listed below for the moleclar weights of the other hexanes (C6), other heptanes (C7), other ocatne nonanes (C9) fractions, unless you have a more accurate number. If you enter number other than the default, you need to explain where the number came from and wl appropriate to use.

H) What is expected to be inlcuded on these tables is the the inlet gas and liquid streams (the liquid would most likely be sampled from a separator if there is separatisite). These tables can also be used for any sampled gas and liquid streams as needed. If needed, make a copy of this tab.

I) Use the box provided below for entering any notes necessary.

For the gas sample, I am inputting (pick weig

weight percents

elect whether weight percents or mole percents are being entered for this gas sample.

Then fill out this table OR fill out this table.

		I nen fill out this table
Gas Analysi	<u>s</u> - Use if th	e Inputs are <u>Weight</u> Percents
Analysis Identifier/Name	Mayfly B Pa	t
What site is the sample from?	Mayfly B Pa	ł
If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).		
Where in the process was the sample taken?	Sales Gas	
What is the temperature and pressure of the sample (include units)?	108.4 psig @	∂ 85.3 F
Who analyzed the sample?	SPL	
Date of sample:	7/24/2012	
Common and	under het of	
budrogon	weight %	
holium		
nitrogon	1 4720	
CO2	2 5960	
H2S	2.0000	
methane (C1)	75.7530	
ethane (C2)	13.2720	
propane (C3)	4.0040	
butanes (C4)	1.9940	
pentanes (C5)	0.5660	
benzene	0.1900	
other hexanes (C6)	0.0000	
toluene	0.0000	
other heptanes (C7)	0.1110	
ethylbenzene	0.0000	
xylenes (o, m, p)	0.0000	
other octanes (C8)	0.0420	
nonanes (C9)	0.0000	
decanes plus (C10+)	0.0000	
Totals:	100.0000	

Gas Analysis - Use if the Inputs are Mole Percents			
Analysis Identifier/Name			
Where was the sample taken?			
If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).			
Where in the process was the sample taken?			
What is the temperature and pressure of the sample (include units)?			
Who analyzed the sample?			
Date of sample:			
Component	mala %	Molecular Weight (grams/mole,	grams per 100 moles of
bydrogen	mole %	2 01588	yas 0
helium		4.0026	0
nitrogen		28.01340	0
CO2		44.00950	0
H2S		34.08188	0
methane (C1)		16.04246	0
ethane (C2)		30.06904	0
propane (C3)		44.09562	0
butanes (C4)		58.12220	0
pentanes (C5)		72.14878	0
penzene		78.110000	0
toluono		86.18000	0
other bentanes (C7)		100 20000	0
		106.170000	0
xvlenes (o m p)		106 170000	0
other octanes (C8)		114,23000	0
nonanes (C9)		128.26000	0
decanes plus (C10+)			0
Totals:	0.0000	0.00	0

For the liquid sample. I am inputting (pick from list):_______

weight percents

elect whether weight percents or mole percents are being entered for this liquid sample.

		Then fill out this table	<u>OR</u>	fill out this table.
Liquid Analy	<u>sis</u> - Use if tl	he Inputs are <u>Weight</u> Percents		Li
Analysis Identifier/Name	Duck Lake 1	0Н		Analysis Identifie
What site is the sample from?	Duck Lake 1	0Н		What site is the s from?
If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).				If the sample is fir representaive sit how this sampler representative of stream at this sit notes box provid more space is ne
Where in the process was the sample taken?	Separator W	/ater		Where in the pro- the sample taken
What is the temperature and pressure of the sample (include units)?	260 psig @	92.1 F		What is the temp pressure of the s (include units)?
Who analyzed the sample?	SPL			Who analyzed the
Date of sample:	4/30/2010			Date of sample:
Component	weight %			Component
hydrogen				hydrogen
helium				helium
nitrogen	14.8990			nitrogen
CO2	24.5580			CO2
H2S				H2S
methane (C1)	46.3070			methane (C1)
ethane (C2)	1.5670			ethane (C2)
propane (C3)	0.7570			propane (C3)
butanes (C4)	1.2540			butanes (C4)
pentanes (C5)	1.5510			pentanes (C5)
benzene	0.0470			benzene
other hexanes (C6)	2.6230			other hexanes (C6
toluene	0.1850			toluene
other heptanes (C7)	2.7730			other heptanes (C
ethylbenzene	0.0050			ethylbenzene
xylenes (o, m, p)	0.0410			xylenes (o, m, p)
other octanes (C8)	2.4430			other octanes (C8
nonanes (C9)	0.8300			nonanes (C9)
decanes plus (C10+)	0.1600			decanes plus (C1)
Totals:	100.0000			

Liquid Analys	<u>sis</u> - Use if th	ne Inputs are <u>Mo</u>	le Percents
Analysis Identifier/Name			
What site is the sample from?			
If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).			
Where in the process was the sample taken?			
What is the temperature and pressure of the sample (include units)?			
Who analyzed the sample?			
Date of sample:			
		Molecular Weight (grams/mole,	grams per 100 moles of
Component	mole %	lb/lb-mol)	gas
hydrogen		2.01588	0
helium		4.0026	0
nitrogen		28.01340	0
002		44.00950	0
H2S		34.08188	0
ethane (C2)		30.0690/	0
propage $(C3)$		44 09562	0
butanes (C4)		58,12220	0
pentanes (C5)		72.14878	0
benzene		78.110000	0
other hexanes (C6)		86.18000	0
toluene		92.140000	0
other heptanes (C7)		100.20000	0
ethylbenzene		106.170000	0
xylenes (o, m, p)		106.170000	0
other octanes (C8)		114.23000	0
nonanes (C9)		128.26000	0
decanes plus (C10+)			0
Totals:	0.0000	0.00	0

VOC (Non-methane, Non-ethane hydrocarbons)	VOC (Non-methane, Non-ethane hydrocarbons)
VOC content of total sample	VOC content of total sample
VOC weight% = 12.6690	VOC weight% = #DIV/0!
VOC weight fraction = 0.1267	VOC weight fraction = #DIV/0!
VOC content of hydrocarbon fraction only	VOC content of hydrocarbon fraction only
VOC weight% = 20.9256	VOC weight% = #DIV/0!
VOC weight fraction = 0.2093	VOC weight fraction = #DIV/0!
Hydrogen Sulfide	Hydrogen Sulfide
H2S weight% = 0.0000	H2S weight% = #DIV/0!
H2S weight fraction = 0.00E+00	H2S weight fraction = #DIV/0!
H2S ppm _v = 2.10	H2S ppm _v = 0.00
H2S ppm _{wT} = 0.00	H2S ppm _{WT} = #DIV/0!
Benzene	Benzene
Benzene content of total sample	Benzene content of total sample
Benzene weight% = 0.0470	Benzene weight% = #DIV/0!
Benzene weight fraction = 0.0005	Benzene weight fraction = #DIV/0!
Benzene content of hydrocarbon fraction only	Benzene content of hydrocarbon fraction only
Benzene weight% = 0.0776	Benzene weight% = #DIV/0!
Benzene weight fraction = 0.0008	Benzene weight fraction = #DIV/0!
L	
Enter any notes here:	

is, nothing nts. nissions t all those

nalyses, e to you.

the total sulfur per

cular weight s (C8), and ny it is

on at the

weight %
weight %
weight % #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0!
weight % #DIV/0!
weight % #DIV/0!
weight % #DIV/0!
weight % #DIV/0!

mol/lb-mol grams/grain scf/lb-mol

air mw scf/lb-mol

weight %
weight %
weight % #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!
weight % #DIV/0!
weight % #DIV/0!
weight % #DIV/0!
weight % #DIV/0!
weight % #DIV/0!
weight % #DIV/0!

Fugitives Emissions

A) Enter information into the yellow boxes.

B) VOC and H₂S control efficiencies may be entered (as applicable for reductions from leak detection and repair programs).

C) The vapor VOC, benzene, and H₂S weight percents may be entered. The weight percents from the Analyses tab are displayed below.

D) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

E) This sheet has five parts to it. Part (1) is for Gas Service, (2) is for Heavy Oil Service, (3) is for Light Oil Service, (4) is for Water/Oil Service, and (5) is for a combination of all the results. Fill out all applicable yellow cells in parts (1)-(4) and the final results will be in part (5).

The five parts are set up in this arrangement:

(1)	(2)
(3)	(4)
(5)	

F) Make sure to select the correct VOC Type and Emission Type from the pull down menus below in part (5).

Gas Weight Percents From Analyses Tab: Liquid Weight Percents From Analyses Tab: VOC wt % 7.1999 VOC wt % 20.9256	
VOC wt % 7.1999 VOC wt % 20.9256	
Benzene wt % 0.1940 Benzene wt % 0.0776	
H-S wt % 0,0000	
(1) Gas (2) Heavy Oil	
emission factor (Ib/hr of TOC per ber	
number component component) lb/nr tpy	b/hr tpy
31/ Valve 0.009920 3.14464 13.//35232	0 0
4 Pump Seal 0.005290 0.02116 0.022608	0 0
Connector 0.000140 0 0 Connector 0.000145 Connector 0.000145	0 0
772 Flance 0.000860 0.66392 2.9079696 Flance 0.00000066 Flance 0.00000086	0 0
0 Open-ended Line 0.004410 0 0 O	0 0
0 Other 0.010/00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
U UIIEI U.19400 U U U U Table 2,9002 45,724,726	0 0
Tuar, 3.02972 10.74170	0
Control Co	ontrol
VOC content Benzene content Hz S content Efficiency	ciency
(W1.79) (W1.79) (W1.79) (79) (79) (79) (79) (W1.79) (W1.79) (79) (79) (79) (79) (79) (79) (79) ((%)
um Seal 7,1999 0,1940 0,0000 0,0000 Pirms Seal	
onnector 7,1999 0.940 0.0000 0.0000 Connector C	
lange 7.1999 0.1940 0.0000 0.0000 Flange Flange	
Open-ended Line 7.1999 0.1940 0.0000 0.0000	
7.1999 0.1940 0.0000 0.0000	
VOC Emissions H ₂ S Emissions Benzene Emissions VOC Emissions H ₂ S Emission	s Benzene Emissions
lb/hr tpy lb/hr tpy lb/hr tpy lb/hr tpy	tpy lb/hr tpy
Alves 0.23 0.99 0.00 0.00 0.01 0.03	0.00 0.00 0.00
Jump Seal 0.00 0.01 0.00 0.00 0.00 Pump Seal 0.00	0.00 0.00 0.00
Jonnecion 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	
	0.00 0.00 0.00
Deen-ended line 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Open-ended Line 0.00	0.00 0.00 0.00 0.00 0.00 0.00

			Next Tab											
	Liquid Weight P Analyses Tab:	Percents From												
	VOC wt %	20.9256												
	Benzene wt %	0.0776												
	H₂S wt %	0.0000												
	-													
(3)	Light Oil					_		(4)	Water/Oil					_
	number	component	emission factor (lb/hr of TOC per component)	Ib/hr	tov				number	component	emission factor (lb/hr of TOC per component)	lb/hr	tpy	
	indinibo.	Valve	0.005500	0	0				99	Valve	0.000216	0.021384	0.09366192	
		Pump Seal	0.028660	0	0				0	Pump Seal	0.000052	0	0	
		Connector	0.000463	0	0				0	Connector	0.000243	0	0	
		Flange	0.000243	0	0				267	Flange	0.000006	0.001602	0.00701676	
		Open-ended Line	0.003090	0	0				0	Open-ended Line	0.000550	0	0	
		Other	0.016500	0	0				0	Other	0.030900	0	0	
			Total:	. 0	0						Total:	0.022986	0.10067868	
	VOC content (wt%)	Benzene content (wt%)	H₂S content (wt%)	Control Efficiency (%)					VOC content (wt%)	Benzene content (wt%)	H ₂ S content (wt%)	Control Efficiency (%)]	
alves /		. ,			1			Valves	100.0000	0.0000	0.0000	0.0000		
ump Seal					1			Pump Seal	100.0000	0.0000	0.0000	0.0000	1	
onnector					1			Connector	100.0000	0.0000	0.0000	0.0000	1	
ange					1			Flange	100.0000	0.0000	0.0000	0.0000		
pen-ended Line								Open-ended Line	100.0000	0.0000	0.0000	0.0000		
ther]			Other	100.0000	0.0000	0.0000	0.0000		
	VOC Emissions H ₂ S Emissions Benzene Emissions			VOC Emissions		ns H ₂ S Emissions		Benzene Emissions						
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy			lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
alves	0.00	0.00	0.00	0.00	0.00	0.00		Valves	0.02	0.09	0.00	0.00	0.00	0.00
ump Seal	0.00	0.00	0.00	0.00	0.00	0.00		Pump Seal	0.00	0.00	0.00	0.00	0.00	0.00
onnector	0.00	0.00	0.00	0.00	0.00	0.00		Connector	0.00	0.00	0.00	0.00	0.00	0.00
lange	0.00	0.00	0.00	0.00	0.00	0.00		Flange	0.00	0.01	0.00	0.00	0.00	0.00
pen-ended Line	0.00	0.00	0.00	0.00	0.00	0.00		Open-ended Line	0.00	0.00	0.00	0.00	0.00	0.00
tner T	0.00	0.00	0.00	0.00	0.00	0.00		Uther	0.00	0.00	0.00	0.00	0.00	0.00
fotal:	0.00	0.00	0.00	0.00	0.00	0.00		Total:	0.02	0.10	0.00	0.00	0.00	0.00

)	Fugitive To	otal Emissions			
		Hourly Emissions (Ib/hr)	Annual Emissions (tpy)		
	VOC	0.30	1.31		
	benzene	0.01	0.03		
	H₂S	0.00	0.00		
	VOC Type: (p	pick from list)			
	Natural Gas V	/0C]		
	Emission Tw	net (nick from list)	1		
	Emission I V	DE: (DICK IFORTI IISL)			

Internal Combustion Engine Emissions

A) Enter information into the yellow boxes.

B) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

C) Make sure to select the correct Emission Type from the pull down menus below. A VOC type does not need to be selected here; see the note in the comment for more explanation.

Engine Emission Calculations

Note: The TCEQ prefers the following basis for calculating emissions (in order of preference):

1. Stack test data from the engine

2. Manufacturer's specification sheet and control specification sheet (if control used)

3. AP-42 emission factors

Site Location

Discharge Parameters

County	Johnson
Region	4
Existing or new source:	new
Installation date:	TBD

Engine Data

EPN	E1
Name	Engine 1
Manufacturer	CAT
Model Number	G3406 NA
Serial Number	
Manufacture Date	After 7/1/2008
Last Rebuild Date	NA
Application	gas compression
Ignition/Injection Timing	variable
Horsepower:	215
Fuel consumption (Btu/hp-hr):	7,915
Hours of operation per year:	8,760
Engine Type:	4 Stroke, Rich-Burn

Stack diameter (feet)	0.5							
Stage Temperature (°F)	1060							
Exit Velocity (fps)	88.56							
Method of Emission Control								
	Voc/No							

Stack height (feet)

	Yes/NO
NSCR Catalyst	Yes
SCR Catalyst	No
JLCC Catalyst	No
Parameter Adjustment	No
Stratified Charge	No
Other (Specify)	

Fuel Type	natural gas
Fuel Consumption (BTU/bhp-hr)	7,915
Heat Value (HHV)	1028
Heat Value (LHV)	1028
Sulfur Content (grains/100scf)	0

Federal/State Standards

Fuel Data

	Yes/No
NSPS Subpart JJJJ	Yes
MACT Subpart ZZZZ	Yes
30 TAC, Chapter 117	Yes

Additional Required Information

Submit a copy of the engine manufacturer's site rating or general rating specification data.

12

Submit a typical fuel analysis, including sulfur content and heating value. For gaseous fuels, provide mole percent of constituents.

Submit a description of the air/fuel ratio control system (manufactuer's information is acceptable).

SO ₂ Mass Balance calculation for sour gas fue	el:			
Fuel Heat Value (Btu/SCF	Next Tab 1,028.00	MW SO ₂ =	64.06	grams/mole
Fuel H ₂ S content (mol%)	0.00	Ideal Gas Law	378.61	SCF/lb-mole
SO ₂ produced (lb/hr) =	0.00			
SO ₂ produced (tpy) =	0.00			
		-		

Does the VOC emission factor being used	
below include formaldehyde? (pick Yes or	
No from list)	No

To Determine Emissions for Air Permitting														
			from AP-42:											
	If available, enter the test results or manufacturer's emission factors before control (g/hp-hr)	Table 3.2-1 2 stroke lean- burn engine emission factors (Ib/MMBtu)	Table 3.2-2 4 stroke, lean- burn engine emission factors (lb/MMBtu)	Table 3.2-3 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	emission factor used	units	Uncontrolled Ib/hr	Uncontrolled tpy	If present, enter the efficiency of any control device (as a %)	If present, enter the controlled emission factor (as g/hp-hr)	control factor used	lb/hr	tpy
VOC	1	0.12	0.118	0.0296	0.0296	1	g/hp-hr	0.474	2.076			0	0.50	2.20
NOx	0.5	3.17	4.08	2.21	2.21	0.5	g/hp-hr	0.237	1.038			0	0.24	1.04
со	3	0.386	0.317	3.72	3.72	3	g/hp-hr	1.422	6.228			0	1.42	6.23
PM ₁₀		0.0384	0.0000771	0.0095	0.0095	0.0095	lb/MMBtu	0.016	0.071			0	0.02	0.07
PM _{2.5}		0.0384	0.0000771	0.0095	0.0095	0.0095	lb/MMBtu	0.016	0.071			0	0.02	0.07
SO ₂		0.000588	0.000588	0.000588	0.000588	0.000588	lb/MMBtu	0.001	0.004			0	0.00	0.00
Formaldehyde	0.06	0.0552	0.0528	0.0205	0.0205	0.06	g/hp-hr	0.028	0.125			0	0.03	0.12
Benzene		0.00194	0.000404	0.00158	0.00158	0.00158	lb/MMBtu	0.003	0.012			0	0.00	0.01

Emission Type: (pick from list) Steady State (continuous)

Enter any notes here:

Internal Combustion Engine Emissions

A) Enter information into the yellow boxes.

B) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

C) Make sure to select the correct *Emission Type* from the pull down menus below. A *VOC type* does not need to be selected here; see the note in the comment for more explanation.

Engine Emission Calculations

Note: The TCEQ prefers the following basis for calculating emissions (in order of preference):

1. Stack test data from the engine

2. Manufacturer's specification sheet and control specification sheet (if control used)

3. AP-42 emission factors

Site Location

County	Johnson
Region	4
Existing or new source:	new
Installation date:	After 4/1/11

Engine Data

EPN	E2
Name	Engine 2
Manufacturer	CAT
Model Number	G3406 NA
Serial Number	
Manufacture Date	After 7/1/2008
Last Rebuild Date	NA
Application	gas compression
Ignition/Injection Timing	variable
Horsepower:	215
Fuel consumption (Btu/hp-hr):	7,915
Hours of operation per year:	8,760
Engine Type:	4 Stroke, Rich-Burn

Exit Velocity (fps)	88.56
Method of Emission Control	Yes/No
NSCR Catalyst	Yes
SCR Catalyst	No

Stack height (feet) Stack diameter (feet) Stage Temperature (°F)

SCR Catalyst	No
JLCC Catalyst	No
Parameter Adjustment	No
Stratified Charge	No
Other (Specify)	

Fuel Type	natural gas
Fuel Consumption (BTU/bhp-hr)	7,915
Heat Value (HHV)	1028
Heat Value (LHV)	1028
Sulfur Content (grains/100scf)	0

Federal/State Standards

Fuel Data

	Yes/No
NSPS Subpart JJJJ	Yes
MACT Subpart ZZZZ	Yes
30 TAC, Chapter 117	Yes

Additional Required Information

1. Submit a copy of the engine manufacturer's site rating or general rating specification data.

12 0.5

1060

. Submit a typical fuel analysis, including sulfur content and heating value. For gaseous fuels, provide mole percent of constituents.

Submit a description of the air/fuel ratio control system (manufactuer's information is acceptable).

SO ₂ Mass Balance calculation for sour gas fue	el:			
Fuel Heat Value (Btu/SCF	Next Tab 1,028.00	MW SO ₂ =	64.06	grams/mole
Fuel H ₂ S content (mol%)	0.00	Ideal Gas Law	378.61	SCF/lb-mole
SO ₂ produced (lb/hr) =	0.00			
SO ₂ produced (tpy) =	0.00			
		-		

Does the VOC emission factor being used	
below include formaldehyde? (pick Yes or	
No from list)	No

To Determine Emissions for Air Permitting														
		from AP-42:												
	If available, enter the test results or manufacturer's emission factors before control (g/hp-hr)	Table 3.2-1 2 stroke lean- burn engine emission factors (Ib/MMBtu)	Table 3.2-2 4 stroke, lean- burn engine emission factors (lb/MMBtu)	Table 3.2-3 4 stroke, rich burn engine emission factors (lb/MMBtu)	appropriate AP-42 factor	emission factor used	units	Uncontrolled Ib/hr	Uncontrolled tpy	If present, enter the efficiency of any control device (as a %)	If present, enter the controlled emission factor (as g/hp-hr)	control factor used	lb/hr	tpy
VOC	1	0.12	0.118	0.0296	0.0296	1	g/hp-hr	0.474	2.076			0	0.50	2.20
NOx	0.5	3.17	4.08	2.21	2.21	0.5	g/hp-hr	0.237	1.038			0	0.24	1.04
со	3	0.386	0.317	3.72	3.72	3	g/hp-hr	1.422	6.228			0	1.42	6.23
PM ₁₀		0.0384	0.0000771	0.0095	0.0095	0.0095	lb/MMBtu	0.016	0.071			0	0.02	0.07
PM _{2.5}		0.0384	0.0000771	0.0095	0.0095	0.0095	lb/MMBtu	0.016	0.071			0	0.02	0.07
SO ₂		0.000588	0.000588	0.000588	0.000588	0.000588	lb/MMBtu	0.001	0.004			0	0.00	0.00
Formaldehyde	0.06	0.0552	0.0528	0.0205	0.0205	0.06	g/hp-hr	0.028	0.125			0	0.03	0.12
Benzene		0.00194	0.000404	0.00158	0.00158	0.00158	lb/MMBtu	0.003	0.012			0	0.00	0.01

Emission Type: (pick from list) Steady State (continuous)

Enter any notes here:

Tank Emissions - Lab Gas Water Ratio (GWR) Method

A) Enter information into the yellow boxes.

B) VOC and H₂S control efficiencies may be entered (if applicable).

C) The tank vapor VOC, benzene, and $\rm H_2S$ weight percents may be entered.

D) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

E) The table below can be used to calculate the flash gas molecular weight and the component weight percents if needed.

F) Make sure to answer the control device question.

G) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

GWR [FOR ESTIMATING FLASH LOSSES FROM STORAGE TANKS]

EPN	Tank Identifier	Flash Initial Press. (psig)	Flash Initial Temp. (ଂF)	Flash Final Press. (psig)	Flash Final Temp. (°F)	GWR (scf of flash gas/bbl of water produced)	Barreis of Water per day (bbl/day)	Flash Gas Molecular Weight	Flash Gas VOC wt%	Flash Gas Benzene wt%	Flash Gas H ₂ S wt%	Are tank vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?	VOC Control Efficiency (%)	H ₂ S Control Efficiency (%)	VOC Results (Ib/hr)	VOC Results (tpy)	Benzene Results (Ib/hr)	Benzene Results (tpy)	H₂S Results (lb/hr)	H ₂ S Results (tpy)
T1	Produced Water Tank 1	240	71.9	C	70	1.44	100	23.961552	12.8159	0.0456	6 0.0000	(A) uncontrolled			0.05	0.21	0.00	0.00	0.00	0.00
T2	Produced Water Tank 2	240	71.9	C	70	1.44	100	23.961552	12.8159	0.0456	0.0000	(A) uncontrolled			0.05	0.21	0.00	0.00	0.00	0.00
Т3	Produced Water Tank 3	240	71.9	C	70	1.44	100	23.961552	12.8159	0.0456	6 0.0000	(A) uncontrolled			0.05	0.21	0.00	0.00	0.00	0.00
T4	Produced Water Tank 4	240	71.9	C	70	1.44	100	23.961552	12.8159	0.0456	0.0000	(A) uncontrolled			0.05	0.21	0.00	0.00	0.00	0.00
														Totals:	0.19	0.85	0.00	0.00	0.00	0.00

Enter	r any	
notes	S S S S S S S S S S S S S S S S S S S	
here:		

GWR Calculator	GWR Calculator							
This table can be used to calculate the flash gas molecular weight and the component weight percents if needed, it the flash gas mole percents are entered. It can also calculate the overall VOC, benzene, and H2S flash emissions if the GWR and the oil/condensate throughput are entered.								
Gas Water Ratio:	1.44	in standard cu	ubic feet of	flash gas p	er barrel (SCF/bbl)	of water produced		
Barrels of Oil or Condensate per								
day:	400							
						<u></u>	00 00/550	
Flash Gas Speciation:						Flash Gas MW =	23.961552	
		Molecular	grams					
		vveignt	per 100					
Component	molo %	(grams/mole,	moles of	woight %				
budreagen	mole /6	0.01599	yas	weight /8	Total gas smitted			
holium		2.01566	0	0.0000	Total gas emitted.	lb/br:	1 5154001	
nitrogen	12 7230	28.01340	356	14 8744		to/iii.	6.6375489	
CO2	13 3480	44 00950	587	24 5159		ιpy.	0.0070400	
H2S	10.0400	34 08188	0	0.0000		VOC wt% =	12 8150	
methane (C1)	69.0510	16.04246	1108	46.2302		¥00 W(/6 =	12.0133	
ethane (C2)	1 2460	30.06904	37	1 5636		VOC lb/br	0 10/21//	
propane (C3)	0.4110	44.09562	18	0.7563		VOC. tov:	0.8506591	
butanes (C4)	0.5160	58,12220	30	1.2516				
pentanes (C5)	0.5140	72.14878	37	1.5477		Benzene wt% =	0.0456	
benzene	0.0140	78.110000	1	0.0456				
other hexanes (C6)	0.7310	86.18000	63	2.6291		Benzene, lb/hr:	0.0006916	
toluene	0.0480	92.140000	4	0.1846		Benzene, tpy:	0.0030292	
other heptanes (C7)	0.6630	100.20000	66	2.7725				
ethylbenzene	0.0010	106.170000	0	0.0044		H ₂ S wt% =	0.0000	
xylenes (o, m, p)	0.0100	106.170000	1	0.0443				
other octanes (C8)	0.5350	114.23000	61	2.5505		H ₂ S, lb/hr:	0	
nonanes (C9)	0.1590	128.26000	20	0.8511		H ₂ S, tpy:	0	
decanes plus (C10+)	0.0300	142.28000	4	0.1781				
	100.0000		2396.16	100.0000				

Chesapeake Operating, Inc. Mayfly B Pad Tank Emissions - Tanks 4.0

A) Enter information into the yellow boxes.

B) VOC and H₂S control efficiencies may be entered (if applicable).

C) A reduction for produced water tank emissions calculated as oil/condensate may be entered.

D) The tank vapor VOC, benzene, and $\mathrm{H}_{2}\mathrm{S}$ weight percents may be entered.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) Make sure to answer the control device question.

G) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

Tanks 4.0 Softw	nks 4.0 Software TANKS 4.0 SOFTWARE [FOR ESTIMATING WORKING AND BREATHING LOSSES FROM STORAGE TANKS]																				
EPN	Tank Identifier	Throughput (gal/year)	Turnovers per year	Mixture/Component	Basis for VP Calculations	Vapor MW	Total Uncontrolled Emissions (Ib/hr)	Total Uncontrolled Emissions (ton/yr)	Tank Vapor VOC wt%	Tank Vapor Benzene wt%	Tank Vapor H₂S wt%	Percent Reduction for Produced Water Tank Calc. as Oil/Cond. (%)	Are tank vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?	VOC Control Efficiency (%)	H₂S Control Efficiency (%)	VOC Results (Ib/hr)	VOC Results (tpy)	Benzene Results (Ib/hr)	Benzene Results (tpy)	H₂S Results (Ib/hr)	H ₂ S Results (tpy)
T1	Produced Water Tank 1	1533000	120.67	Gasoline (RVP=10)	4:RVP=10.	66	1.080436073	4.73246	12.81586	0.0456373	0	99	(A) uncontrolled			0.00	0.01	0.00	0.00	0.00	0.00
T2	Produced Water Tank 2	1533000	120.67	Gasoline (RVP=10)	Option 4-RVP-10	66	1.080436073	4.73246	12.81586	0.0456373	0	99	(A) uncontrolled	_		0.00	0.01	0.00	0.00	0.00	0.00
Т3	Produced Water Tank 3	1533000	120.67	Gasoline (RVP=10)	Option 4:RVP=10.	66	1.080436073	4.73246	12.81586	0.0456373	0	99	(A) uncontrolled			0.00	0.01	0.00	0.00	0.00	0.00
T4	Produced Water Tank 4	1533000	120.67	Gasoline (RVP=10)	Option 4:BVP-10	66	1.080436073	4.73246	12.81586	0.0456373	0	99	(A) uncontrolled			0.00	0.01	0.00	0.00	0.00	0.00
															Totals:	0.01	0.02	0.00	0.00	0.00	0.00

Enter any notes here:

Loading Emissions

A) Enter information into the yellow boxes.

B) VOC and H_2S control and collection efficiencies may be entered (if applicable).

C) The vapor VOC, benzene, and $\rm H_2S$ weight percents may be entered.

D) There are two separate areas below to calculate <u>hourly</u> and <u>annual</u> loading emissions. Then underneath, there is a table summarizing the hourly and annual loading emissions.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) If vapor balancing is being performed and the tank is not being controlled, contact TCEQ about the appropriate tank working loss calculation.

G) Make sure to answer the control device question.

H) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

EPN	L1				
Identifier	Water Loadin	9			
Truck <u>Hourly</u> Loa	ading Emi	ssion Calculations			
Using equation $L_L = 12.4$	46* SPM/T fro	m AP-42, Chapter 5, Section 5.2-4			
S =	0.60	Saturation Factor		_	
P =	10.20	True vapor pressure of liquid loaded (psia)		Enter temperature	Т
M =	66.00	Molecular Weight of Vapors (lb/lb-mole)		in ramennen r).	
T =	527.32	Temperature of bulk liquid loaded (in degrees Rankine)		67.65	
				Enter Barrels of	G
Hourly Loading Rate	8000	Gallons Loaded per Hour		Liquia	
L _L =	9.54	Loading Loss (Ib VOC released/1000 gal liquid loaded)			
	76.33	VOC Uncontrolled Emissions (lb/hr)			
Are loading vapors (A) combustor, thermal oxi controlled by another ty	uncontrolled; dizer, or vapo ype of control	(B) controlled by a flare, vapor r fecovery unit (VRU); or (C) device?		Enter gallons per year	в
		Vapor Weight Percents	. 1		
voc	12.82	Vapor VOC wt%	.	Enter any notes here	e:
benzene	0.05	Vapor Benzene wt%			
H ₂ S	0.00	Vapor H ₂ S wt%			
		Produced Water Reduction			
	99.00	Percent Reduction for Produced Water Tank Calc. as Oil/Cond. (%)			
		Uncontrolled Emissions			
Voo	0.10	Emissions Uncontrolled VOC (lb/br)			
benzono	0.10	Emissions Uncontrolled Benzene (lb/hr)			
Has	0.00	Emissions Uncontrolled Benzene (ID/III)			
1120	0.00				1

Temperature in Rankine (°R): 527 32

Gallons of liquid: 0

Barrels per day:

0

Truck Ann	ading Em	ission Calculations	T		
Using equation $L_L = 12.4$	16* SPM/T fro	m AP-42, Chapter 5, Section 5.2-4			
S =	0.60	= Saturation Factor		_	_
P =	10.20	= True vapor pressure of liquid loaded (psia)		Enter temperature	
M =	66.00	= Molecular Weight of Vapors (lb/lb-mole)		in ramement r).	
T =	527.32	= Temperature of bulk liquid loaded (in degrees Rankine)		67.65	
Annual Loading Rate	6132000	= Gallons Loaded per Year		Enter Barrels of Liquid	Ga
L _L =	9.54	Loading Loss (Ib VOC released/1000 gal liquid loaded)		146000	
	29.26	VOC Uncontrolled Emissions (ton/yr)			
] .		
		Vapor Weight Percents		Enter gallons per year	Ва
voc	12.82	Vapor VOC wt%			
benzene	0.05	Vapor Benzene wt%			
H ₂ S	0.00	Vapor H ₂ S wt%			
-		-			
		Produced Water Reduction		Enter any notes here	e:
	99.00	Percent Reduction for Produced Water Tank Calc. as Oil/Cond. (%)			
		Uncontrolled Emissions			
VOC	0.04	Emissions Uncontrolled VOC (ton/yr)			
benzene	0.00	Emissions Uncontrolled Benzene (ton/yr)			
H ₂ S	0.00	Emissions Uncontrolled H ₂ S (ton/yr)			

Temperature in Rankine (°R):

527.32

Gallons of liquid:

Barrels per day:

6132000

Loading Emissions					
Hourly Annual					
	Emissions	Emissions			
	(lb/hr)	(tpy)			
VOC	0.10	0.04			
benzene	0.00	0.00			
H ₂ S	0.00	0.00			
		_			
VOC Type: (pick from list	t)				
Natural Gas VOC					
		-			
Emission Type: (pick fro	m list)				
Low Pressure Periodic					

Other Emissions

A) Enter information into the yellow boxes.

B) Please provide a separate detailed calculation for these emissions; also include any necessary supplemental information and notes (such as the source/justification for any calculation inputs).

C) Since these emissions fall into the category of "Other", which does not have a pre-made emission estimation sheet with preapproved methods, the time to review this project cannot be guaranteed to be as quick as if only pre-made sheets had been used.

D) VOC and H₂S control efficiencies may be entered (if applicable).

E) Make sure to answer the control device question.

E) Make sure to select the correct *VOC Type* and *Emission Type* from the pull down menus below.

EPN:	MSS1
Namo:	MSS
Name.	1000

Are these vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?

Uncontrolled Emissions						
	Hourly					
	Emissions	Annual				
	(lb/hr)	Emissions (tpy)				
Total VOC	3.21	0.03				
NOx	0.00	0.00				
CO	0.00	0.00				
PM2.5	0.00	0.00				
PM10	0.00	0.00				
H2S	0.00	0.00				
SO2	0.00	0.00				
benzene	0.09	0.00				
formaldehyde	0.00	0.00				

Total Emissions (control efficiencies factored in if applicable)						
	Next Tab Emissions (lb/hr)		Annual Emissions (tpy)			
Total VOC		3.21	0.03			
NOx		0.00	0.00			
CO		0.00	0.00			
PM2.5		0.00	0.00			
PM10		0.00	0.00			
H2S		0.00	0.00			
SO2		0.00	0.00			
benzene		0.09	0.00			
formaldehyde		0.00	0.00			

VOC Type: (pick from list) Natural Gas VOC

Emission Type: (pick from list)

High Pressure Periodic

Emissions Summary

The table below is a summary of all emission points for this registration. It is separated into *Project Emissions* and *Other Registration Emissions*.

The table has separate totals for *Project Total Emission Rates* and *Registration Total Emission Rates*.

On the table, for each emission source, there is a space for three emission rates on a pound per basis and one emission rate on a ton per year (tpy) basis. Periodic emissions are authorized to e steady state limits of the rule (150, 300, and 600 hours per year for PBR Level 1, PBR Level 2, and Standard Permit, respectively), in which case the periodic emission limits must be met. Note tha emitting activities, such as loading and MSS activities, are not limited to occurring less than thes It is only for that amount of time that the emissions can exceed the normal steady state limits.

Any formaldehyde emissions must be included as part of VOC emissions.

Upd

Before pressing the *Update* button, make sure you have selected the correct VOC Type and Emis from the pull down menus in each emission calculation tab.

Emissions Summary

Project Emissions (This needs to include all emission points being added for the first time to the reg emission points with emissions that are changing from previously registered emissions. It does NOT inc points for which the emissions have not changed and have previously been registered (unless the em emissions are chosen to be re-calculated as part of this project); those emissions will be entered below Registration Emissions section of this table.)

			Emission Rates				
Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr		
		Total VOC	0.2987				
		Total Crude Oil or Condensate VOC	0.0000				
		Total Natural Gas VOC	0.2987				
F1	Fugitives	Benzene	0.0074				
		Formaldehyde	0.0000				
		H ₂ S	0.0000				
		SO ₂	0.0000				
		NO _X	0.0000				
		CO	0.0000				
		PM_{10}	0.0000				

		PM _{2.5}	0.0000	
		Total VOC	0.5024	
		Total Crude Oil or Condensate VOC	0.0000	
		Total Natural Gas VOC	0.0000	
E1	Engine 1	Benzene	0.0027	
		Formaldehyde	0.0284	
		H ₂ S	0.0000	
		SO ₂	0.0010	
		NO _X	0.2370	
		CO	1.4220	
		PM ₁₀	0.0162	
		PM _{2.5}	0.0162	
		Total VOC	0.5024	
E2		Total Crude Oil or Condensate VOC	0.0000	
		Total Natural Gas VOC	0.0000	
	Engine 2	Benzene	0.0027	
		Formaldehyde	0.0284	
		H ₂ S	0.0000	
		SO ₂	0.0010	
		NO _X	0.2370	
			1.4220	
		PM ₁₀ PM	0.0162	
		Tatal VOC	0.0486	
T1		Total Crude Oil or Condensate VOC	0.0480	
		Total Natural Gas VOC	0.0486	
	Produced Water Tank 1	Benzene	0.0002	
		Formaldehyde	0.0000	
		H_2S	0.0000	
		SO_2	0.0000	
		NO_X	0.0000	
			0.0000	
		PM ₁₀ PM	0.0000	
		$PNI_{2.5}$	0.0000	
		Total VOC	0.0486	

		P		
		Total Crude Oil or Condensate VOC	0.0000	
		Total Natural Gas VOC	0.0486	
Т2	Produced Water Tank 2	Benzene	0.0002	
12		Formaldehyde	0.0000	
		H ₂ S	0.0000	
		SO ₂	0.0000	
		NO _x	0.0000	
		^x CO	0.0000	
		PM ₁₀	0.0000	
		PM _{2.5}	0.0000	
		Total VOC	0.0486	
		Total Crude Oil or Condensate VOC	0.0000	
T3		Total Natural Gas VOC	0.0486	
	Produced Water Tank 3	Benzene	0.0002	
		Formaldehyde	0.0000	
		H ₂ S	0.0000	
		SO ₂	0.0000	
		NO _X	0.0000	
		со	0.0000	
		PM ₁₀	0.0000	
		PM _{2.5}	0.0000	
		Total VOC	0.0486	
T4		Total Crude Oil or Condensate VOC	0.0000	
		Total Natural Gas VOC	0.0486	
	Produced Water Tank 4	Benzene	0.0002	
		Formaldehyde	0.0000	
		H ₂ S	0.0000	
		SO ₂	0.0000	
		NO _X	0.0000	
		CO	0.0000	
		PM ₁₀	0.0000	
		PM _{2.5}	0.0000	
		Total VOC	0.0014	

		Total Crude Oil or Condensate VOC	0.0000	
		Total Natural Gas VOC	0.0014	
Т1	Produced Water Tank 1	Benzene	0.0000	
		Formaldehvde	0.0000	
		H ₂ S	0.0000	
		<u>2</u>	0.0000	
		NOv	0.0000	
		CO	0.0000	
		PM10	0.0000	
		PM _{2.5}	0.0000	
		Total VOC	0.0014	
		Total Crude Oil or Condensate VOC	0.0000	
	Produced Water Tank 2	Total Natural Gas VOC	0.0014	
T2		Benzene	0.0000	
		Formaldehyde	0.0000	
		H_2S	0.0000	
		SO ₂	0.0000	
		NO _X	0.0000	
		со	0.0000	
		PM ₁₀	0.0000	
		PM _{2.5}	0.0000	
		Total VOC	0.0014	
		Total Crude Oil or Condensate VOC	0.0000	
		Total Natural Gas VOC	0.0014	
T3	Produced Water Tank 3	Benzene	0.0000	
		Formaldehyde	0.0000	
		H_2S	0.0000	
		SO ₂	0.0000	
		NO _X	0.0000	
		СО	0.0000	
		PM ₁₀	0.0000	
		PM _{2.5}	0.0000	
		Total VOC	0.0014	

		Total Crude Oil			
		or Condensate	0.0000		
		VUC	0.0000		
		Total Natural Gas VOC	0.0014		
T4	Produced Water Tank 4	Benzene	0.0000		
		Formaldehyde	0.0000		
		H ₂ S	0.0000		
		SO ₂	0.0000		
		NO _X	0.0000		
		СО	0.0000		
		PM ₁₀	0.0000		
		$PM_{2.5}$	0.0000	0.0070	
		Total VOC		0.0978	
		Total Crude Oil			
		or Condensate			
		VOC		0.0000	
		Total Natural			
		Gas VOC		0.0978	
L1	Water Loading	Benzene		0.0003	
		Formaldehyde		0.0000	
		H_2S		0.0000	
		SO ₂		0.0000	
		NO _X		0.0000	
		СО		0.0000	
		PM ₁₀		0.0000	
		$PM_{2.5}$		0.0000	0.0107
		Total VOC			3.2127
		Total Crude Oil			
		or Condensate			
		VOC			0.0000
		Total Natural			
		Gas VOC			3.2127
MSS1	MSS	Benzene			0.0884
		Formaldehyde			0.0000
		H ₂ S			0.0000
		SO ₂			0.0000
		NO _X			0.0000
		СО			0.0000
		PM ₁₀			0.0000
		PM _{2.5}			0.0000
		Total VOC			

	Total Crude Oil or Condensate VOC		
	Total Natural Gas VOC		
	Benzene		
	Formaldehyde		
	H ₂ S		
	SO ₂		
	NO _X		
	СО		
	PM ₁₀		
	PM _{2.5}		

			Emissio	on Rates
Project Total Emission Rates (Note that these periodic totals are NOT simply the sum of the periodic emission rates from	Air Contaminant Name (3)	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr
each emission point. The periodic	Total VOC	1.50	1.60	4.81
compared to the sum of steady state and periodic emissions, that is the worst case combination of continuously and periodically emitting sources that could	Total Crude Oil or Condensate VOC	0.00	0.00	0.00
occur in any one hour. The periodic emission rates shown here are the sum of	Total Natural Gas VOC	0.50	0.60	3.81
all steady state and periodic emissions in	Benzene	0.01	0.01	0.10
of continuously and periodically emitting	Formaldehyde	0.06	0.06	0.06
sources is less than this, then please input	H ₂ S	0.00	0.00	0.00
the values in this table to the right. Please	SO ₂	0.00	0.00	0.00
explain below which emission points	NO _X	0.47	0.47	0.47
are included in this worst case	СО	2.84	2.84	2.84
combination.)	PM ₁₀	0.03	0.03	0.03
	PM _{2.5}	0.03	0.03	0.03
If the automated formulas for the project emission totals (which assume that it is possible for all steady state and periodic emissions in the project to occur in the same hour) have been overwritten, explain any changes made and list the project emission points that occur in the realistic worst case hour. (Leave this blank or put NA if none of the formulas have been overwritten.)				

Other Registration Emissions (This needs to include any other emission points not included in th Emissions Summary that are in the registration. This should be all the operationally dependent units th 1/4 mile of each other and are also owned/operated by the same company and located on contiguous property. It is possible that nothing needs to be entered here.)

There are no other registration emission points.

		Emission		on Rates
Registration Total Emission Rates (Note that these periodic totals are NOT simply the sum of the periodic emission rates	Air Contaminant Name (3)	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr
from each emission point. The periodic	Total VOC	1.50	1.60	4.81
emission limits in the rule need to be compared to the sum of steady state and periodic emissions, that is the worst case combination of continuously and periodically emitting sources that could	Total Crude Oil or Condensate VOC	0.00	0.00	0.00
occur in any one hour. The periodic emission rates shown here are the sum of	Total Natural Gas VOC	0.50	0.60	3.81
all steady state and periodic emissions in	Benzene	0.01	0.01	0.10
the registration. If the worst case	Formaldehyde	0.06	0.06	0.06
combination of continuously and	H ₂ S	0.00	0.00	0.00
this then please input the values in this	SO ₂	0.00	0.00	0.00
table to the right. Please explain below	NO _X	0.47	0.47	0.47
which emission points are included in	СО	2.84	2.84	2.84
this worst case combination.)	PM ₁₀	0.03	0.03	0.03
	PM _{2.5}	0.03	0.03	0.03
If the automated formulas for the registration emission totals (which assume that it is possible for all steady state and periodic emissions in the registration to occur in the same hour) have been overwritten, explain any changes made and list the registration emission points that occur in the realistic worst case hour. (Leave this blank or put NA if none of the formulas have been overwritten.)				
Based on the Registration Total Emiss	ion Rates, this	authorization	falls under:	PBR I

- (1) Emission point identification either specific equipment designation or emission point num plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
 (3) VOC volatile organic compounds as defined in Title 30 Texas Administrative Coc
 - VOCvolatile organic compounds as defined in Title 30 Texas Administrative CocH2Shydrogen sulfide
 - SO₂ sulfur dioxide
 - NO_X total oxides of nitrogen
 - CO carbon monoxide
 - PM₁₀ total particulate matter equal to or less than 10 microns in diameter, includi
 - PM_{2.5} particulate matter equal to or less than 2.5 microns in diameter

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling per
- (5) If emissions from a source are:

(A) uncontrolled, then the uncontrolled emissions are reported in this table emitted from the source.

(B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recove (VRU), then the controlled emissions are reported on this table as being en the control device.

(C) controlled by another type of control device, then the controlled emissic reported on this table for the source (even though emissions are actually be at the control device).

- (6) For controlled tank, glycol/amine flash tank and regenerator, and MSS emissions, it is ass vapors make it to the control device (100% collection efficiency). For controlled loading e 100% collection efficiency is <u>not</u> assumed.
- (7) A VRU itself is not actually considered an emission point; however, this table associates u (uncontrolled) emissions from sources controlled by a VRU at the VRU.

hour (lb//hr) exceed the I the t periodically se time limits.

ate

sion Type

istration or lude emission ission point in the Other

TPY (4)

1.3084
0.0000
1.3084
0.0325
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
2.2007
0.0000
0.0000
0.0118
0.1246
0.0000
0.0000
1.0291
1.0381
6.2283
0.0708
0.0708
2.2007
0.0000
0.0000
0.0118
0.1246
0.1240
0.0000
0.0044
1.0381
6.2283
0.0708
0.0708
0.2127
0.0000
0.2127
0.2127
0.0008
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0 2127
0.2121

0.0000
0.0000
0.2127
0.2127
0.0008
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.2127
0.0000
0.0000
0.2127
0.0008
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.2127
0.0000
0.0000
0.2127
0.0008
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0061

0.0000	
0.0061	
0.0000	
0.0000	
0.0000	
0.0000	
0.0000	
0.0000	
0.0000	
0.0000	
0.0061	
0.0000	
0.0061	
0.0000	
0.0000	
0.0000	
0.0000	
0.0000	
0.0000	
0.0000	
0.0000	
0.0001	
0.0000	
0.00(1	
0.0061	
0.0000	
0.0000	
0.0000	
0.0000	
0.0000	
0.0000	
0.0000	
0.0061	

0.0000
0.0061
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0375
0.0000
0.0375
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0321
0.0000
0.0321
0.0009
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

TPY (4)
6.65
0.00
2.25
0.06
0.25
0.00
0.01
2.08
12.46
0.14
0.14

e Project nat are within or adjacent

TPY (4)
6.65
0.00
2.25
2.25
0.06
0.25
0.00
0.01
2.08
12.46
0.14
0.14

evel 1

uber from plot

de § 101.1

ng PM_{2.5}

iod.

as being

ery unit nitted from

ons are eing emitted

sumed that all missions, a

inrecovered

Authorization Level Determination

The level of authorization is determined by comparing the Registration Total Emission Rates (as shown on the previous tab) to the emission limits of the different authorization levels.

This table is an expanded explanation of how the authorization level shown on the Emissions Summary tab was determined. The table shows which authorization level each compound's emissions fall into, and then at the bottom of the chart it shows which authorization level the entire authorization falls under.

The possible authorization levels are:

PBR Level 1 PBR Level 2 Standard Permit NSR Case-by-case Permit

	Based on the Registration Total Emission Rates (on the previous tab), what Level of Authorization Does Each Emission Rate Fall Into?					
		Emissio	on Rates			
Air Contaminant Name	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr	ТРҮ		
Total VOC	NA, no limit	NA, no limit	NA, no limit	PBR Level 1		
Total Crude Oil or Condensate VOC	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1		
Total Natural Gas VOC	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1		
Benzene	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1		
Formaldehyde	NA, no limit	NA, no limit	NA, no limit	PBR Level 1		
H ₂ S	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1		
SO_2	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1		
NO _X	PBR I Next Tab	R Level 1	PBR Level 1	PBR Level 1		
со	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1		
PM ₁₀	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1		
PM _{2.5}	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1		

What Level of Authorization Applies to this Registration? (If any of the registration emissions are equal to or greater than the limits of a level, then the whole registration falls into that level above.) PBR Level 1

Is a Full Impacts Review Required?

and NO₂. A full impacts review involves showing protection of public health and welfare and compliance with applicable ambient air standards (state and federal) on a short term and long term basis.

A full impacts review is not required for a certain compound under these certain circumstances:

if there is no receptor (to be affected by benzene emissions) or property line (where compliance with NO₂, SO₂, and H₂S ambient air quality standards is required) within a certain distance of a registration (that is if there is no receptor or property line within a certain distance of any emitting source in the registration), or

if the net project emission increases of that compound are very small.

Based on these circumstances, the worksheet below determines whether or not a full impacts review is required for any of the four compounds (benzene, H_2S , SO_2 , and NO_2).

If any of (1)-(3) below shows that a full impacts review is not required for a compound, then under (4) it will show that no further impacts review needs to be done and it will explain that "you are done" for that compound. If all of (1)-(3) show that a full impacts review is required, then (4) will explain that one of the three methods for doing a full impacts review (screening modeling, dispersion modeling, or the modeling tables from the rule) must be used.

If the modeling tables from the rule are used, then the spreadsheet tabs labeled for benzene, H_2S , SO_2 , and NO_2 should be used. These tabs provide a way to use the modeling tables and perform the necessary calculations to show whether the impacts review is passed.

Based on receptor and property line distances, is a full impacts review required for any air contaminant? (Is there a receptor or property line within the specified distance of the registration? The distances are 1/4 mile for PBR Level 1, 1/2 mile for PBR Level 2, and 1 mile for Standard Permit.) First the level of authorization must be known.

(1)

Based on the Registration Total Emission Rates, this a	uthorization falls under:
PBR Level 1	

What is the shortest distance in feet to any receptor from any facility/unit included in this registration?	546	ft
What is the shortest distance in feet to any property line from any facility/unit included in this registration?	546	ft

Based on the nearest receptor distance: A full impacts review is required for benzene.

Based on the nearest property line distance: A full impacts review is required for H2S, SO2, and NO2. Based on the <u>net project emission increases</u>, is a full impacts review required for any air contaminent? (Are the net project emission increases less than any of the de-minimis rates?)

	Net Project Emission Increases					
		Emission Rates				
Air Contaminant Name	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr	ТРҮ		
Benzene	0.01	0.01	0.10	0.06		
H ₂ S	0.00	0.00	0.00	0.00		
SO ₂	0.00	0.00	0.00	0.01		
NO _X	0.47	0.47	0.47	2.08		
Please explain the logic behind the values here if any values are different than the Project Total Emission Rates from the Emissions Summary tab.						

De-minimis Rates				
Air contaminant	lb/hr			
Benzene	0.039			
H₂S	0.025			
SO ₂	2			
NO _x	4			

Based on the net project emission increases:

A full impacts review is required for benzene.

A full impacts review is NOT required for H2S.

A full impacts review is NOT required for SO2.

A full impacts review is NOT required for NO2.

(2)

Based on the <u>project maximum predicted concentrations</u>, is a full impacts review required for any air contaminant? (Are the project maximum predicted benzene concentrations \leq 10% of the applicable effects screening level (ESL) or \leq 25% of the applicable ESL when combined with project increases over 60-month period after rule effective date? Are project maximum predicted H₂S, SO₂, and NO_x concentrations \leq the significant impact level, SIL, also known as a de-minimis impact in Chapter 101 of 30 TAC, where the SIL = 4% of the applicable ambient air standard (AAQS)?)

review:					
ESLs and AAQSs	(µg/m³)				
Benzene Short Term ESL	170				
Benzene Long Term ESL	4.5				
H ₂ S Hourly SAAQS	108				
SO ₂ Hourly NAAQS	196				
NO ₂ Hourly NAAQS	188				

What is the project maximu			
concentration of benzene in			
meter?	NA	(µg/m³)	
Based on this:			

A full impacts review is required for benzene on an hourly basis.

What is the maximum predi	cted 1-hr concentration of		
benzene in micrograms per			
project combined with prev			
over a 60-month period afte			
this rule?		NA	(µg/m³)
Based on this:			

A full impacts review is required for benzene on an hourly basis.

What is the <u>project</u> maximu concentration of <u>benzene</u> in meter?	m predicted <u>annual</u> micrograms per cubic	NA	(µg/m³)
Based on this:			

A full impacts review is required for benzene on an annual basis.

What is the m	naximum predi				
of benzene in micrograms per cubic meter for the					
project combined with previous project increases					
over a 60-month period after the effective date of the					
this rule?			NA	(µg/m³)	
Based on this	s:				
		v is required for benzene on an annual basis.			

	Next Tab						
What is the project maximum predicted <u>1-hr</u>							
concentration of <u>H₂S</u> in micrograms per cubic meter?			NA	(µg/m³)			
Based on this:							
-							-

A full impacts review is required for H2S on an hourly basis.

What is the <u>project</u> maximu concentration of <u>SO₂</u> in mic	m predicted <u>1-hr</u> rograms per cubic meter?	NA	(µg/m³)		
Based on this:					
A full impacts review is required for SO2 on an hourly basis.					

What is the project maximu			
concentration of NO ₂ in mic	NA	(µg/m³)	
Based on this:			

(3)

A full impacts review is required for NO2 on an hourly basis.

(4) Based on the above assessment from (1) - (3):

A full impacts review is required for benzene. Perform review on benzene impacts tab. Consider the Impacts Scope table on the next tab as additional emission points outside of the registration may need to be considered for the impacts review.

A full impacts review is NOT required for H2S.

A full impacts review is NOT required for SO2.

A full impacts review is NOT required for NO2.

Press this button to make the impacts review tabs visible if needed, that is if you want to use the modeling tables from the rule for any of the four compounds.

Emissions Summary Including Any Additional Impacts Scope Emissions

Registration emissions are included in the impacts scope totals.

The only air contaminents that potentially may need to be filled in are benzene H_2S , SO_2 , and NO_X these are the four air contaminents that a full impacts review could potentially be required for (nc impacts review is actually done on NO_2 , not NO_X). Within those four contaminents, the only ones absolutely need to be filled in are the ones which require a full impacts review. The rest can be fi chosen to be.

To change the number of rows in the charts below, click on the button to the right of the chart the "Expand Table" and it will ask how many rows you need. You can press the button more than on delete more rows; the rows will be added or deleted starting at the bottom.

Impacts Scope Emissions (This needs to include any other emission points not included in the Project Summary or the Registration Emissions Summary that are in the impacts review scope. The impacts review scope and units owned/operated by the same company, located on contigous or adjacent property, and under same two digit standard industrial classification (SIC) code, within 1/4 mile of any unit in the project for PBR Level 2, and within 1 mile of any unit in the project for PBR Level 2, and

				Emissio	n Rates
Emission Point No.	Source Name	Air Contaminant Name	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr
		Total VOC			
		Total Crude Oil or Condensate VOC Total Natural Gas VOC			
		Benzene Formaldebyde			
		H ₂ S			
		SO ₂			
		NO _X			
		CO			
		PM ₁₀			
		PM _{2.5}			

			Emissio	n Rates
Impacts Scope Total Emission Rates (Note that these periodic totals are NOT simply the sum of the periodic emission	Air Contaminant Name	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr
rates from each emission point. The	Total VOC	1.50	1.60	4.81
periodic emission limits need to be compared to the sum of steady state and periodic emissions, that is the worst case combination of continously and periodically	Total Crude Oil or Condensate VOC	0.00	0.00	0.00
one hour. The periodic emission rates shown here are the sum of all steady state	Total Natural Gas VOC	0.50	0.60	3.81
and periodic emissions. If the worst case	Benzene	0.01	0.01	0.10
combination of continously and periodically	Formaldehyde	0.06	0.06	0.06
emitting sources is less than this, then	H ₂ S	0.00	0.00	0.00
right Please explain below which	SO ₂	0.00	0.00	0.00
emission points are included in this	NO _X	0.47	0.47	0.47
worst case combination.)	СО	2.84	2.84	2.84
	PM ₁₀	0.03	0.03	0.03
	PM _{2.5}	0.03	0.03	0.03
If the automated formulas for the impacts scope emission totals (which assume that it is possible for all steady state and periodic emissions in the impacts scope to occur in the same hour) have been overwritten, explain any changes made and list the impacts scope emission points that occur in the realistic worst case hour. (Leave this blank or put NA if none of the formulas have been overwritten.)				

), because ote that the hat illed in if

at says ice to add or

ct Emissions eview scope d designated ject for PBR roject for the thorization

TPY

TPY (4)
6.65
0.00
2.25
0.06
0.25
0.00
0.01
2.08
12.46
0.14
0.14

Full Impacts Review

A full impacts review must be done for all of the following as applicable: Benzene Hourly Steady State Benzene Hourly Low Pressure Periodic Benzene Hourly High Pressure Periodic Benzene Annual

The maximum acceptable emission rate can be found on an hourly steady state basis, hourly periodic (low pressure) basis, hourly periodic (high pressure) basis, and annual basis, which can be expressed as $E_{max,hourly,steadystate}$, $E_{max,hourly,periodic(low pressure)}$, $E_{max,hourly,periodic(high pressure)}$, and $E_{max,annual, respectively}$.

The equations for Emax, hourly and Emax, annual are:

$E_{max,hourly} = (WR_{EPN1}) * \left(\frac{P \text{ or ESL}}{G_{hourly,EPN1}}\right) + \dots + (WR_{EPNx}) * \left(\frac{P \text{ or ESL}}{G_{hourly,EPNx}}\right)$	
$E_{\max,annual} = \left(\frac{8,760}{2,000}\right) * (WR_{EPN1}) * \left(\frac{P \text{ or ESL}}{0.08 * G_{haurius EPN1}}\right) + \dots + \left(\frac{8,760}{2,000}\right) * (WR_{EPN1}) + \dots + \left(\frac{100}{2,000}\right) * (WR_{EPN1}) + \dots + \left(\frac{100}{2,000}\right) * (WR_{EPN1}) + \dots + \left(\frac{100}{2,000}\right) + \dots + $	$_{Nx}$) * $\left(\frac{P \text{ or ESL}}{0.08 * G_{hourly EPNx}}\right)$

The emissions must include all emissions in the impacts scope, which are contained in the Impacts Scope Emissions Totals box on the Impacts Scope Tab.

Impacts review is passed when the total estimated emission rate is less than the calculated maximum acceptable emission rate $E_{estimated,total} \leq E_{max,total}$.

The shortest distance from any emitting source to the nearest receptor can be used for each emitting source or the actual distance from the source to the nearest receptor.

The appropriate G factor can be found on the impact chart tabs based on the distance from the emission point to the nearest receptor, the height of the emission release point, and the type of emission point.

To change the number of rows in the charts below, click on the button to the right of the chart that says "Set Row Count" and it will ask how many rows you need. You can press the button more than once to add or delete more rows; the rows will be added or deleted starting at the bottom.

Benzene Short Term ESL (μg/m³):	170
Benzene Long Term ESL (μg/m³):	4.5

Benzene Hourly Steady State - Impact Review										
EPN	Source Name	Which impacts table corresponds to this EPN?	Steady state hourly estimated emissions for each EPN (Ibs/hr)	WR _{epnx}	ESL _{benzene,} short term (μg/m ³)	Distance from emission point to nearest receptor (ft)	Height of emission release point (ft)	G _{EPNx}	E _{max,EPNx,} hourly,steadystate (Ib/hr)	
F1	Fugitives	Fugitive	0.0074306	0.5496254	170	546	4	478	0.19549474	
E1	Engine 1	Eng. ≤ 250 hp	0.0026887	0.1988798	170	546	8	84	0.40126636	
E2	Engine 2	Eng. ≤ 250 hp	0.0026887	0.1988798	170	546	8	84	0.40126636	
T1	Tank 1	Tank Hatch	0.0001778	0.0131538	170	546	12	164	0.01367066	
T2	Tank 2	Tank Hatch	0.0001778	0.0131538	170	546	12	164	0.01367066	
Т3	Tank 3	Tank Hatch	0.0001778	0.0131538	170	546	12	164	0.01367066	
T4	Tank 4	Tank Hatch	0.0001778	0.0131538	170	546	12	164	0.01367066	
					170					
					170					
					170					
			E _{estimated,tota} I,hourly,steadyst ate (Ib/hr) 0.0135193	Total 1		Pas	sed		E _{max,total,} hourly,steadystate (Ib/hr) 1.05271012	

	Benzene Hourly Low Pressure Periodic - Impact Review								
EPN	Source Name	Which impacts table corresponds to this EPN?	Periodic (low P) hourly estimated emissions for each EPN (lbs/hr)	WR _{EPNx}	ESL _{benzene,} short term (μg/m ³)	Distance from emission point to nearest receptor (ft)	Height of emission release point (ft)	G _{epnx}	E _{max,EPNx,} hourly,periodic(lo w pressure) (Ib/hr)
		Low P. Blowd./Purg./							
L1	Loading 1	Pig.	0.0003484	1	170	546	8	515	0.33022533
					170				
					170				
					170				
					170				
					170				
					170				
					170				
					170				
			E _{estimated,tota} I,hourly,periodic (low pressure) (Ib/hr) 0.0003484	Total 1		Pas	sed		E _{max,total,} hourly,periodic(lo w pressure) (Ib/hr) 0.33022533

	Benzene Hourly High Pressure Periodic - Impact Review								
EPN	Source Name	Which impacts table corresponds to this EPN?	Periodic (high P) hourly estimated emissions for each EPN (Ibs/hr)	WR _{epnx}	ESL _{benzene,} short term (μg/m ³)	Distance from emission point to nearest receptor (ft)	Height of emission release point (ft)	G _{epnx}	E _{max,EPNx,} hourly,periodic(hi gh pressure) (Ib/hr)
MSS1	MSS	High P. Blowd./Purg./ Pig	0 0883755	1	170	546	8	37	4 55641919
			0.0000700		170	0.0		0.	
					170				
					170				
					170				
					170				
					170				
					170				
					170				
			E _{estimated,tota} I,hourly,periodic (high pressure) (Ib/hr) 0.0883755	Total 1		Pas	sed		E _{max,total,} hourly,periodic(hi gh pressure) (Ib/hr) 4.55641919

Benzene Annual - Impact Review										
EPN	Source Name	What amount of time is this source is emitting? (hrs/yr)	Which impacts table correspon ds to this EPN?	Annual estimated emissions for each EPN (tons/yr)	WR _{epnx}	ESL _{benzene,} long term (μg/m ³)	Distance from emission point to nearest receptor (ft)	Height of emission release point (ft)	G _{epnx}	E _{max,EPNx,} annual (tons/yr)
F1	Fugitives	8760	Fugitive	0.0325459	0.6363571	4.5	546	4	478	0.328033
E1	Engine 1	8760	Eng. ≤ 250 hp	0.0117766	0.2302633	4.5	546	8	84	0.673309
E2	Engine 2	8760	Eng. ≤ 250 hp	0.0026887	0.0525715	4.5	546	8	84	0.153724
T1	Tank 1	8760	Tank Hatch	0.0007789	0.0152294	4.5	546	12	164	0.022939
T2	Tank 2	8760	Tank Hatch	0.0007789	0.0152294	4.5	546	12	164	0.022939
ТЗ	Tank 3	8760	Tank Hatch	0.0007789	0.0152294	4.5	546	12	164	0.022939
T4	Tank 4	8760	Tank Hatch	0.0007789	0.0152294	4.5	546	12	164	0.022939
<u>L1</u>	Loading 1	766.5	Loading High P. Blowd./Pur	0.0001335	0.0026105	4.5	546	8	515	0.000109
MSS1	MSS	20	g./Pig.	0.0008838	0.01/2/9/	4.5	546	8	37	0.000261
				E _{estimated,tota} I,annual (tons/yr) 0.0511441	Total	7.0	Pas	sed		E _{max,total,} ^{annual} (tons/yr) 1.247191

Generic Modeling Factor (G) Look-up						
Fugitive						
Distance from emission source to nearest receptor or property line (ft):	546					
Height of emission release point (ft):	4					
G [(μg/m³)/(lb/hr)]:	478					

Generic Modeling Factor (G) Look-up	
Loading	
Distance from emission source to nearest receptor or property line (ft):	546
Height of emission release point (tt):	8
G [(μg/m³)/(lb/hr)]:	515

Generic Modeling Factor (G) Look-up	
Tank Hatch	
Distance from emission source to nearest receptor or property line (ft):	546
Height of emission release point (ft):	12
G [(μg/m³)/(lb/hr)]:	164

Generic Modeling Factor (G) Look-up	
Process Vessel	
Distance from emission source to nearest receptor or property line (ft):	
Height of emission release point (ft):	
G [(μg/m³)/(lb/hr)]:	469

Generic Modeling Factor (G) Look-up		
Low Pressure (< 30 psig) Blowdowns, Purging, and Pigging		
Distance from emission source to nearest receptor or property line (ft):	546	
Height of emission release point (ft):	8	
G [(μg/m³)/(lb/hr)]:	743	

Generic Modeling Factor (G) Look-up	
High Pressure (≥ 30 psig) Blowdowns, Purging, and Pigging	
Distance from emission source to nearest receptor or property line (ft):	546
Height of emission release point (ft):	8
G [(μg/m³)/(lb/hr)]:	37

Generic Modeling Factor (G) Look-up		
Engines Less Than or Equal to 250 hp		
Distance from emission source to nearest receptor or property line (ft):	546	
Height of emission release point (ft):	8	
G [(μg/m³)/(lb/hr)]:	84	