Texas Commission on Environmental Quality OGS SP for New Registration 113502

Site Information (Regulated Entity)

What is the name of the site to be authorized?	UNIVERSITY LANDS 39-11-1H FACILITY
Does the site have a physical address?	
County	CROCKETT
Latitude (N) (##.#####)	31.9556
Longitude (W) (-###.#######)	-101.0945
Primary SIC Code	1311
Secondary SIC Code	
Primary NAICS Code	211111
Secondary NAICS Code	
Regulated Entity Site Information	
What is the Regulated Entity's Number (RN)?	RN106118060
What is the name of the Regulated Entity (RE)?	UNIVERSITY LANDS 39 11 1H FACILITY
Does the RE site have a physical address?	No
Because there is no physical address, describe how to locate this site:	FROM BARNHART S ON HWY163 FOR 8.2 MI L FOR 5.9 MI ON LEASE ROAD, R HEADING S 2.8 MI TO FACILITY ON W SIDE OF ROAD
City	BARNHART
State	ТХ
ZIP	76930
County	CROCKETT
Latitude (N) (##.######)	31.9556
Longitude (W) (-###.#######)	-101.0945
What is the primary business of this entity?	OIL AND GAS PRODUCTION

EP Ener-Customer (Applicant) Information

How is this applicant associated with this site?	OWNER OPERATOR
What is the applicant's Customer Number (CN)?	CN604089854
Type of Customer	Partnership
Full legal name of the applicant:	
Legal Name	EP Energy E&P Company, L.P.
Texas SOS Filing Number	8567711
Federal Tax ID	
State Franchise Tax ID	17604870927
DUNS Number	
Number of Employees	501+
Independently Owned and Operated?	No
I certify that the full legal name of the entity applying for this permit has been provided and is legally	Yes

http://ida.tceq.texas.gov/steersstaff/index.cfm?fuseaction=openadmin.viewcor&submitId=683621[1/22/2014 6:57:50 AM]

authorized to do business in Texas.	
Responsible Authority Contact	
Organization Name	EP Energy E&P Company, L.P.
Prefix	MR
First	BERNARD
Middle	
Last	KADLUBAR
Suffix	
Title	SR. EHS SPECIALIST
Responsible Authority Mailing Address	
Enter new address or copy one from list:	
Address Type	Domestic
Mailing Address (include Suite or Bldg. here, if applicable)	1001 LOUISIANA ST
Routing (such as Mail Code, Dept., or Attn:)	PO BOX 4660
City	HOUSTON
State	ТХ
ZIP	77002
Phone (###-#####)	7139975464
_ · · ·	
Extension	
Extension Alternate Phone (###-####)	
Alternate Phone (###-####) Fax (###-###-####) E-mail	BERNARD.KADLUBAR@EPENERGY.COM
Alternate Phone (###-####-####) Fax (###-###-#####) E-mail	BERNARD.KADLUBAR@EPENERGY.COM
Alternate Phone (###-####) Fax (###-###-####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this	BERNARD.KADLUBAR@EPENERGY.COM EP Energy E&P Company, L.P.
Alternate Phone (###-####) Fax (###-######) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application:	
Alternate Phone (###-####) Fax (###-######) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact?	EP Energy E&P Company, L.P.
Alternate Phone (###-####) Fax (###-######) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name	EP Energy E&P Company, L.P. EP Energy E&P Company LP
Alternate Phone (###-####) Fax (###-####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR
Alternate Phone (###-####) Fax (###-#####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix First	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR
Alternate Phone (###-####) Fax (###-####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix First Middle	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR BERNARD
Alternate Phone (###-####) Fax (###-####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix First Middle Last	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR BERNARD
Alternate Phone (###-####) Fax (###-####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix Prefix First Middle Last Suffix	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR BERNARD KADLUBAR
Alternate Phone (###-####) Fax (###-####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix First First Middle Last Suffix Title	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR BERNARD BERNARD KADLUBAR SR. EHS SPECIALIST
Alternate Phone (### ####) Fax (### #####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix First Niddle Last Suffix Suffix Title Enter new address or copy one from list:	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR BERNARD BERNARD KADLUBAR SR. EHS SPECIALIST
Alternate Phone (### #####) Fax (### ######) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix Prefix First Middle Last Suffix Title Enter new address or copy one from list: Mailing Address	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR BERNARD BERNARD KADLUBAR SR. EHS SPECIALIST EP Energy E&P Company, L.P.
Alternate Phone (###-####) Fax (###-#####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix Organization Name Prefix First Middle Last Suffix Title Enter new address or copy one from list: Mailing Address Address Type Mailing Address (include Suite or Bldg. here, if	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR BERNARD BERNARD KADLUBAR SR. EHS SPECIALIST EP Energy E&P Company, L.P. Domestic
Alternate Phone (### #####) Fax (### #####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix Organization Name Prefix First First Middle Last Suffix Title Enter new address or copy one from list: Mailing Address Address Type Mailing Address (include Suite or Bldg. here, if applicable)	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR BERNARD KADLUBAR SR. EHS SPECIALIST EP Energy E&P Company, L.P. Domestic 1001 LOUISIANA ST
Alternate Phone (### ####) Fax (### ####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix Organization Name Prefix First First Middle Last Suffix Last Suffix Title Enter new address or copy one from list: Mailing Address Address Type Mailing Address (include Suite or Bldg. here, if applicable) Routing (such as Mail Code, Dept., or Attn:)	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR BERNARD BERNARD SR. EHS SPECIALIST SR. EHS SPECIALIST EP Energy E&P Company, L.P. Domestic 1001 LOUISIANA ST

http://ida.tceq.texas.gov/steersstaff/index.cfm?fuseaction=openadmin.viewcor&submitId=683621[1/22/2014 6:57:50 AM]

Phone (###-###-####)	7139975464
Extension	
Alternate Phone (###-####-####)	
Fax (###-###-####)	
E-mail	BERNARD.KADLUBAR@EPENERGY.COM

Technical Contact

Person TCEQ should contact for questions about this application:	
Same as another contact?	
Organization Name	EP ENERGY E&P COMPANY LP
Prefix	MR
First	BERNARD
Middle	
Last	KADLUBAR
Suffix	
Title	SR. EHS SPECIALIST
Enter new address or copy one from list:	
Mailing Address	
Address Type	Domestic
Mailing Address (include Suite or Bldg. here, if applicable)	1001 LOUISIANA ST
Routing (such as Mail Code, Dept., or Attn:)	PO BOX 4660
City	HOUSTON
State	ТХ
ZIP	77002
Phone (###-###+#)	7139975464
Extension	
Alternate Phone (###-####-####)	
Fax (###-###-####)	
E-mail	BERNARD.KADLUBAR@EPENERGY.COM

OGS General Information- Standard Permit New Sites

1) Is this a new or existing site?	New
2) Select the Oil and Gas rule being applied for	6002 - NON RULE 2012-NOV-08
3) In what county is the site located?	CROCKETT
4) Is this site a petroleum storage and transfer unit with a total storage capacity exceeding 300,000 barrels according to the PSD source categories?	Νο
4.1. Are emissions of any criteria pollutant increasing by 250 tpy?	No
5) Does this business qualify as a small business, non- profit organization, or small government entity?	No

Scope Standard Permits New Sites	
1) Are all emissions from operationally dependent facilities located within a 1/4 mile included in this registration?	Yes
2) Has the TCEQ Oil and Gas Spreadsheet been used to calculate emissions for this registration and will it be attached?	Yes
3) When relying on control or recovery devices in emission calculations, are you going to monitor and keep records, per Table 8?	NA
MSS Standard Permit New Sites	
1) Will planned MSS emissions be registered with this authorization?	Νο
Standard Permit New	
1) Whichever occurred first, is this registration being submitted within 90 days from either the start of operation or implemented changes?	Yes
2) What are the annual VOC emissions in tons per year (tpy) for this registration?	97.82
3) What are the total steady-state emissions from crude oil or condensate in lb/hr for this registration?	103.59
4) What are the total periodic emissions from crude oil or condensate in lb/hr if less than 30 psig?	22.36
5) What are the total periodic emissions from crude oil or condensate in lb/hr if greater than 30 psig?	0
6) What are the total VOC steady-state emissions from natural gas in lb/hr for this registration?	0
7) What are the total periodic emissions from natural gas VOC in lb/hr if less than 30 psig?	0
8) What are the total periodic emissions from natural gas VOC in lb/hr if more than 30 psig?	0
9) What are the total annual benzene emissions in tpy?	0.16
10) What are the total steady-state benzene emissions in lb/hr for this registration?	0.16
11) What are the total periodic emissions from benzene in lb/hr if less than 30 psig?	0
12) What are the total periodic emissions from benzene in lb/hr if more than 30 psig?	0
13) What are the total annual hydrogen sulfide (H2S) emissions in tpy for this registration?	0.01
14) What are the total steady-state H2S emissions in lb/hr for this registration?	0.01
15) What are the total periodic emissions from H2S in lb/hr if less than 30 psig?	0
16) What are the total periodic emissions from H2S in	0

lb/hr if greater than 30 psig?	
17) What are the total annual SO2 emissions in tpy for this registration?	0.01
18) What are the total steady-state SO2 emissions in lb/hr for this registration?	0.01
19) What are the total periodic SO2 emissions in lb/hr if less than 30 psig for this registration?	0
20) What are the total annual NOx emissions in tpy for this registration?	0.36
21) What are the total steady-state NOx emissions in lb/hr for this registration?	0.08
22) What are the total annual CO emissions in tpy for this registration?	0.3
23) What are the total steady-state CO emissions in lb/hr for this registration?	0.07
24) What are the total annual PM10/PM2.5 emissions in tpy for this registration?	0.05
25) What are the total steady-state PM10/PM2.5 emissions in lb/hr for this registration?	0.01
26) What is the distance in feet to the nearest property line?	5500
27) What is the distance in feet to the nearest receptor?	5500

Best Management Practice Standard Permit New Sites

1) Has a program been developed and will it be followed to replace, repair, and/or maintain facilities in good working order?	Yes	
2) Are there any engines or turbines located at this site?	No	
3) Are there any open-topped tanks or ponds located at this site?	No	
4) Will all fugitive components found to be leaking be repaired in a timely manner consistent with the rule?	Yes	
5) Will tank hatches remain closed (but not completely sealed in order to maintain safe design functionality) except during sampling, gauging, loading, unloading, or planned maintenance activities?	Yes	
6) Will new and reworked valves and piping connections be located in a place that is reasonably accessible for leak checking?	Yes	
7) When a Leak Detection and Repair (LDAR) program has been used to reduce emissions, have the requirements of Table 9 been met?	NA	
8) Are there any tanks or vessels located at this site?	Yes	
8.1. List the color of the tanks or vessels.	Tan	
8.2. Are any tanks applicable to Chapter 115, 40 CFR part 60, or any other state or federal standards?	No	
9) Are any of the following units needed to meet the limitations of this rule?	None	

http://ida.tceq.texas.gov/steersstaff/index.cfm?fuseaction=openadmin.viewcor&submitId=683621[1/22/2014 6:57:50 AM]

10) If there are any other state or federal standards applicable to this site, be prepared to attach an explanation showing how the requirements have b met.	
11) Will the site be in compliance with all other recordkeeping, sampling and monitoring requirements?	Yes
OGS Attachments Standard Perm	its New Sites
Please attach all required documents to complete	he project.
[File Properties]	
File Name	UL 39-11-1H NR Standard Permit 9-24-2013.pdf
Hash	302CB492F21E75A532C4891EEE7D0BB0E3C56B6AA011EC37C91D0DF2EBE0C829
MIME-Type	application/pdf
Please attach additional information needed to cor	plete the registration.
[File Properties]	
File Name	<a href="/ePermitsExternalWEB/file?<br">fileId=11041>University Lands 39-11-1H 09-24- 2013.xlsm
Hash	3FE8EAC35406A3B7577642949EEB728016F01E5E5B21F818BC87A8CBC9B6FCB4
MIME-Type	application/vnd.ms-excel.sheet.macroenabled.12

Please attach any other information needed to complete the registration.

Certification

The electronic signature below indicates that the Responsible Official has knowledge of the facts herein set forth and that the same are true, accurate, and complete to the best of my knowledge and belief. By this signature, the maximum emission rates listed on this certification reflect the maximum anticipated emissions due to the operation of this facility and all representations in this certification of emissions are conditions upon which the facilities and sources will operate. It is understood that it is unlawful to vary from these representations unless the certification is first revised. The signature certifies that to the best of the Responsible Officials knowledge and belief, the project will satisfy the conditions and limitations of the indicated exemption or permit by rule and the facility will operated in compliance with all regulations of the Texas Commission on Environmental Quality and with Federal U.S. Environmental Protection Agency regulations governing air pollution. The signature below certifies that, based on information and belief formed after reasonable inquiry, the statements and information above and contained in the attached document(s) are true, accurate, and complete.

- 1. I am Bernard J Kadlubar, the owner of the STEERS account ER031441.
- 2. I have the authority to sign this data on behalf of the applicant named above.
- 3. I have personally examined the foregoing and am familiar with its content and the content of any attachments, and based upon my personal knowledge and/or inquiry of any individual responsible for information contained herein, that this information is true, accurate, and complete.
- 4. I further certify that I have not violated any term in my TCEQ STEERS participation agreement and that I have no reason to believe that the confidentiality or use of my password has been compromised at any time.
- 5. I understand that use of my password constitutes an electronic signature legally equivalent to my written signature.
- 6. I also understand that the attestations of fact contained herein pertain to the implementation, oversight and enforcement of a state and/or federal environmental program and must be true and complete to the best of my knowledge.
- 7. I am aware that criminal penalties may be imposed for statements or omissions that I know or have reason to believe are untrue or misleading.

- 8. I am knowingly and intentionally signing OGS SP for New Registration.
- 9. My signature indicates that I am in agreement with the information on this form, and authorize its submittal to the TCEQ.

OWNER OPERATOR Signature: Bernard J Kadlubar OWNER OPERATOR

Account Number:	ER031441
Signature IP Address:	136.143.128.40
Signature Date:	2013-09-26
Signature Hash:	051ECE7A58C94EA32F05C98E1CFB1CF9E680F3AC2EE24201B2277B0AA388E262
Form Hash Code at time of Signature:	7D238DF172ED7ED3DC4C24ED4056FEF9A22EAB7484F319A9BFA1ECADECF5C65A

Fee Payment

Transaction by:	The application fee payment transaction was made by ER028035/Paul E Deciutiis
Paid by:	The application fee was paid by PAUL DECIUTIIS
Fee Amount:	\$850.00
Paid Date:	The application fee was paid on 2013-09-26
Transaction/Voucher number:	The transaction number is 582EA000150026 and the voucher number is 188776

Submission

Reference Number:	The application reference number is 74639
Submitted by:	The application was submitted by ER028035/Paul E Deciutiis
Submitted Timestamp:	The application was submitted on 2013-09-26 at 08:19:56 CDT
Submitted From:	The application was submitted from IP address 72.183.111.162
Confirmation Number:	The confirmation number is 75972
Steers Version:	The STEERS version is 5.90
Permit Number:	The permit number is 113502

Additional Information

Application Creator: This account was created by Paul E Deciutiis

Non-Rule Standard Permit Registration

University Lands 39-11-1H Facility Crockett, Barnhart Count SP Registration No. 113502

Regulated Entity No. RN106118060

Prepared for:

EP Energy E&P Company, L.P. 1001 Louisiana Street Houston, Texas 77002 TCEQ Customer Reference No. CN604089854

Prepared by:

Kane Environmental Engineering, Inc. 11400 W. Parmer Lane, #98 Cedar Park, Texas 78613 Project No. 13-620

September 2013

TABLE OF CONTENTS

1.0 INTRODUCTION	. 3
2.0 PROCESS DESCRIPTION	. 4
3.0 EMISSION CALCULATIONS	. 5

ATTACHMENT A Facility Diagrams

- Plot Plan
- Area Map

ATTACHMENT B Supporting Documentation

- Gas, Liquid and Flash Analyses
- EPA Tanks 4.09d Report

ATTACHMENT C Emission Calculations

ATTACHMENT D TCEQ Forms

- TCEQ Core Data Form
- Table 7a

1.0 INTRODUCTION

EP Energy E&P Company L.P. (EP Energy) currently operates the University Lands 39.7 1H Facility located near Barnhart in Crockett County under PBR No. 95700. EP Energy plans to update the facility equipment and operations that will result in potential emissions of VOC greater than 25 tpy and will no longer meet the requirements of a Permit-by-Rule. Although the site is located in Crockett County, EP Energy is voluntarily submitting a Non-Rule Oil and Gas Standard Permit.

The site will consist of:

- (1) Process vent for produced gas, EPN V1;
- (2) 500 bbl Crude oil storage tanks, EPNs T1, T2;
- (2) 500 bbl Produced water storage tanks, EPNs WT1, WT2;
- (1) 1.0 MMBtu/hr Heater treater, EPN H1;
- Crude oil and Produced water loading areas, EPNs L1, L2;
- Process equipment fugitives, EPN F1;
- Separation and metering equipment

All sources are located on property that is leased with the nearest property line to any emission source of greater than 5,500 feet. The emissions generated at this facility include carbon monoxide (CO), nitrogen oxides (NO_x), particulate matter (PM₁₀), sulfur dioxide (SO₂), and volatile organic compounds (VOC) and are summarized in **Attachment C**. The information in this registration includes a description of the process, emissions calculations, gas analyses, and the appropriate TCEQ tables and forms to support this standard permit claim.

2.0 PROCESS DESCRIPTION

The design basis of the facility is to process up to 5.0 MMscfd of sweet gas, 100 bpd of crude oil and 200 bpd of produced water.

Wellstreams containing oil, gas and water enter the facility. The oil, water and gas from the wells are separated in a 3-phase separator and the products each join the single-phase lines respectively. Part of the gas is taken from the gas line and sent through a small scrubber to remove any liquid hydrocarbons and used for fuel for the heater treater. The remainder of the gas flows to the sales gas pipeline or is vented to atmosphere with produced gas.

The water is sent to the produced water storage tanks. The oil flows to the heater treater for additional treatment. The treated oil flows to the oil storage tanks. The tank and flash emissions are vented to atmosphere. Produced water and crude oil are trucked out of the facility.

3.0 EMISSION CALCULATIONS

Emission sources from the facility will include crude oil and produced water storage tanks, separation and metering equipment, truck loading, and equipment fugitive components. The supporting documentation and TCEQ Oil and Gas emission calculation spreadsheet used to complete these calculations are included in **Attachments B and C**.

GAS-FIRED HEATERS

EPN H1 - Emissions from the heater treater will consist of products of sweet field gas combustion. Combustion emissions are estimated using current emission factors from AP-42, Fifth Edition, Tables 1.4-1 (NO_x & CO) and 1.4-2 (VOC, SO₂, & PM_{10}).

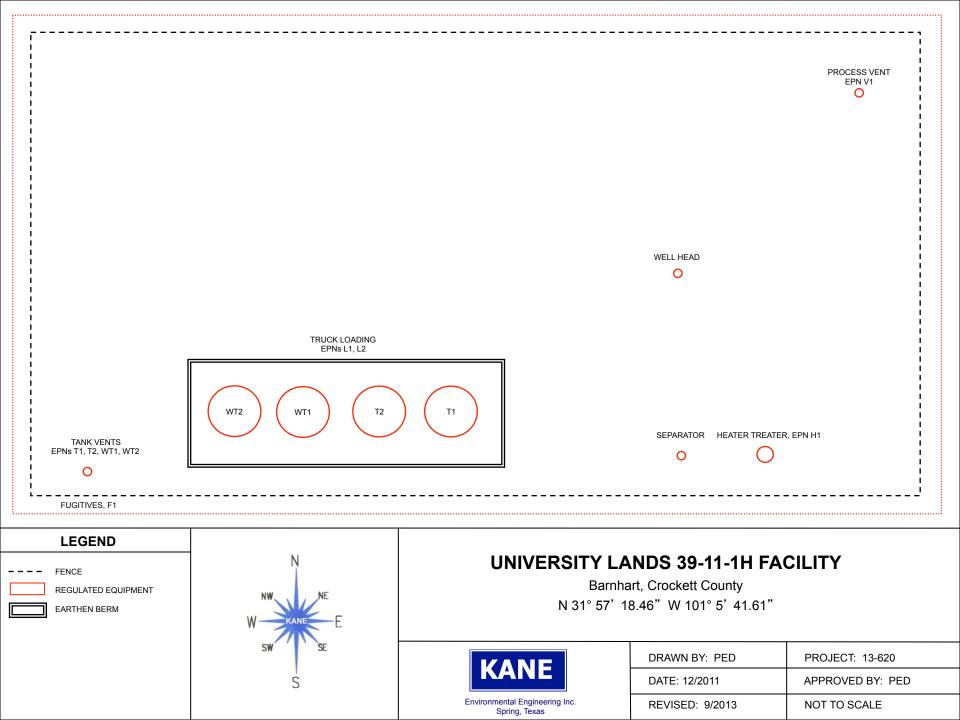
PROCESS VENTS

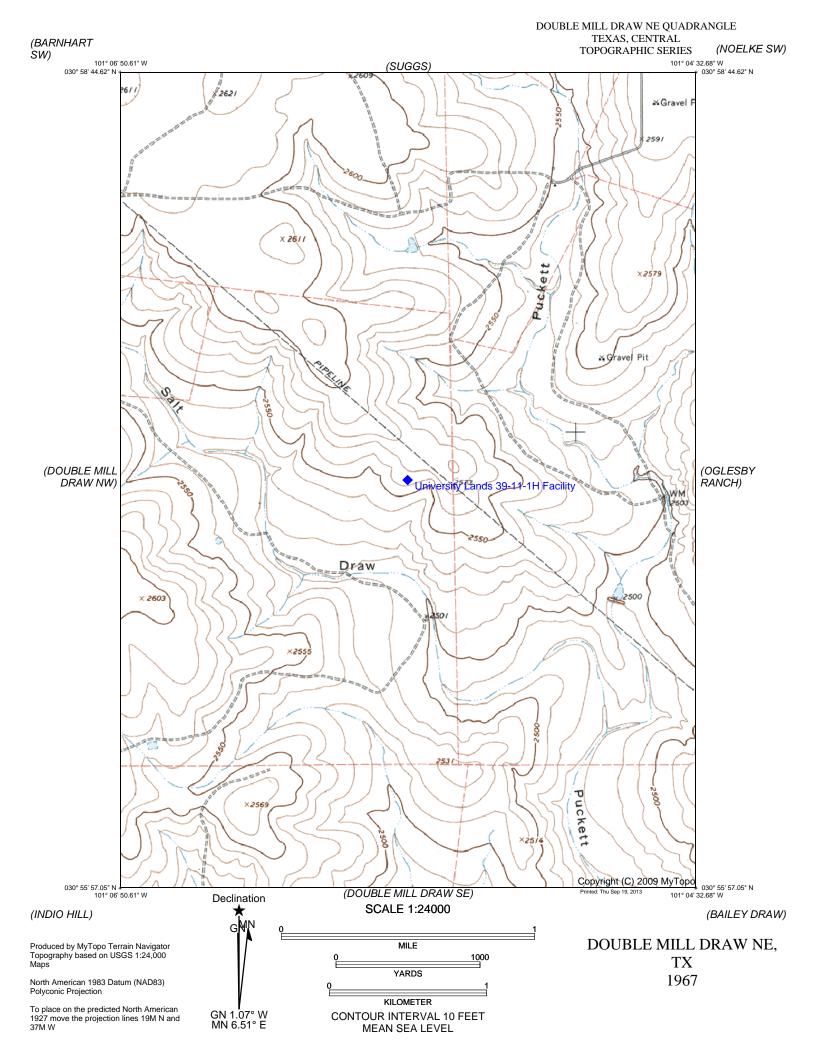
EPN V1 – As needed, a small amount of produced gas, not to exceed 400 Mcfd, is vented to atmosphere for up to 1,400 hours per year.

TANK LOSSES AND SEPARATOR FLASH

EPNs: T1, T2 and WT1, WT2 - Tank flash emissions and tank working/breathing losses are calculated for the 500-bbl vertical fixed roof atmospheric crude oil storage tanks. Flash is calculated with a maximum crude oil production rate using the measured flash analysis provided by FESCO Ltd from a representative facility producing for the same formation with similar processes. Tank working and breathing losses are calculated using EPA Tanks 4.09d and composition is determined by a representative liquid analysis. The tanks are vented to atmosphere.

TRUCK LOADING LOSSES


EPN L1, L2 – Truck loading emissions are calculated using current factors in AP-42, Fifth Edition, Chapter 5, Section 5.2.2.1.1, Loading Losses, and site-specific data. Loading will be unassisted using a submerged fill pipe for crude oil and produced water loading operations. For conservatism, produced water loading assuming a 1% cut of crude oil. Crude oil and produced water are sent to atmospheric storage tanks prior to transport offsite by tanker truck and is uncontrolled.


EQUIPMENT FUGITIVES

EPN F1 – Equipment fugitive emissions are estimated using facility component counts and the emissions factors in the TCEQ Technical Guidance on Equipment Leak Fugitives dated October 2000. Emissions from fugitives are conservatively estimated using a laboratory analysis of representative gas and liquid compositions.

ATTACHMENT A

Facility Diagrams

ATTACHMENT B

Supporting Documentation

TABLE 1-C

COMPOSITIONAL ANALYSIS OF THE SEPARATOR GAS, OIL AND MATHEMATICALLY RECOMBINED WELLSTREAM THROUGH $C_{\rm 31+}$

SEPARATOR GOR.....: 320 Scf/Sep Bbl SEPARATOR PRESSURE.....: 63 psig SEPARATOR TEMPERATURE.....: 109 °F

	SEPARA	TOR GAS	SEPARA	TOR OIL	WELLS	TREAM
		*		Liquid		Liquid
Component	Mole%	GPM	Mole %	Volume %	Mole %	Volume %
Hydrogen Sulfide	0.000	0.000	0.000	0.000	0.000	0.000
Nitrogen	2.542	0.000	0.062	0.010	0.926	0.197
Carbon Dioxide	0.846	0.000	0.040	0.010	0.321	0.106
Methane	62.693	0.000	2.013	0.501	23.149	7.608
Ethane	14.381	3.825	2.148	0.844	6.409	3.324
Propane	13.195	3.611	6.916	2.795	9.103	4.857
Iso-butane	0.977	0.318	1.115	0.536	1.067	0.677
N-butane	3.444	1.079	6.053	2.801	5.144	3.143
2-2 Dimethylpropane	0.000	0.000	0.018	0.010	0.012	0.009
Iso-pentane	0.597	0.217	2.353	1.265	1.741	1.235
N-pentane	0.577	0.208	3.018	1.606	2.168	1.523
2-2 Dimethylbutane	0.049	0.020	0.011	0.007	0.025	0.020
Cyclopentanes	0.009	0.003	0.000	0.000	0.003	0.002
2-3 Dimethylbutane	0.098	0.040	0.540	0.325	0.386	0.307
2 Methylpentane	0.072	0.030	1.114	0.679	0.751	0.605
3 Methylpentane	0.000	0.000	0.981	0.588	0.639	0.506
Other Hexanes	0.000	0.000	0.000	0.000	0.000	0.000
n-Hexane	0.107	0.044	1.752	1.058	1.179	0.940
Methylcyclopentane	0.003	0.001	2.589	1.346	1.688	1.158
Benzene	0.009	0.003	0.235	0.097	0.156	0.085
Cyclohexane	0.035	0.012	1.150	0.575	0.762	0.503
2-Methylhexane	0.012	0.006	0.689	0.471	0.453	0.409
3-Methylhexane	0.018	0.008	0.819	0.552	0.540	0.481
2,2,4 Trimethylpentane	0.022	0.011	0.000	0.000	0.008	0.008
Other Heptanes	0.193	0.084	4.071	2.603	2.720	2.296
n-Heptane	0.032	0.015	1.534	1.040	1.011	0.904
Methylcyclohexane	0.005	0.002	2.347	1.386	1.531	1.193
Toluene	0.006	0.002	0.591	0.290	0.387	0.251
Other C8's	0.046	0.021	6.295	4.334	4.118	3.743
n-Octane	0.007	0.004	1.360	1.022	0.888	0.882
Ethylbenzene	0.002	0.001	0.100	0.057	0.066	0.049
M&P-Xylene	0.002	0.001	0.385	0.219	0.251	0.189
O-Xylene	0.001	0.000	0.386	0.216	0.252	0.186
Other C-9's	0.012	0.006	4.508	3.466	2.942	2.986
n-Nonane	0.001	0.001	0.973	0.804	0.634	0.692
Other C10's	0.005	0.003	4.144	3.502	2.702	3.015
n-Decane	0.001	0.001	0.701	0.632	0.457	0.544
Undecanes	0.001	0.001	4.206	3.646	2.741	3.138
Dodecanes	0.000	0.000	3.750	3.512	2.444	3.021
Tridecanes	0.000	0.000	3.446	3.460	2.245	2.977

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: El Paso Production Oil & Gas Company P. O.Box 2511 Houston, Texas 77252

Sample: University 38-29 No. 1-H Separator Gas Spot Sample @ 105 psig & 53 °F

Date Sampled: 01/12/2011

Job Number: 10290.001

COMPONENT	MOL%	GPM
Nitrogen	3.200	
Carbon Dioxide	0.482	
Methane	78.426	
Ethane	8.607	2.289
Propane	6.045	1.656
Isobutane	0.444	0.144
n-Butane	1.694	0.531
2-2 Dimethylpropane	0.012	0.005
Isopentane	0.318	0.116
n-Pentane	0.339	0.122
Hexanes	0.184	0.076
Heptanes Plus	<u>0.249</u>	<u>0.101</u>
Totals	100.000	5.039

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.360	(Air=1)
Molecular Weight	96.99	
Gross Heating Value	5052	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.730	(Air=1)
Compressibility (Z)	0.9966	
Molecular Weight	21.06	
Gross Heating Value		
Dry Basis	1215	BTU/CF
Saturated Basis	1194	BTU/CF

Base Conditions: 14.650 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: JF Processor: DJV Cylinder ID: X-410

David Dannhaus 361-661-7015

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT

COMPONENT	MOL %	GPM	WT %	
Nitrogen	3.200		4.256	
Carbon Dioxide	0.482		1.007	
Methane	78.426		59.730	
Ethane	8.607	2.289	12.287	
Propane	6.045	1.656	12.655	
Isobutane	0.444	0.144	1.225	
n-Butane	1.694	0.531	4.674	
2,2 Dimethylpropane	0.012	0.005	0.041	
Isopentane	0.318	0.116	1.089	
n-Pentane	0.339	0.122	1.161	
2,2 Dimethylbutane	0.001	0.000	0.004	
Cyclopentane	0.032	0.013	0.107	
2,3 Dimethylbutane	0.003	0.001	0.012	
2 Methylpentane	0.051	0.021	0.209	
3 Methylpentane	0.036	0.015	0.147	
n-Hexane	0.061	0.025	0.250	
Methylcyclopentane	0.056	0.019	0.224	
Benzene	0.009	0.003	0.033	
Cyclohexane	0.027	0.009	0.108	
2-Methylhexane	0.007	0.003	0.033	
3-Methylhexane	0.010	0.005	0.048	
2,2,4 Trimethylpentane	0.000	0.000	0.000	
Other C7's	0.046	0.020	0.217	
n-Heptane	0.016	0.007	0.076	
Methylcyclohexane	0.023	0.009	0.107	
Toluene	0.006	0.002	0.026	
Other C8's	0.029	0.013	0.152	
n-Octane	0.003	0.002	0.016	
Ethylbenzene	0.001	0.000	0.005	
M & P Xylenes	0.001	0.000	0.005	
O-Xylene	0.000	0.000	0.000	
Other C9's	0.009	0.005	0.054	
n-Nonane	0.001	0.001	0.006	
Other C10's	0.002	0.001	0.013	
n-Decane	0.000	0.000	0.000	
Undecanes (11)	<u>0.003</u>	0.002	<u>0.023</u>	
Totals	100.000	5.039	100.000	
Computed Real Characteristics of Total Sample				

· · · · · · · · · · · · · · · · · · ·		
Specific Gravity	0.730	(Air=1)
Compressibility (Z)	0.9966	
Molecular Weight	21.06	
Gross Heating Value		
Dry Basis	1215	BTU/CF
Saturated Basis	1194	BTU/CF

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

Sample: University 38-29 No. 1-H Separator Gas Spot Sample @ 105 psig & 53 °F

Date Sampled: 01/12/2011

Job Number: 10290.001

GLYCALC FORMAT

COMPONENT	MOL%	GPM	Wt %
Carbon Dioxide	0.482		1.007
Hydrogen Sulfide			
Nitrogen	3.200		4.256
Methane	78.426		59.730
Ethane	8.607	2.289	12.287
Propane	6.045	1.656	12.655
Isobutane	0.444	0.144	1.225
n-Butane	1.706	0.536	4.715
Isopentane	0.318	0.116	1.089
n-Pentane	0.339	0.122	1.161
Cyclopentane	0.032	0.013	0.107
n-Hexane	0.061	0.025	0.250
Cyclohexane	0.027	0.009	0.108
Other C6's	0.091	0.037	0.372
Heptanes	0.135	0.054	0.598
Methylcyclohexane	0.023	0.009	0.107
2,2,4 Trimethylpentane	0.000	0.000	0.000
Benzene	0.009	0.003	0.033
Toluene	0.006	0.002	0.026
Ethylbenzene	0.001	0.000	0.005
Xylenes	0.001	0.000	0.005
Octanes Plus	<u>0.047</u>	<u>0.023</u>	0.264
Totals	100.000	5.039	100.000

Real Characteristics Of Octanes Plus:

Specific Gravity	4.105	(Air=1)
Molecular Weight	118.49	
Gross Heating Value	6015	BTU/CF

Real Characteristics Of Total Sample:

Specific Gravity	0.730	(Air=1)
Compressibility (Z)	0.9966	
Molecular Weight	21.06	
Gross Heating Value		
Dry Basis	1215	BTU/CF
Saturated Basis	1194	BTU/CF

FESCO, Ltd. 1100 Fesco Avenue - Alice, Texas 78332

For: El Paso Production Oil & Gas Company P. O.Box 2511 Houston, Texas 77252 Date Sampled: 02/22/2011

Date Analyzed: 02/24/2011

Sample: University 38-29 No. 1-H

Job Number: J11076

FLASH LIBERATION OF HYDROCARBON LIQUID				
Separator HC Liquid Stock Tank				
Pressure, psig	54	0		
Temperature, °F	81	70		
Gas Oil Ratio (1)		19.1		
Gas Specific Gravity (2)		1.211		
Separator Volume Factor (3)	1.0184	1.000		

STOCK TANK FLUID PROPERTIES	
Shrinkage Recovery Factor (4)	0.9819
Oil API Gravity at 60 °F	38.55
Reid Vapor Pressure, psi (5)	4.76

Quality Control Check									
	Sampling Conditions Test Samples								
Cylinder No.		W-778*	W-1282						
Pressure, psig	54	42	41						
Temperature, °F	81	69	69						

(1) - Scf of flashed vapor per barrel of stock tank oil

J. G.

(2) - Air = 1.000

(3) - Separator volume / Stock tank volume

(4) - Fraction of first stage separator liquid

(5) - Absolute pressure at 100 deg F

Analyst:

* Sample used for flash study

Base Conditions: 14.65 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

David Dannhaus 361-661-7015

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

For: El Paso E & P Company L.P. P. O. Box 2511 Houston, Texas 77252

Sample: University 38-29 No. 1-H Gas Evolved from Hydrocarbon Liquid Flashed From 54 psig & 81 °F to 0 psig & 75 °F

Date Sampled: 02/24/2011

Job Number: 11076.001

CHROMATOGRAPH EXTENDED ANALYSIS - SUMMATION REPORT

COMPONENT	MOL%	GPM
Hydrogen Sulfide*	< 0.001	
Nitrogen	0.797	
Carbon Dioxide	0.752	
Methane	37.880	
Ethane	18.830	5.007
Propane	23.504	6.439
Isobutane	2.179	0.709
n-Butane	9.027	2.830
2-2 Dimethylpropane	0.035	0.013
Isopentane	1.952	0.710
n-Pentane	2.232	0.804
Hexanes	1.346	0.552
Heptanes Plus	<u>1.466</u>	<u>0.573</u>
Totals	100.000	17.637

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.249	(Air=1)
Molecular Weight	93.06	
Gross Heating Value	4864	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.211	(Air=1)
Compressibility (Z)	0.9890	
Molecular Weight	34.70	
Gross Heating Value		
Dry Basis	1993	BTU/CF
Saturated Basis	1959	BTU/CF

*Hydrogen Sulfide tested in laboratory by Stained Tube Method (GPA 2377) Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 14.650 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Analyst: JF Processor: JF Cylinder ID: FL- 6S

David Dannhaus 361-661-7015

CHROMATOGRAPH EXTENDED ANALYSIS TOTAL REPORT

COMPONENT	MOL %	GPM	WT %
Hydrogen Sulfide*	< 0.001		< 0.001
Nitrogen	0.797		0.643
Carbon Dioxide	0.752		0.954
Methane	37.880		17.511
Ethane	18.830	5.007	16.316
Propane	23.504	6.439	29.866
Isobutane	2.179	0.709	3.650
n-Butane	9.027	2.830	15.119
2,2 Dimethylpropane	0.035	0.013	0.073
Isopentane	1.952	0.710	4.058
n-Pentane	2.232	0.804	4.640
2,2 Dimethylbutane	0.006	0.002	0.015
Cyclopentane	0.226	0.094	0.457
2,3 Dimethylbutane	0.022	0.009	0.055
2 Methylpentane	0.374	0.154	0.929
3 Methylpentane	0.264	0.107	0.656
n-Hexane	0.454	0.186	1.127
Methylcyclopentane	0.411	0.141	0.997
Benzene	0.058	0.016	0.131
Cyclohexane	0.194	0.066	0.470
2-Methylhexane	0.050	0.023	0.144
3-Methylhexane	0.072	0.033	0.208
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C7's	0.307	0.133	0.878
n-Heptane	0.101	0.046	0.292
Methylcyclohexane	0.134	0.054	0.379
Toluene	0.022	0.007	0.058
Other C8's	0.104	0.048	0.330
n-Octane	0.005	0.003	0.016
Ethylbenzene	0.001	0.000	0.003
M & P Xylenes	0.001	0.000	0.003
O-Xylene	0.000	0.000	0.000
Other C9's	0.006	0.003	0.022
n-Nonane	0.000	0.000	0.000
Other C10's	0.000	0.000	0.000
n-Decane	0.000	0.000	0.000
Undecanes (11)	<u>0.000</u>	<u>0.000</u>	<u>0.000</u>
Totals	100.000	17.637	100.000

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.211	(Air=1)
Compressibility (Z)	0.9890	
Molecular Weight	34.70	
Gross Heating Value		
Dry Basis	1993	BTU/CF
Saturated Basis	1959	BTU/CF

TANKS 4.0.9d Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	500-bbl Tank Barnhart Texas EP Energy Vertical Fixed Roof Tank 100 bpd
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	25.00 12.00 24.00 13.00 20,304.71 75.50 1,533,000.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	White/White Good White/White Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 0.00 0.06
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Midland-Odessa, Texas (Avg Atmospheric Pressure = 13.28 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

500-bbl Tank - Vertical Fixed Roof Tank Barnhart, Texas

	Daily Liquid Surf. Temperature (deg F)				Liquid Bulk Temp	Vapo	or Pressure (psia)		Vapor Mol.	Liquid Mass	Vapor Mass	Mol
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weigh
Crude Oil - RVP 4.76	Jan	55.54	49.26	61.82	63.30	2.4600	2.1636	2.7885	34.7700			207.00
Crude Oil - RVP 4.76	Feb	57.96	51.15	64.77	63.30	2.5829	2.2496	2.9549	34.7700			207.00
Crude Oil - RVP 4.76	Mar	62.28	54.64	69.93	63.30	2.8141	2.4155	3.2640	34.7700			207.00
Crude Oil - RVP 4.76	Apr	66.63	58.71	74.55	63.30	3.0634	2.6218	3.5629	34.7700			207.00
Crude Oil - RVP 4.76	May	70.44	62.52	78.35	63.30	3.2960	2.8273	3.8251	34.7700			207.00
Crude Oil - RVP 4.76	Jun	73.56	65.82	81.30	63.30	3.4972	3.0154	4.0389	34.7700			207.00
Crude Oil - RVP 4.76	Jul	74.50	67.00	82.00	63.30	3.5597	3.0856	4.0906	34.7700			207.00
Crude Oil - RVP 4.76	Aug	73.75	66.52	80.98	63.30	3.5098	3.0570	4.0148	34.7700			207.00
Crude Oil - RVP 4.76	Sep	69.97	63.56	76.38	63.30	3.2669	2.8857	3.6875	34.7700			207.00
Crude Oil - RVP 4.76	Oct	65.56	59.00	72.12	63.30	3.0004	2.6370	3.4031	34.7700			207.00
Crude Oil - RVP 4.76	Nov	60.09	53.83	66.36	63.30	2.6949	2.3760	3.0474	34.7700			207.00
Crude Oil - RVP 4.76	Dec	56.37	50.25	62.49	63.30	2.5014	2.2081	2.8254	34.7700			207.00

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

500-bbl Tank - Vertical Fixed Roof Tank Barnhart, Texas

	Losses(lbs)							
Components	Working Loss Breathing Loss Total Emiss							
Crude Oil - RVP 4.76	1,621.59	410.14	2,031.73					

TANKS 4.0.9d Emissions Report - Summary Format Tank Indentification and Physical Characteristics

Identification User Identification: City: State: Company: Type of Tank: Description:	500-bbl Tank Barnhart Texas EP Energy Vertical Fixed Roof Tank 50 bpd
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	25.00 12.00 24.00 13.00 20,304.71 37.75 766,500.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	White/White Good White/White Good
Roof Characteristics Type: Height (ft) Slope (ft/ft) (Cone Roof)	Cone 0.00 0.06
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Midland-Odessa, Texas (Avg Atmospheric Pressure = 13.28 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

500-bbl Tank - Vertical Fixed Roof Tank Barnhart, Texas

	Daily Liquid Surf. Temperature (deg F)				Liquid Bulk Temp	Vapo	or Pressure (psia)		Vapor Mol.	Liquid Mass	Vapor Mass	Mol
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weigh
Crude Oil - RVP 4.76	Jan	55.54	49.26	61.82	63.30	2.4600	2.1636	2.7885	34.7700			207.00
Crude Oil - RVP 4.76	Feb	57.96	51.15	64.77	63.30	2.5829	2.2496	2.9549	34.7700			207.00
Crude Oil - RVP 4.76	Mar	62.28	54.64	69.93	63.30	2.8141	2.4155	3.2640	34.7700			207.00
Crude Oil - RVP 4.76	Apr	66.63	58.71	74.55	63.30	3.0634	2.6218	3.5629	34.7700			207.00
Crude Oil - RVP 4.76	May	70.44	62.52	78.35	63.30	3.2960	2.8273	3.8251	34.7700			207.00
Crude Oil - RVP 4.76	Jun	73.56	65.82	81.30	63.30	3.4972	3.0154	4.0389	34.7700			207.00
Crude Oil - RVP 4.76	Jul	74.50	67.00	82.00	63.30	3.5597	3.0856	4.0906	34.7700			207.00
Crude Oil - RVP 4.76	Aug	73.75	66.52	80.98	63.30	3.5098	3.0570	4.0148	34.7700			207.00
Crude Oil - RVP 4.76	Sep	69.97	63.56	76.38	63.30	3.2669	2.8857	3.6875	34.7700			207.00
Crude Oil - RVP 4.76	Oct	65.56	59.00	72.12	63.30	3.0004	2.6370	3.4031	34.7700			207.00
Crude Oil - RVP 4.76	Nov	60.09	53.83	66.36	63.30	2.6949	2.3760	3.0474	34.7700			207.00
Crude Oil - RVP 4.76	Dec	56.37	50.25	62.49	63.30	2.5014	2.2081	2.8254	34.7700			207.00

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

500-bbl Tank - Vertical Fixed Roof Tank Barnhart, Texas

	Losses(lbs)				
Components	Working Loss Breathing Loss Total Emi				
Crude Oil - RVP 4.76	1,382.00	410.14	1,792.15		

ATTACHMENT C

Facility Emission Calculations

Oil and Gas Emissions Spreadsheet with Impacts Analysis

Revised 05/06/2013

General Notes

*** Before beginning, make sure to enable macros, so that this spreadsheet will run properly. *** See the links below for more information on creating a trusted location and enabling macros for this spreadsheet.

Enable Macro Link

Trusted Location Link

See comments in individual cells and other written notes. Cells with red corners contain comments; place cursor anywhere in a cell which has a red corner, to view comment. These were added to guide you through using this spreadsheet and make it as easy as possible to use.

This spreadsheet should be used as follows: (1) Enter information into this Facility Information spreadsheet tab, (2) after running the macro (which is explained below), fill out the emission calculation tabs, (3) populate the Emissions Summary table (you press a button on the Emissions Summary tab and the macro will populate the table with the values from the emission calculation tabs), and (4) go through the impacts review tabs (if applicable). This basically means estimate what each of the individual source emissions are, then summarize them in a table, then evaluate the impact of the emissions (if impacts review is applicable).

If you want to use any of the impacts review tabs, you will need to have answered "Yes" to the initial question of "Are you using this to meet the new Barnett Shale area rule requirements?". You can press the "Reset" button at the bottom of this tab to have the question pop up again.

Yellow cells require information to be entered. Red cells contain calculated values.

Worst case emissions must be estimated on both an hourly and annual basis for air permitting purposes.

Hourly emissions must be based on worst case maximum parameters realistically expected to occur over the course of any one hour. As an example, where ambient temperature is used as a parameter to estimate <u>hourly</u> emissions, the maximum temperature from the hottest day of the year must be used.

<u>Annual</u> emissions can be based on average parameters. As an example, where ambient temperature is used as a parameter to estimate<u>annual</u> emissions, the average ambient temperature may be used.

This difference between hourly and annual emissions could potentially mean that separate calculations or program runs will have to be done to estimate hourly and annual emission rates.

<u>Planned Maintenance, Start-up, and Shutdown (MSS) versus Alternate Operating Scenarios</u>: Planned MSS emissions do not need to be claimed for oil and gas sites until January 5, 2014. Before this date, it is voluntary to factor in planned MSS emissions. Alternate operating scenario emissions should be factored in now. Although historically alternate operating scenarios have sometimes been treated as planned MSS, it is actually different and should be addressed now to ensure that during these periods and continuously, the applicable emission limits are not exceeded.

What is Different About Estimating Emissions for the Barnett Shale Area Rule Requirements?

There are level limits (or caps) for the different levels of authorization, which are: PBR Level 1, PBR Level 2, and Standard Permit. The level limits are emission limits of the following air pollutants: Total VOC, Total crude oil or condensate VOC, Total natural gas VOC, benzene, hydrogen sulfide (H_2S), sulfur dioxide (SO_2), nitrogen oxides (NOx), carbon monoxide (CO), and particulate matter (PM_{10} and $PM_{2.5}$). There are different level limits for hourly and annual emissions and within hourly emissions there are different level limits for steady state emissions versus periodic emissions.

There is an impacts review for both the Permit by Rule (PBR) and Standard Permit for the following air pollutants: benzene, H₂S, SO₂, and NOx.

VOC emissions need to be separated into (1) Crude Oil or Condensate VOC and (2) Natural Gas VOC.

Hourly and annual emissions need to be estimated. There are potentially three hourly emission types that need to be estimated (1) steady state hourly, (2) low pressure periodic, and (3) high pressure periodic. These are described in detail on the Emissions Summary tab.

Benzene emissions need to be speciated for all sources.

Oil and Gas Site General Information				
Administrative Inform	ation			
Company Name	EP Energy E&P Company LP			
Facility/Well Name	University Lands 39-11-1H Facility			
Field Name	Wolfcamp			
Nearest City/Town	Barnhart			
API Number/SIC Code	211111/1311			
Latitude/Longitude	30d 57' 20.24" / 101d 5' 40.26"			
County	Crockett			
Are you using a Form PI-7, PI-7-CERT, APD-CERT, PI-7 and APD- CERT, or are you using ePermits?	ePermits			
Customer Number, CNxxxxxxxx (if known)	CN604089854			
Regulated Entity Number, RNxxxxxxxx (if known)	RN106118060			
	<u>on</u>			
Natural Gas Site Throughput (MMSCF/day):	5			
Oil/Condensate Site Throughput (bbl/day):	100			
Produced Water Site Throughput (bbl/day):	200			
Are there any sour gas streams at this site?	No			
Is this site currently operational/producing?	Yes			
What is the date of the site start of construction or the date that the project changes were implemented (whichever is applicable to this project, anticipated date if in the future)?				
Has this site been registered before?	Yes			

Equipment/Processes at Site							
Before entering any numbers into the Equipment/Processes section of the table below, please make sure to review all of the comments in the cells of the table. These should make it clear what numbers need to be entered and where they need to be entered.							
Equipment/Process Types How many for this project? How many for this site?							
Fugitives	1	1					
IC Engines	1	1					
Turbines	0	0					
Diesel Engines	0	0					
Heaters-Boilers	1	1					
Oil / Condensate Tanks	2	2					
Produced Water Tanks	2	2					
Miscellaneous Tanks	0	0					
Loading Jobs	2	2					
Glycol Units	0	0					
Amine Units	0	0					
Vapor Recovery Units	0	0					
Flares-Vapor Combustors	1	1					
Thermal Oxidizers	0	0					
MSS Blowdowns	0	0					
MSS FLR Tank Landing Loss	0	0					
MSS Tank Non Forced Vent	0	0					
MSS Tank Forced Vent Degas	0	0					
MSS Other	0	0					
Other	0	0					

When you are finished entering information on this tab, press the "Run" button below. When it is pressed, the spreadsheet tabs needed will be added and the "Emissions Summary" tab will also be added with the number of rows corresponding to the number of emission points in this registration.

Before pressing "Run", please make sure to review all of the comments in the cells of the table above. These should make it clear what numbers need to be entered and where they need to be entered.

The spreadsheet can be reset if needed by pressing the "Reset" button below. If the "Reset" button is pressed, everything will be cleared and you can start over (the added sheets will disappear along with any data entered into the sheets). When the "Reset" button is pressed and there is anything to clear, a question will pop up asking "Delete all macro created worksheets?". Then if you click "Yes", the question will pop back up asking "Are you using this to meet the new Barnett Shale area requirements?".

If the "Run" button is pressed a second time, everything will be cleared and you can start over (the added sheets will disappear along with any data entered into the sheets). When the "Run" button is pressed a second time, a question will pop up asking "Delete all macro created worksheets?". The question will <u>not</u> pop back up asking "Are you using this to meet the new Barnett Shale area requirements?".

Do not press "Run" again or "Reset", unless you intend to clear all of the added sheets (and any data entered into the sheets). This means that it is important to make sure the right numbers of each equipment/process type are entered. If it is possible that an extra piece of equipment could be included, include it because it is better to have too many entered than not enough.

Run		Reset
	Next Tab	

Gas and Liquid Analyses

A) Enter information into the yellow boxes.

B) The purpose of this tab is to extract information from a lab analysis that will be used in emission calculations. Unlike the other other tabs which calculate emissions, nothing from this tab gets pulled to the Emissions Summary table. The big pieces of information needed for emissions estimates are the VOC, benzene, and H₂S weight percents. Sampling of gas and liquid streams from appropriate process sampling points is required in order to determine composition or other properties needed to estimate emissions such as heat content, specific gravity, and vapor pressure. It is essential that stream lab analyses/reports include a measurement of H₂S, individual HAPs, and at least all those hydrocarbons up to at least 10 carbon atoms per molecule (C10+).

C) There are two boxes on the left, for gas and liquid analyses, which take component weight percent inputs and there are two boxes on the right, for gas and liquid analyses, which take component mole percent inputs. You can either fill out the weight percent box <u>OR</u> the mole percent box, depending on what informaton you have available to you.

The boxes are set up in the following arrangement:

Gas Analysis Wt% Inputs	Gas Analysis Mol% Inputs
Liquid Analysis Wt% Inputs	Liquid Analysis Mol% Inputs

D) If weight percents are provided on the lab report, use the boxes on the left. If only mole percents are provided on the lab report, use the boxes on the right.

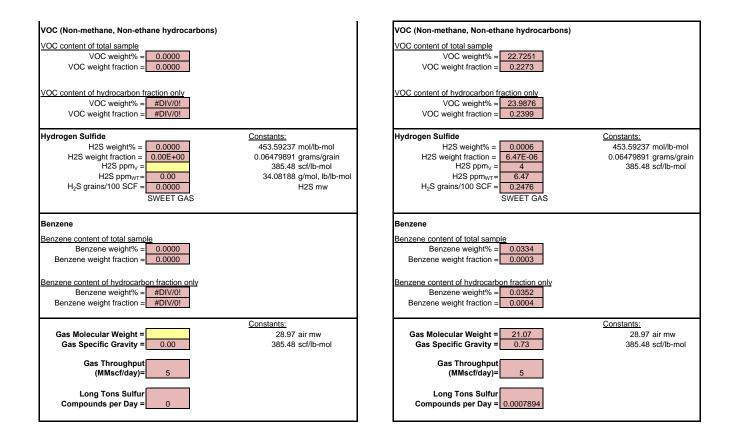
E) Make sure to select whether you are inputting weight percents or mole percents from the pull down menus below.

F) If you are using the weight percent boxes (left two), in addition to the component weight percents, you need to enter the gas molecular weight (molecular weight of the total sample) and the gas and liquid H₂S content in parts per million by volume (H₂S ppmv). This will allow for the calcultion of the gas specific gravity and the long tons of sulfur per day in the gas, and the determination of sweet versus sour gas.

G) If you are using the mole percent boxes (right two), in addition to the component mole percents, you need to enter a real value, specific to this sample, for the molecular weight of the dearnes plus (C10+) fraction. You may use the default values listed below for the moleclar weights of the other hexanes (C6), other heptanes (C7), other ocatnes (C8), and nonanes (C9) fractions, unless you have a more accurate number. If you enter number other than the default, you need to explain where the number came from and why it is appropriate to use.

H) What is expected to be inlcuded on these tables is the the inlet gas and liquid streams (the liquid would most likely be sampled from a separator if there is separation at the site). These tables can also be used for any sampled gas and liquid streams as needed. If needed, make a copy of this tab.

I) Use the box provided below for entering any notes necessary.


For the gas sample, I am inputting (pick from list): Select whether weight percents or mole percents are being entered for this gas sample.

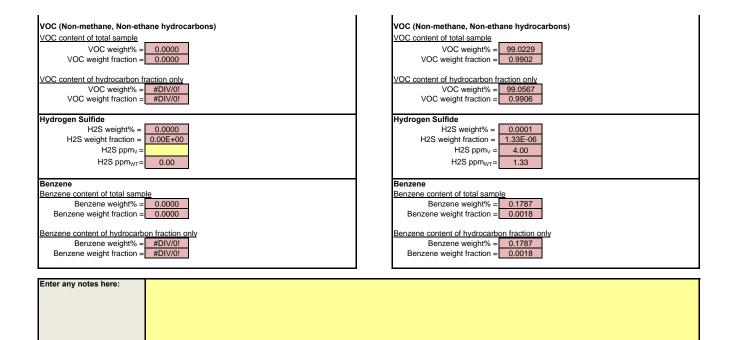
Then	fill	out	this	table	0

OR fill out this table.

Gas Analysis - Use if the Inputs are Weight Percents				
Analysis Identifier/Name				
What site is the sample from?				
If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).				
Where in the process was the sample taken?				
What is the temperature and pressure of the sample (include units)?				
Who analyzed the sample?				
Date of sample:				
Component	weight %			
hydrogen	Weight /0			
helium				
nitrogen				
CO2				
H2S				
methane (C1)				
ethane (C2)				
propane (C3)				
butanes (C4)				
pentanes (C5) benzene				
other hexanes (C6)				
toluene				
other heptanes (C7)				
ethylbenzene				
xylenes (o, m, p)				
other octanes (C8)				
nonanes (C9)				
decanes plus (C10+)				
Totals:	0.0000			

Gas Analysis - Use if the Inputs are Mole Percents						
Analysis Identifier/Name	Inlet Gas					
Where was the sample taken?	Separator					
If the sample is from a representative site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).	Data taken from similar facility producing in the same formation, the University 38-29-1H Facility.					
Where in the process was the sample taken?	Inlet	Inlet				
What is the temperature and pressure of the sample (include units)?	105 psi at 53 F					
Who analyzed the sample?	FESCO, Ltd.					
Date of sample:	Jan 15, 201 ⁻	1 (Job No. 10290).001)			
Component	mole %	Molecular Weight (grams/mole, Ib/Ib-mol)	grams per 100 moles of gas	weight %		
hydrogen	0.0000	2.01588	0	0.0000		
helium	0.0000	4.0026	0	0.0000		
nitrogen	3.2000	28.01340	90	4.2555		
CO2	0.4820	44.00950	21	1.0070		
H2S	0.0004	34.08188	0	0.0006		
methane (C1)	78.4260 16.04246 1258 59.7260					
ethane (C2)	8.6070	30.06904	259	12.2858		
propane (C3)	<u>6.0450</u> 44.09562 267 12.653					
butanes (C4)	2.1380	58.12220	124	5.8990		
pentanes (C5)	0.6570	72.14878	47	2.2502		
benzene	0.0090	78.110000	1	0.0334		
other hexanes (C6)	0.3196	86.18000	28	1.3075		
toluene	0.0060	92.140000	1	0.0262		
other heptanes (C7)	0.0620	100.20000	6	0.2949		
ethylbenzene	0.0010 106.170000 0 0.0050					
xylenes (o, m, p)	0.0000 106.170000 0 0.0000					
other octanes (C8) nonanes (C9)	0.0470 114.23000 5 0.2549 128.26000 0 0.0000					
decanes plus (C10+)		128.26000	0	0.0000		
Totals:	100.0000	21.07	2107	100.00		

For the liquid samp	le, I am inputting
(pick from list):	


I

Select whether weight percents or mole percents are being entered for this liquid sample.

Then fill out this table OR fill out this table.

Liquid Analys	<u>sis</u> - Use if tl	ne Inputs are <u>Weight</u> Percents
Analysis Identifier/Name		
What site is the sample from?		
If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).		
Where in the process was the sample taken?		
What is the temperature and pressure of the sample (include units)?		
Who analyzed the sample?		
Date of sample:		
Component	weight %	
hydrogen		
helium		
nitrogen CO2		
H2S		
methane (C1)		
ethane (C2)		
propane (C3)		
butanes (C4)		
pentanes (C5)		
benzene		
other hexanes (C6)		
toluene		
other heptanes (C7)		
ethylbenzene		
xylenes (o, m, p)		
other octanes (C8)		
nonanes (C9)		
decanes plus (C10+)	0.0000	
Totals:	0.0000	

Liquid Analysis - Use if the Inputs are <u>Mole</u> Percents								
Analysis Identifier/Name	Pressurized Liquid Analysis							
What site is the sample from?	Separator	Separator						
If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).		Data taken from similar facility producing in the same formation, the University 8-12-1H Facility.						
Where in the process was the sample taken?	Separator							
What is the temperature and pressure of the sample (include units)?	63 psi @ 109 F							
Who analyzed the sample? FESCO, Ltd. (PVT Study)								
Date of sample:	2-Jun-11							
0		Molecular Weight (grams/mole,	grams per 100 moles of					
Component	mole %	lb/lb-mol) 2.01588	gas 0	weight % 0.0000				
hydrogen helium	0.0000	4.0026	0	0.0000				
nitrogen	0.0620	28.01340	2	0.0169				
CO2	0.0400	44.00950	2	0.0171				
H2S	0.0004	34.08188	0	0.0001				
methane (C1)	2.0130	16.04246	32	0.3143				
ethane (C2)	2.1480	30.06904	65	0.6286				
propane (C3)	6.9160	44.09562	305	2.9682				
butanes (C4)	7.1680	58.12220	417	4.0549				
pentanes (C5)	7.4660	72.14878	539	5.2427				
benzene	0.2350	78.110000	18	0.1787				
other hexanes (C6)	6.7570	86.18000	582	5.6676				
toluene	0.5910	92.140000	54	0.5300				
other heptanes (C7)	5.6050	100.20000	562	5.4662				
ethylbenzene xylenes (o, m, p)	0.1000	106.170000 106.170000	11 82	0.1033				
other octanes (C8)	7.6550	114.23000	874	8.5107				
nonanes (C9)	5.4810	128.26000	703	6.8421				
decanes plus (C10+)	46.9920	128.26000	6027	58.6618				
Totals:	100.0004	102.74	10274.4822	100.00				

Fugitives Emissions

A) Enter information into the yellow boxes.

B) VOC and H₂S control efficiencies may be entered (as applicable for reductions from leak detection and repair programs).

C) The vapor VOC, benzene, and H₂S weight percents may be entered. The weight percents from the Analyses tab are displayed below.

D) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

E) This sheet has five parts to it. Part (1) is for Gas Service, (2) is for Heavy Oil Service, (3) is for Light Oil Service, (4) is for Water/Oil Service, and (5) is for a combination of all the results. Fill out all applicable yellow cells in parts (1)-(4) and the final results will be in part (5).

The five parts are set up in this arrangement:

(1)	(2)
(3)	(4)
(5)	

F) Make sure to select the correct VOC Type and Emission Type from the pull down menus below in part (5).

Gas Weight Percents From Analyses Tab: Iliquid Weight Percents From Analyses Tab: Iliquid Weight Percents From Analyses Tab: VOC wt % 23.9876 Senzene wt % 0.0352 H_2S wt % 0.0006 90.0567 Senzene wt % 0.1787 H_2S wt % 0.0001 1 Senzene wt % 0.0001 Senzene wt % 0.0001 (1) Gas (2) Heavy Oil Senzene wt %		
Benzene wt % 0.0352 Benzene wt % 0.1787 Benzene wt % 0.0001 Benzene wt % Denzene wt % Denzene wt %		_
H ₂ S wt % 0.0006 (1) Gas (2) Heavy Oil (1) emission factor (lb/hr of TOC		_
(1) Gas (2) Heavy Oil (3) emission factor (4) factor (1b/hr of TOC) (4) factor (1b/hr of TOC) (5) factor (1b/hr of TOC) (5) factor (1b/hr of f		_
(1) Gas (2) Heavy Oil (3) emission factor (4) factor (1b/hr of TOC) (4) factor (1b/hr of TOC) (5) factor (1b/hr of TOC) (5) factor (1b/hr of f		_
emission factor (lb/hr of TOC		_
emission factor (lb/hr of TOC		_
emission factor (lb/hr of TOC		_
(lb/hr of TOC factor (lb/hr of		
number component lb/hr tpy number component component	lb/hr tpy	
10 Valve 0.00920 0.0992 0.434496 Valve 0.009105	0 0	_
10 Valve 0.00920 0.0922 0.49490	0 0	
0 Pump Seal 0.005290 0 0 0 Pump Seal 0.0011300	0 0	
25 Connector 0.000440 0.011 0.04818 Connector 0.0000165	0 0	
25 Flange 0.000860 0.0215 0.09417 Flange 0.0000086	0 0	
0 Open-ended Line 0.004410 0 0 0 Open-ended Line 0.0003090	0 0	
1 Other 0.019400 0.0194 0.084972 Other 0.0000683	0 0	
Total: 0.1511 0.661818 Total:	0 0	
Control	Control	
	fficiency	
(wt%) (wt%) (%) (wt%) (wt%) (wt%)	(%)	
ves 22.7251 0.0334 0.0334 0.0000 Valves 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
np Seal 22.7251 0.0334 0.0334 0.0000		
nector 22.7251 0.0334 0.0334 0.0000		
nge 22.7251 0.0334 0.0334 0.0000 Flange Flange 6 6 6		
en-ended Line 22.7251 0.0334 0.0334 0.0000 Open-ended Line Open-ended Line		
ar 22,7251 0,0334 0,0334 0,0000 Other		
er 22.7251 0.0334 0.0334 0.0000		
ver 22.7251 0.0334 0.0334 0.0000 VOC Emissions H ₂ S Emissions Benzene Emissions VOC Emissions H ₂ S Emissions	ons Benzen	ene Emissions
	ons Benzene tpy Ib/hr	
VOC Emissions H ₂ S Emissions Benzene Emissions VOC Emissions H ₂ S Emission		tpy
VOC Emissions H ₂ S Emissions Benzene Emissions VOC Emissions H ₂ S Emission Ib/hr tpy	tpy lb/hr	tpy 0.00
VOC Emissions H ₂ S Emissions Ib/hr tpy Ib/hr t	tpy lb/hr 0.00 0.00	tpy 0.00 0.00
VOC Emissions H2S Emissions Benzene Emissions VOC emissions H2S Emissions ib/hr tpy lb/hr tpy lb/hr tpy nps Seal 0.00 0.00 0.00 0.00 0.00 nector 0.00 0.00 0.00 0.00 0.00 nge 0.00 0.02 0.00 0.00 0.00	tpy lb/hr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	tpy 0.00 0.00 0.00 0.00 0.00 0.00
VOC Emissions H₂S Emissions lb/hr tpy lb/hr tp	tpy lb/hr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	tpy 0.00 0.00 0.00 0.00 0.00
VOC Emissions H2S Emissions Benzene Emissions VOC emissions H2S Emissions ib/hr tpy lb/hr tpy lb/hr tpy nps Seal 0.00 0.00 0.00 0.00 0.00 nector 0.00 0.00 0.00 0.00 0.00 nge 0.00 0.02 0.00 0.00 0.00	tpy lb/hr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	tpy 0.00 0.00 0.00 0.00 0.00

alves	lb/hr 0.05	tpy 0.24	1b/hr 0.00	tpy 0.00	1b/hr 0.00	tpy 0.00	Valves	1b/hr 0.00	tpy 0.00	1b/hr 0.00	tpy 0.00	1b/hr 0.00	tpy 0.00
			-							-			
	VOCE	missions	H ₂ S Emis	sions	Benzene E	missions		VOCE	missions	H ₂ S Emis	sions	Bonzono	Emissions
uner	99.0229	0.1787	0.0001	0.0000			Other						
Open-ended Line Other	99.0229 99.0229	0.1787	0.0001	0.0000			Open-ended Line Other						
lange	99.0229	0.1787	0.0001	0.0000			Flange						
onnector	99.0229	0.1787	0.0001	0.0000			Connector						
imp Seal	99.0229	0.1787	0.0001	0.0000			Pump Seal						
alves	99.0229	0.1787	0.0001	0.0000			Valves						
	(wt%)	(wt%)	(wt%)	(%)			Vehier	(wt%)	(wt%)	(wt%)	(%)		
	VOC content	Benzene content	H ₂ S content	Control Efficiency					Benzene content	H ₂ S content	Control Efficiency		
			Total:	0.08915	0.390477					Total:	0	0	
	1	Other	0.016500	0.0165	0.07227				Other	0.030900	0	0	
	0	Open-ended Line	0.003090	0	0				Open-ended Line	0.000550	0	0	
	25	Flange	0.000243	0.006075	0.0266085				Flange	0.000006	0	0	
	25	Connector	0.000463	0.011575	0.0506985				Connector	0.000243	0	0	
	0	Pump Seal	0.028660	0	0				Pump Seal	0.000052	0	0	
	10	Valve	0.005500	0.055	0.2409				Valve	0.000216	0	0	
	number	component	(lb/hr of TOC per component)	lb/hr	tpy			number	component	factor (lb/hr of TOC per component)	lb/hr	tpy	
			emission factor							emission			
(3)	Light Oil						(4)	Water/Oil					
	1120 Wt /0	0.0001											
	H ₂ S wt %	0.0001											
	Benzene wt %	0.1787											
	VOC wt %	99.0567											
	Liquid Weight F Analyses Tab:	Percents From											
		_	1										

(5)	Fugitive Total Emissions Hourly Emissions (Ibhr) Annual Emissions (tpy) VOC 0.12 0.54 benzene 0.00 0.00 H ₂ S 0.00 0.00 VOC Type: (pick from list) Crude Oil or Condensate VOC Emission Type: (pick from list) Steady State (continuous)	Notes:	Reference to Emission factors used: 1. Emission factors are for oil and gas production facilities (not refineries) come from the EPA's "Protocol for Equipment Leak Emission Estimates" November 1995, EPA 4531, R-95-017, Table 2-4. 2. Emission factors that are not based on the EPA document are from the TCEQ "Air Permit Technical Guidance for Chemical Source Equipment Leak Fuglitives (Draft October 2000) 3. For fugitive calculations, VOC content should be VOC content of total hydrocarbons, not of total sample.
Enter any notes here:			

Internal Combustion Engine Emissions

A) Enter information into the yellow boxes.

B) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

C) Make sure to select the correct *Emission Type* from the pull down menus below. A VOC type does not need to be selected here; see the note in the comment for more explanation.

Engine Emission Calculations

Note: The TCEQ prefers the following basis for calculating emissions (in order of preference):

1. Stack test data from the engine

2. Manufacturer's specification sheet and control specification sheet (if control used)

3. AP-42 emission factors

Site Location County Region Existing or new source: pick from list Installation date:

Engine	Data
--------	------

EPN	
Name	
Manufacturer	
Model Number	
Serial Number	
Manufacture Date	
Last Rebuild Date	
Application	
Ignition/Injection Timing	pick from list
Horsepower:	0
Fuel consumption (Btu/hp-hr):	0
Hours of operation per year:	0
Engine Type:	pick from list

Stack height (feet)	
Stack diameter (feet)	
Stage Temperature (°F)	
Exit Velocity (fps)	

Method of Emission Control

Discharge Parameters

	Yes/No
NSCR Catalyst	
SCR Catalyst	
JLCC Catalyst	
Parameter Adjustment	
Stratified Charge	
Other (Specify)	

Fuel Type	pick from list
Fuel Consumption (BTU/bhp-hr)	
Heat Value (HHV)	
Heat Value (LHV)	
Sulfur Content (grains/100scf)	

Federal/State Standards

Fuel Data

i ouoranotato otariaarao	
	Yes/No
NSPS Subpart JJJJ	
MACT Subpart ZZZZ	
30 TAC, Chapter 117	

Additional Required Information

. Submit a copy of the engine manufacturer's site rating or general rating specification data.

2. Submit a typical fuel analysis, including sulfur content and heating value. For gaseous fuels, provide mole percent of constituents.

. Submit a description of the air/fuel ratio control system (manufactuer's information is acceptable).

Mass Balance calculation for sour gas fuel: VC (b) emission: (ghp-hi) (%000m)/(%4/2000 Fuel Hest Value (Btu/GCP) 0.00 MW SO_s = 64.03 gramminode VC (b) emission: (ghp-hi) (%000m)/(%4/2000 SO_produced (bp) = 0.00 0.00 VC (bp) emission: (ghp-hi) (%000m)/(%4/2000 VC (bp) emission: (ghp-hi) (%000m)/(%4/2000 SO_produced (bp) = 0.000 No SO_produced (bp) = 0.000 VC (bp) emission: (ghp-hi) (%000m)/(%000m)/(%000m)/(%000m)/(%000m)/%000m) Does the VOC emission factor being used below include formalehyde? (pick Yes or No from list) No Determine Emissions for Air Permitting Table 3.2.1 Table 3.2.																		
Image: series of the							Calculation:											
Fuel H ₂ Content (molth) Output S0_produced (lbhn) * 0.00 S0_produced (lbhn) * 0.00 No Mail Subscription (lbhn) *	SO ₂ Mass Balance calculation for sour gas fue	<u>»I:</u>	_				VOC (tpy) em	issions: (g/hp	-hr)*(%VOC)*(hp)*	*(8760hr/yr)/454/2	000							
Image: constraint of the second of	Fuel Heat Value (Btu/SCF)	0.00		MW SO ₂ =	64.06	grams/mole	CO (tpy) emis	sions: (g/hp-ł	nr)*(hp)*(8760hr/yr)/454/2000								
Image: Solution (Stripp in Conversion factor) Envision factors in terms of LinAMBBU (Conversion factor) Does the VOC emission factor being used No from list) No	Fuel H ₂ S content (mol%)	0.00		Ideal Gas Law	378.61	SCF/lb-mole	NOx (tpy) em	issions: CO (t	py) emissions: (g/ł	np-hr)*(hp)*(8760h	nr/yr)/454/2000							
IbMMBU) * (Burlp-rh ⁺ * (hp) * (1 MMBU/,000,000 Bu) Does the VOC emission factor being used below include formaldelyyde? (pick Yes or No from list) Torm AP-4:: Table 3.21 2 stroke, leant missions for Air Permitting			•				For emission	factors in terr	ns of Ib/MMBtu									
Does the VOC emission factor being used below include formadelying? (gick Yes or No No Determine Emissions for Air Permitting from AP-42: Table 3.2.1 2 stroke, isan emission factors (i)/MMBtu) Table 3.2.2 4 stroke, isan emission Table 3.2.3 4 stroke, isan emission may be a stroke before control (b/MMBtu) from AP-42: Table 3.2.3 4 stroke, isan emission may be a stroke before control (b/MMBtu) may be a stroke before control (b/MMBtu) from AP-42: Table 3.2.3 4 stroke, isan emission may be a stroke before control (b/MMBtu) may be a stroke before control (b/MMBtu) from AP-42: Table 3.2.3 4 stroke, isan before control (b/MMBtu) may be a stroke before control (b/MMBtu) from AP-42: Table 3.2.3 4 stroke, isan before control (b/MMBtu) may be a stroke before control (b/MMBtu) from AP-42: Table 3.2.3 4 stroke, isan before control (b/MMBtu) from AP-42: Table 3.2.3 4 stroke, isan before control (b/MMBtu) from AP-42: Table 3.2.3 5 stroke (b/MMBtu) from AP-42: Table 3.2.4 5 stroke, isan before control (b/MMBtu) from AP-42: Table 3.2.4 5 stroke, isan before control (b/MBtu) from AP-42: Table 3.2.4 5 stroke, isan before control (b/MBtu) from AP-42: Table 3.2.4 5 stroke, isan before control (b/MBtu)	SO ₂ produced (lb/hr) =	0.00					(Emission fac	tor) * (Fuel Co	onsumption) * (Hor	sepower) * (Conv	ersion factor)							
below include formaldelyde? (pick Yea or No from list) No Determine Emissions for Air Permitting rom AP-4: Image: State Sta	SO ₂ produced (tpy) =	0.00					(lb/MMBtu) *	(Btu/hp-hr) * (hp) * (1 MMBtu/1,0	000,000 Btu)								
below include formaldelyde? (pick Yea or No from list) No Determine Emissions for Air Permitting from AP-2: Image: Start St																		
from AP-4: Table 3.2.2 Table 3.2.2 <	Does the VOC emission factor being used below include formaldehyde? (pick Yes or No from list)	No																
from AP-42: Image: transform approximation of the stars stars and the stars and the stars stars and the stars stars and the stars																		
from AP-42: Image: state in the state																		
Image: second	To Determine Emissions for Air Permitting		r			٦												
H available, enter the test results or manufacturer's emission factors ison factors (ib/MMBtu) Table 3.2-3 4 stroke, lean burn engine emission factors ison factors (ib/MMBtu) Table 3.2-3 4 stroke, lean burn engine emission factors ison factors ison factors (ib/MMBtu) Table 3.2-3 4 stroke, lean burn engine emission factors ison fac				from AP-42:	-													
test results or manufacturer's emission factors before control (g/hp-hr) emission factors (b/MMBtu) 4 stroke, lean bur engine emission factors emission appropriat emission factors emission appropriat (b/MMBtu) emission factors appropriat emission factors emission factors appropriat emission factors emission factors emission factors appropriat emission factors emission factors appropriat emission factors emission factors emission factors emission factors appropriat emission factors emission factors emissio			2 stroke, lean-															
manufacturer's emission factors before control (g/hp-hr) burn engine (b/MBtu) burn engine emission factors burn engine emission factors burn engine emission factors emission factors uncontrolled units Uncontrolled lb/hr Uncontrolled units Uncontrolled units Interview (b/MBtu) Interview (b/mb Intervie											16				1			
emission factors before control (g/hp-hr) emission (g/hp-hr) emission factors (b/MMBtu) emission factors (b/MMBtu) emission AP-42 factor (b/MMBtu) emission factors (b/MMBtu) emission factors (b/MMBtu) emission factors (b/MMBtu) emission factors (b/MMBtu) emission factors (b/MMBtu) emission factors (b/MMBtu) emission factor any control (b/m (b/m any control (b/m any control (b/m emission factor (as a %) e			0111001011 1001010									If procent enter			1			
before control (g/hp-hr) factors (b/hMMBtu) factors (b/hMMBtu) factors (b/hMMBtu) factors (b/hMMBtu) emission AP-42 factor used units factor used Uncontrolled (b/hr Uncontroled (b/hr Uncontrolled (b/hr			(Ib/MMBtu)										control		1			
(g/hp-hr) (lb/MMBtu) AP-42 factor factor used units lb/hr tpy (as a %) (as g/hp-hr) used lb/hr tpy VOC 0 0.12 0.118 0.0296 0.0296 lb/MMBtu 0.000 0						appropriate	emission		Uncontrolled	Uncontrolled					1			
VOC 0 0.12 0.118 0.0296 0.0296 10/MBEu 0.000 0.00 0 0 0.00 0.00 NOx 0 3.17 4.08 2.21 2.21 2.21 10/MBEu 0.000 0.000 0 0 0.00 0.00 0.000 0.000 0.000 0 0 0.00 0.000 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>units</th><th></th><th></th><th></th><th></th><th></th><th>lb/hr</th><th>tpv</th></td<>								units						lb/hr	tpv			
NOx 0 3.17 4.08 2.21 2.21 2.21 10/MMBtu 0.000 </th <th>voc</th> <td></td> <th>0.12</th> <td>· · ·</td> <td></td> <td></td> <td></td> <td></td> <td>0.000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	voc		0.12	· · ·					0.000									
PM 10 0.04831 0.009871 0.01941 0.01941 0.01941 0.000 <th>NOx</th> <th>0</th> <th></th> <th>4.08</th> <th></th> <th></th> <th>2.21</th> <th>lb/MMBtu</th> <th></th> <th></th> <th></th> <th></th> <th>0</th> <th>0.00</th> <th>0.00</th>	NOx	0		4.08			2.21	lb/MMBtu					0	0.00	0.00			
PM2.5 0 0.04831 0.009871 0.01941 0.01941 0.01941 0.000 0.000 0 0 0.00 0.00 SO2 0 0.000588 0.000588 0.000588 0.000588 0.000588 0.000588 0.000588 0.0005 0.000 0.000 0 0 0.00 0.00 Formaldehyde 0 0.0552 0.6528 0.0205 0.205 0.205 16/MMBtu 0.000 0.000 0 0 0.00 0.00 0 0 0.00 0.00 0.000	co	0	0.386	0.317	3.72	3.72	3.72	lb/MMBtu	0.000	0.000			0	0.00	0.00			
SO2 0 0.000588 0.000588 0.000588 0.000588 0.000588 0.0000 0.000	PM ₁₀	0	0.04831	0.0099871	0.01941	0.01941	0.01941	lb/MMBtu	0.000	0.000			0	0.00	0.00			
Formaldehyde 0 0.0552 0.0205 0.0205 1b/MMBtu 0.000 0.000 0 0 0.000 <t< th=""><th>PM_{2.5}</th><th>0</th><th>0.04831</th><th>0.0099871</th><th>0.01941</th><th>0.01941</th><th>0.01941</th><th>lb/MMBtu</th><th>0.000</th><th>0.000</th><th></th><th></th><th>0</th><th>0.00</th><th>0.00</th></t<>	PM _{2.5}	0	0.04831	0.0099871	0.01941	0.01941	0.01941	lb/MMBtu	0.000	0.000			0	0.00	0.00			
Benzene 0 0.00194 0.00158 0.00158 0.00158 1b/MMBtu 0.000 0.000 0 0 0.00 0.00 ission Type: (pick from list) ady State (continuous) ady State (continuous)	SO ₂	0	0.000588	0.000588	0.000588	0.000588	0.000588	lb/MMBtu	0.000	0.000			0	0.00	0.00			
Ission Type: (pick from list) ady State (continuous)	Formaldehyde	0	0.0552	0.0528	0.0205	0.0205	0.0205	lb/MMBtu	0.000	0.000			0	0.00	0.00			
ady State (continuous)	Benzene	0	0.00194	0.000404	0.00158	0.00158	0.00158	lb/MMBtu	0.000	0.000			0	0.00	0.00			
	Emission Type: (pick from list)	0	0.00194	0.000404	0.00158	0.00158	0.00158	lb/MMBtu	0.000	0.000			0	0.00	0.			
	Steady State (continuous)																	
	Enter any notes here:																	

Next Tab

Heaters-Boilers Emissions

A) Enter information into the yellow boxes.

B) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

C) Make sure to select the correct *Emission Type* from the pull down menus below. A *VOC type* does not need to be selected here; see the note in the comment for more explanation.

leater and Boiler Emission Calculation	ns (fueled by natural gas)			
EPN	H1	1		
Name	Heater Treater			
Heater/Boiler rating (MMBtu/hr):	1			
Rating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume un	controlled, unle	ess specifically stated otherwise)
Operating hours/year:	8760			
Fuel Heat Value (Btu/SCF):	1211			
		-		
Pollutant	Emission Factor (Ib/MMCF)	lb/hr	tpy	
VOC	5.5	0.005	0.020	
NOx	100	0.083	0.362	
CO	84	0.069	0.304	
PM ₁₀	7.6	0.006	0.027	
PM _{2.5}	5.7	0.005	0.021	
SO ₂	0.6	0.001	0.002	

If the heater/boiler is fueled by			

SO ₂ Mass Balar	nce calculation:									
Fuel H ₂ S content (mol %) =	0.0004									
SO ₂ produced (lb/hr) =	0.0006									
SO ₂ produced (tpy) = 0.0024										

assumptions:	
SO2 MW	64.06 lb/lb-mole
Ideal Gas Law	378.61 SCF/lb-mole

Emission Type: (pick from list) Steady State (continuous)

Enter any notes here:

Next Tab

EP Energy E&P Company LP University Lands 39-11-1H Facility Tank Emissions - Lab Gas Oil Ratio (GOR) Method

A) Enter information into the yellow boxes.

B) VOC and H₂S control efficiencies may be entered (if applicable).

C) A reduction for produced water tank emissions calculated as oil/condensate may be entered.

D) The tank vapor VOC, benzene, and HS weight percents may be entered.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) The table below can be used to calculate the flash gas molecular weight and the component weight percents if needed.

G) Make sure to answer the control device question.

H) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

GOR [FOR ESTIMATING FLASH LOSSES FROM STORAGE TANKS

EPN	Tank Identifier	Flash Initial Press. (psig)			Temp. (°F)	GOR (scf of flash gas/bbl of oil/cond. produced)	Barrels of Oil or Condensate per day (bbl/day)	Flash Gas Molecular Weight	Flash Gas VOC wt%	Flash Gas Benzene wt%	Flash Gas	for Produced	Are tank vapors(A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?	VOC Control	H ₂ S Control Efficiency (%)	VOC Results (lb/hr)		Benzene Results (Ib/hr)	Benzene Results (tpy)	H₂S Results (lb/hr)	H₂S Results (tpy)
T1	Crude Oil Tank	54	81	0	70	19.1		34.7716661	64.6458		0.0004		(A) uncontrolled			2.36	10.32	0.00	0.02	0.00	0.00
T2	Crude Oil Tank	54	81	0	70	19.1	50	34.7716661	64.6458	0.1303	0.0004	0	(A) uncontrolled			2.36	10.32	0.00	0.02	0.00	0.00
															Totals:	4.71	20.65	0.01	0.04	0.00	0.00

VOC	Туре	e: (pick	from	ı list)	
Crude	e Oil	or	Con	dens	ate	VOC	

rude	OILO	r Conde	nsate 1	VOC

Enter any notes

here:

			ubic feet of	flash gas p	er barrel (SCF/bbl) of oil/cond	iensate
Gas Oil Ratio		produced				
Barrels of Oil or Condensate pe day:						
udy.	100	1				
Flash Gas Speciation:					Flash Gas MW =	34.7716661
Component	mole %	Molecular Weight (grams/mole, Ib/Ib-mol)	grams per 100 moles of gas	weight %		
hydrogen	0.0000	2.01588	0	0.0000	Total gas emitted:	
helium	0.0000		0	0.0000	lb/hr:	7.29214125
nitrogen	0.7970	28.01340	22	0.6421	tpy:	31.9395787
002	0.7520	44.00950	33	0.9518		
H2S	0.0004	34.08188	0	0.0004	VOC wt% =	64.6458
methane (C1)	37.8800	16.04246	608	17.4765		
ethane (C2)	18.8300		566	16.2834	VOC, lb/hr:	4.71406425
propane (C3)	23.5040		1036	29.8066	VOC, tpy:	20.6476014
outanes (C4)	11.2060		651	18.7313		
pentanes (C5)	4.1960		303	8.7064	Benzene wt% =	0.1303
penzene	0.0580	78.110000	5	0.1303		
other hexanes (C6)	1.9240		166	4.7685	Benzene, Ib/hr:	
oluene	0.0220		2	0.0583	Benzene, tpy:	0.04161389
other heptanes (C7)	0.7140	100.20000	72	2.0575		
ethylbenzene	0.0010	106.170000	0	0.0031	H ₂ S wt% =	0.0004
(vlenes (o, m, p)	0.0000		0	0.0000		
other octanes (C8)	0.1090	114.23000	12	0.3581	H ₂ S, lb/hr:	2.859E-05
nonanes (C9)	0.0070	128.26000	1	0.0258	H ₂ S, tpy:	0.00012522
decanes plus (C10+)	0.0000		0	0.0000		
Totals:	100.0004	34.77	3477	100.00		

EP Energy E&P Company LP University Lands 39-11-1H Facility Tank Emissions - Tanks 4.0

A) Enter information into the yellow boxes.

B) VOC and H₂S control efficiencies may be entered (if applicable).

C) A reduction for produced water tank emissions calculated as oil/condensate may be entered.

D) The tank vapor VOC, benzene, and HS weight percents may be entered.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) Make sure to answer the control device question.

G) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

Tanks 4.0 Soft	ware TANKS 4.0 SOFTWARE [FOR	ESTIMATING V Throughput (gal/year)	Turnovers per year	D BREATHING LOSSES	FROM STORAG Basis for VP Calculations		Total Uncontrolled Emissions (Ib/hr)	Total Uncontrolled Emissions (ton/yr)	Tank Vapor VOC wt%	Tank Vapor Benzene wt%		Oil/Cond. (%)	vapor compustor, thermal oxidizer, or vapor recovery unit	Efficiency (%)	H ₂ S Control Efficiency (%)	VOC Results (Ib/hr)	VOC Results (tpy)	Benzene Results (lb/hr)	Benzene Results (tpy)	H₂S Results (Ib/hr)	H₂S Results (tpy)
T1	Crude Oil Tank	766,500	37.75	Crude Oil - RVP 4.76	Lab Analysis	50	0.2046	0.8961	99.02289	0.1786547	0.00013	C	(A) uncontrolled			0.20	0.89	0.00	0.00	0.00	0.00
T2	Crude Oil Tank	766,500	37.75	Crude Oil - RVP 4.76	Lab Analysis	50	0.2046	0.8961	99.02289	0.1786547	0.00013	C	(A) uncontrolled			0.20	0.89	0.00	0.00	0.00	0.00
															Totals:	0.41	1.77	0.00	0.00	0.00	0.00

Enter any notes here:

EP Energy E&P Company LP University Lands 39-11-1H Facility Tank Emissions - Lab Gas Oil Ratio (GOR) Method

A) Enter information into the yellow boxes.

B) VOC and H₂S control efficiencies may be entered (if applicable).

C) A reduction for produced water tank emissions calculated as oil/condensate may be entered.

D) The tank vapor VOC, benzene, and HS weight percents may be entered.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) The table below can be used to calculate the flash gas molecular weight and the component weight percents if needed.

G) Make sure to answer the control device question.

H) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

GOR [FOR ESTIMATING FLASH LOSSES FROM STORAGE TANKS

EPN	Tank Identifier	Flash Initial Press. (psig)		Flash Final Press. (psig)	Temp. (°F)	gas/bbl of	Barrels of Oil or Condensate per day (bbl/day)	Flash Gas Molecular Weight		Flash Gas Benzene wt%	Flash Gas H ₂ S wt%	for Produced	Are tank vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?	H ₂ S Control Efficiency (%)	VOC Results (lb/hr)	VOC Results (tpy)	Benzene Results (Ib/hr)		H₂S Results (Ib/hr)	H₂S Results (tpy)
	Produced Water Tank	54	81	0	70	19.1	100	34.7716661	64.6458	0.1303	0.0004	99	(A) uncontrolled		0.05	0.21	0.00	0.00	0.00	0.00
WT2	Produced Water Tank	54	81	0	70	19.1	100	34.7716661	64.6458	0.1303	0.0004	99	(A) uncontrolled		0.05	0.21	0.00	0.00	0.00	0.00
														Totals:	0.09	0.41	0.00	0.00	0.00	0.00

VOC	Type: ((pick I	from	list)	
Crud	o Oil or	Conc	lonco	to V	00

rude Oil or Condensate VOL

Enter any notes

here:

Gas Oil Ratio:	10.1	in standard cu produced	ubic feet of	flash gas p	er barrel (SCF/bbl) of oil/cond	lensate
Barrels of Oil or Condensate per	19.1	produced				
day:	200					
Flash Gas Speciation:					Flash Gas MW =	34.7716661
Component	mole %	Molecular Weight (grams/mole, Ib/Ib-mol)	grams per 100 moles of gas	weight %		
nydrogen	0.0000		0	0.0000	Total gas emitted:	
elium	0.0000		0	0.0000	lb/hr:	14.5842825
itrogen	0.7970		22	0.6421	tpy:	63.8791573
02	0.7520		33	0.9518		
2S	0.0004		0	0.0004	VOC wt% =	64.6458
nethane (C1)	37.8800		608	17.4765		
thane (C2)	18.8300		566	16.2834	VOC, lb/hr:	9.4281285
propane (C3)	23.5040		1036	29.8066	VOC, tpy:	41.2952028
utanes (C4)	11.2060		651	18.7313		
entanes (C5)	4.1960		303	8.7064	Benzene wt% =	0.1303
enzene	0.0580	78.110000	5	0.1303		
ther hexanes (C6)	1.9240		166	4.7685	Benzene, Ib/hr:	
oluene	0.0220		2	0.0583	Benzene, tpy:	0.08322778
ther heptanes (C7)	0.7140	100.20000	72	2.0575		
thylbenzene	0.0010	106.170000	0	0.0031	H ₂ S wt% =	0.0004
ylenes (o, m, p)	0.0000		0	0.0000		
ther octanes (C8)	0.1090	114.23000	12	0.3581	H ₂ S, lb/hr:	5.718E-05
ionanes (C9)	0.0070	128.26000	1	0.0258	H ₂ S, tpy:	0.00025045
decanes plus (C10+)			0	0.0000		
Totals:	100.0004	34.77	3477	100.00		

EP Energy E&P Company LP University Lands 39-11-1H Facility Tank Emissions - Tanks 4.0

A) Enter information into the yellow boxes.

B) VOC and H₂S control efficiencies may be entered (if applicable).

C) A reduction for produced water tank emissions calculated as oil/condensate may be entered.

D) The tank vapor VOC, benzene, and HS weight percents may be entered.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) Make sure to answer the control device question.

G) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

Tanks 4.0 Softw	nrks 4.0 Software TANKS 4.0 SOFTWARE [FOR ESTIMATING WORKING AND BREATHING LOSSES FROM STORAGE TANKS]																			
EPN	Tank Identifier	Throughput (gal/year)	Turnovers per year	Mixture/Component	Basis for VP Calculations	Vapor MW	Total Uncontrolled Emissions (Ib/hr)	Total Uncontrolled Emissions (ton/yr)	Tank Vapor VOC wt%	Tank Vapor Benzene wt%	Vapor H ₂ S wt%	Percent Reduction for Produced Water Tank Calc. as Oil/Cond. (%)	vapor compustor, thermal oxidizer, or vapor recovery unit	H₂S Control Efficiency (%)	VOC Results (Ib/hr)	VOC Results (tpy)	Benzene Results (lb/hr)	Benzene Results (tpy)	H₂S Results (Ib/hr)	H₂S Results (tpy)
WT1	Produced Water Tank	1,533,000	75.5	Crude Oil RVP 4.76	Lab Analysis	50	0.232	1.016	99.02289	0.1786547	0.00013	99	(A) uncontrolled		0.00	0.01	0.00	0.00	0.00	0.00
WT2	Produced Water Tank	1,533,000	75.5	Crude Oil RVP 4.76	Lab Analysis	50	0.232	1.016	99.02289	0.1786547	0.00013	99	(A) uncontrolled		0.00	0.01	0.00	0.00	0.00	0.00
														Totals:	0.00	0.02	0.00	0.00	0.00	0.00

Enter any notes here:

Loading Emissions

A) Enter information into the yellow boxes.

B) VOC and H₂S control and collection efficiencies may be entered (if applicable).

C) The vapor VOC, benzene, and $\mathrm{H_2S}$ weight percents may be entered.

D) There are two separate areas below to calculate <u>hourly</u> and <u>annual</u> loading emissions. Then underneath, there is a table summarizing the hourly and annual loading emissions.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) If vapor balancing is being performed and the tank is not being controlled, contact TCEQ about the appropriate tank working loss calculation.

G) Make sure to answer the control device question.

H) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

EPNL1 Identifier Crude Oil Loading Truck Hourly Loading Emission Calculations						
Using equation L = 12.46' SPM/T from AP-42, Chapter 5, Section 5.2-4						
S =	0.60	Saturation Factor				
P =	4.09	True vapor pressure of liquid loaded	d (psia)			
M =	50.00	Molecular Weight of Vapors (lb/lb-m	ole)			
T =	541.67	Temperature of bulk liquid loaded (ir	n degrees Rankine)			
Hourly Loading Rate	8000	Gallons Loaded per Hour				
L, =	2.82	Loading Loss (Ib VOC released/1000) gal liquid loaded)			
	22.58	VOC Uncontrolled Emissions (lb/hr)				
Are loading vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?						

Vapor Weight Percents					
voc	99.02	Vapor VOC wt%			
benzene	0.18	Vapor Benzene wt%			
H₂S	0.00	Vapor H ₂ S wt%			
Produced Water Reduction					
	0.00	Percent Reduction for Produced Water Tank Calc. as Oil/Cond.			

Uncontrolled Emissions

	Enter any notes here:

Enter temperature in Fahrenheit °F):

82 Enter Barrels of Liquid

100

Enter gallons per

year 1533000 Temperature in Rankine (°R): 541.67

Gallons of liquid: 4200

Barrels per day:

100

VOC	22.36	Emissions Uncontrolled VOC (lb/hr)				
benzene	0.04	Emissions Uncontrolled Benzene (Ib/hr)				
H ₂ S	0.00	Emissions Uncontrolled H ₂ S (lb/hr)				
	Control Efficiency					
VOC	0.00	VOC Control Efficiency (%)				
H ₂ S	0.00	H ₂ S Control Efficiency (%)				
Vapors Uncontrolled by Control Device (Controlled Emissions)						
VOC	0.00	VOC Results (Ib/hr)				
benzene	0.00	Benzene Results (Ib/hr)				
H ₂ S	0.00	H₂S Results (lb/hr)				

0.60 3.56 50.00	= Saturation Factor = True vapor pressure of liquid loaded (psia)
	= Molecular Weight of Vapors (Ib/Ib-mole)
534.17	= Temperature of bulk liquid loaded (in degrees Rankine)
1533000	= Gallons Loaded per Year
2.49	Loading Loss (Ib VOC released/1000 gal liquid loaded)
1.91	VOC Uncontrolled Emissions (ton/yr)
99.02	Vapor Weight Percents Vapor VOC wt%
0.18	Vapor Benzene wt%
0.00	Vapor H ₂ S wt%
0.00	Produced Water Reduction Percent Reduction for Produced Water Tank Calc. as Oil/Cond. (%)
	Uncontrolled Emissions.
1.89	Emissions Uncontrolled VOC (ton/yr)
	Emissions Uncontrolled Benzene (ton/yr) Emissions Uncontrolled H _s S (ton/yr)
	<u>Control Efficiency</u>
0.00	VOC Control Efficiency (%)
	1533000 2.49 1.91 99.02 0.18 0.00

VOC	0.00	VOC Results (ton/yr)
benzene	0.00	Benzene Results (ton/yr)
H ₂ S	0.00	H ₂ S Results (ton/yr)

Hourly Annual							
	Emissions	Emissions					
	(lb/hr)	(tpy)					
VOC	22.36	1.89					
benzene	0.04	0.00					
H ₂ S	0.00	0.00					
VOC Type: (pick from list)							
Crude Oil or Condensate VOC							


Emission Type: (pick from list) Low Pressure Periodic
 Enter temperature in Fahrenheit "F):
 Temperature in Rankine ("R):

 74.5
 534.17

 Enter Barrels of Liquid
 Gallons of liquid:

 100
 4200

Enter gallons per year Barrels per day: 1533000 100

Loading Emissions

A) Enter information into the yellow boxes.

B) VOC and H₂S control and collection efficiencies may be entered (if applicable).

C) The vapor VOC, benzene, and H_2S weight percents may be entered.

D) There are two separate areas below to calculate <u>hourly</u> and <u>annual</u> loading emissions. Then underneath, there is a table summarizing the hourly and annual loading emissions.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) If vapor balancing is being performed and the tank is not being controlled, contact TCEQ about the appropriate tank working loss calculation.

G) Make sure to answer the control device question.

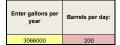
H) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

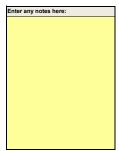
EPN L2						
Identifier Produced Water Loading						
Truck Hourly Loa	adina Emi	ssion Calculations	Т			
	g =					
		m AD 42 Chartes E Section E 2.4				
Using equation L = 12.	46" SPW/1 Iro	m AP-42, Chapter 5, Section 5.2-4				
S =	0.60	Saturation Factor				
P =	4.09	True vapor pressure of liquid loaded (psia)				
M =	50.00	Molecular Weight of Vapors (lb/lb-mole)				
T =	541.67	Temperature of bulk liquid loaded (in degrees Rankine)				
Hourly Loading Rate	8000	Gallons Loaded per Hour	_			
L _L =	2.82	Loading Loss (Ib VOC released/1000 gal liquid loaded)				
	22.58	VOC Uncontrolled Emissions (lb/hr)				
		•				
			-			

Are loading vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?

H₂S 0.00

Vapor Weight Percents					
voc	99.02	Vapor VOC wt%			
benzene	0.18	Vapor Benzene wt%			
H ₂ S	0.00	Vapor H ₂ S wt%			
Produced Water Reduction					


		Frouced water Reduction
	99.00	Percent Reduction for Produced Water Tank Calc. as Oil/Cond. (%)
99.00 (%) Uncontrolled Emissions VOC 0.22 Emissions Uncontrolled VOC (lb/hr)		
voc	0.22	Emissions Uncontrolled VOC (lb/hr)
benzene	0.00	Emissions Uncontrolled Benzene (lb/hr)


Emissions Uncontrolled H2S (lb/hr)

Collection Efficiency											
	0.00	Collection Efficiency (%)									
Vapors Uncaptured by Control Device											
VOC 0.00 VOC Uncaptured Vapors (Ib/hr)											
benzene	benzene 0.00 benzene Uncaptured Vapors (lb/hr)										
H ₂ S	H ₂ S 0.00 H ₂ S Uncaptured Vapors (lb/hr)										
	Vapors Captured by Control Device										
VOC	0.00	VOC Uncaptured Vapors (Ib/hr)									
benzene	0.00	benzene Uncaptured Vapors (Ib/hr)									
H ₂ S	0.00	H ₂ S Uncaptured Vapors (Ib/hr)									
	Control Efficiency										
VOC	0.00	VOC Control Efficiency (%)									
H ₂ S	0.00	H ₂ S Control Efficiency (%)									
Vapo	Vapors Uncontrolled by Control Device (Controlled Emissions).										
VOC	0.00	VOC Results (Ib/hr)									
benzene	0.00	Benzene Results (Ib/hr)									
H ₂ S	0.00	H ₂ S Results (Ib/hr)									

Enter temperature	Temperature in
in Fahrenheit °F):	Rankine (°R):
82	541.67

Enter Barrels of Liquid Gallons of liquid: 200 8400

ruck <u>Annual</u> Loa	ading Em	ission Calculations
Ising equation L = 12.4	46* SPM/T fro	m AP-42, Chapter 5, Section 5.2-4
S =	0.60	= Saturation Factor
P =	3.56	= True vapor pressure of liquid loaded (psia)
M =	50.00	= Molecular Weight of Vapors (lb/lb-mole)
T =	534.17	= Temperature of bulk liquid loaded (in degrees Rankine)
Annual Loading Rate	3066000	= Gallons Loaded per Year
L, =	2.49	Loading Loss (Ib VOC released/1000 gal liquid loaded)
	3.82	VOC Uncontrolled Emissions (ton/yr)
		Vapor Weight Percents
voc	99.02	Vapor VOC wt%
benzene	0.18	Vapor Benzene wt%
H ₂ S	0.00	Vapor H ₂ S wt%
		Produced Water Reduction
	99.00	Percent Reduction for Produced Water Tank Calc. as Oil/Cond. (%)
	00.00	(**)
		Uncontrolled Emissions
VOC	0.04	Emissions Uncontrolled VOC (ton/yr)
benzene H ₂ S	0.00	Emissions Uncontrolled Benzene (ton/yr) Emissions Uncontrolled H ₂ S (ton/yr)
		Collection Efficiency
	0.00	Collection Efficiency (%)
	Vapo	ors Uncaptured by Control Device
VOC	0.00	VOC Uncaptured Vapors (ton/yr)
benzene	0.00	benzene Uncaptured Vapors (ton/yr)
H ₂ S	0.00	H ₂ S Uncaptured Vapors (ton/yr)
	Var	oors Captured by Control Device
VOC	0.00	VOC Uncaptured Vapors (Ib/hr)
benzene	0.00	benzene Uncaptured Vapors (Ib/hr)
H ₂ S	0.00	H ₂ S Uncaptured Vapors (lb/hr)
		Control Efficiency
VOC	0.00	VOC Control Efficiency (%)
H ₂ S	0.00	H ₂ S Control Efficiency (%)
Vapor	rs Uncontro	Iled by Control Device (Controlled Emissions)
voc	0.00	VOC Results (ton/yr)
benzene	0.00	Benzene Results (ton/yr)
H ₂ S	0.00	H ₂ S Results (ton/yr)
Loading	Emissions	

Enter temperature in Fahrenheit °F):

74.5

Enter Barrels of Liquid

200

Enter gallons per year

3066000

Enter any notes here:

Temperature in Rankine (°R):

534.17

Gallons of liquid: 8400

Barrels per day:

200

Loading Emissions									
	Hourly Emissions (lb/hr)	Annual Emissions (tpy)							
VOC									
benzene									
H ₂ S									
VOC Type: (pick from lis Crude Oil or Condensate	it) VOC								
Emission Type: (pick fro Low Pressure Periodic	om list)								

Flare / Vapor Combustor

A) Enter information into the yellow boxes.

B) See notes/instructions incuded below.

C) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

D) Make sure to select the correct *Emission Type* from the pull down menu below.

	General Information										
Unit Name:	Process Vent										
Unit EPN: Which is utilized for this	V1										
automatic ignition system											
	NOx and CO Emission Factors										
	For <u>Waste</u> Gas:										
What kind of device is this? non-steam assisted flare with high Btu stream flared Pick from list.											
NOx	0.138 lb/MMBtu										
со	0.2755 lb/MMBtu										
	For <u>Pilot</u> Stream(s):										
If there is one or more pilot streams, are they made up of pipeline quality natural gas, propane, or field gas? Pick from drop down list to the right and follow instructions below.											
NOx	0										
со	0										
	do not need to enter anything in the column for Stream No. 1 below.										
	For Added Fuel Stream(s):										
	<u></u>										
If there is one or more added fuel streams, are they made up of pipeline quality natural gas, propane, or field gas? Pick from drop down list to the right and follow instructions below.											
NOx	0										
со	0										
	tream, you do not need to enter anything in the column for Stream No 2 below.										

Destruction Efficiency							
VOC percent destruction efficiency (%)	0						
propane percent destruction efficiency (%) *OPTIONAL*	0						
H₂S percent destruction efficiency (%)	0						

ssion Factors from AP	on Factors from AP-42 Table 1.4-1 and 1.4-2 (lb/MMscf)										
NOx	100										
CO	84										
PM10, PM2	.5 7.6	5.7									
ion Factors from TC	EQ Guidance (Ib/MME	<u>Btu)</u>									
Non-steam	assisted, high Btu	Steam assis	sted, high Btu								
NOx	0.138	NOx	0.0485								
со	0.2755	со	0.3503								
Non-steam a	assisted, low Btu	Steam assisted, low Btu									
NOx	0.0641	NOx	0.068								
со	0.5496	со	0.3465								
nission Factors from AP-42 Table 1.4-2 and 1.4-3 (Ib/MMscf)											
SO ₂	0.6										
VOC	5.5										
	2.10E-03										

Constants	
Btu/MMBtu	1,000,000
scf/MMscf lb/ton	1,000,000 2,000
H ₂ S molecular weight	34.08
SO_2 molecular weight	64.06
seconds/hour	3,600
inches/ft	12

Stream Information

Each numbered column represents a stream. The first two columns are always for pilot and added fuel streams. The next ten columns, Columns 3-12, are for any streams sent to the control device, such as "tank 1", "amine regenerator vent", etc. Under the column numbers, these columns should be labeled with the stream name. Information only needs to be entered for the number of streams sent to the flare. If for example, there are only two process/waste streams routed to the flare, only colums 3 and 4 need to be filled out, and potentially 1 and 2 if there are also any pilot or added fuel streams.

Stream Sent to Flare/Vapor Combustor No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Stream Sent to Flare/Vapor Combustor Name (Enter Names of Each Stream Here)			Produced Gas										
Maximum Expected Hourly Volumtric Flow Rate of Stream (scf/hr)	c	0 0	200000										20000
Amount of Time Stream Routed to Flare/Vapor Combustor (hrs/yr)	c	0 0	1400										
Maximum Expected Annual Volumtric Flow Rate of Stream (scf/yr)	c	0 0	280000000										28000000
Heat Value of Stream - from program results or gas analysis (Btu/scf)	C	0 0	0										
propane weight percent of total stream (%) *OPTIONAL*	C) 0	0										
VOC weight percent of total stream (%) *OPTIONAL*	с	0 0	22.7251083										

It is suggested that you link these cells below to the cells in the other tabs of this spreadsheet which contain the calculated uncontrolled emissions for the stream.

Mass Flow Rates of the Vapors Sent to this Control Device, Hourly Basis (Ib/hr)													
Stream Sent to Flare/Vapor Combustor No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Stream Sent to Flare/Vapor Combustor Name	pilot(s)		Produced Gas										_
H2S	-	-	2.95E-03										0.00295
Crude or Condensate VOC	-	-	103.588618										103.588618
Natural Gas VOC	-	-	0										0
Total VOC	-	-	103.588618										103.588618
benzene	-	-	0.15212039										0.15212039
Mass Flow Rates of the Vapors Sent to this Control Device, Annual Basis (tpy)													
H2S	-	-	2.06E-03										0.002065
Crude or Condensate VOC	-	-	72.5120329										72.5120329
Natural Gas VOC	-	-	0										0
Total VOC	-	-	72.5120329										72.5120329
benzene	-	-	0.10648428										0.10648428

	Controlled Emissions												
Hourly (lb/hr)													
Stream Sent to Flare/Vapor Combustor No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Stream Sent to Flare/Vapor Combustor Name	pilot(s)	added fuel stream(s)	Produced Gas										
NOx	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
со	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
PM2.5	0.000	0.000	1.140	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.14
PM10	0.000	0.000	1.520	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.52
H2S	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
SO2	0.000	0.000	0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.01
Crude or Condensate VOC	-	-	103.589	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	103.59
Natural Gas VOC	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Total VOC	0.000	0.000	103.589	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	103.59
benzene	0.000	0.000	0.152	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.15
					<u>/</u>	Annual (tpy)							
Stream Sent to Flare/Vapor Combustor No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Stream Sent to Flare/Vapor Combustor Name	pilot(s)	added fuel stream(s)	Produced Gas										_
NOx	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
со	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
PM2.5	0.000	0.000	0.798	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.80
PM10	0.000	0.000	1.064	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.06
H2S	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
SO2	0.000	0.000	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Crude or Condensate VOC	-	-	72.512	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	72.51
Natural Gas VOC	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Total VOC	0.000	0.000	72.512	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	72.51
benzene	0.000	0.000	0.106	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.11

	Emissions (lb/hr)	Emissions (tpy)
Total Crude Oil or		
Condensate VOC	103.59	
Total Natural Gas VOC	0.00	0.0
Total VOC	103.59	72.5
NOx	0.00	0.0
CO	0.00	0.0
PM2.5	1.14	0.8
PM10	1.52	1.0
H2S	0.00	0.0
SO2	0.01	0.0
benzene	0.15	0.1

Calculations

Scf/hr = (Uncontrolled (lb/hr) / Molecular Weight (lb/lb-mole)) * 379 (ft3/lb-mole)

VOC = Uncontrooled (lb/hr) * ((100-DRE%)/100) NOx = (Flow rate = scf/hr) * (Heat content = Btu/scf) * (Emission factor = lb/MM Btu)*(1MM Btu / 1,000,000 Btu) CO = (Flow rate = scf/hr)*(Heat content = Btu/scf) * (Emission factor = lb/MM Btu) * (1MM Btu/1,000,000 Btu)

PBR/Standard Permit Compliance				
Minimum Heat Value Requirement				
Total Stream Heat Value (weighted with hourly volumetric flow rates, Btu/scf)	0			
Total Stream Heat Value (weighted with annual volumetric flow rates, Btu/scf)	0			
Maximum Flare/Burner Tip Velocity Requirement				
How many flare/burner tips does the unit have?				
What is the diameter of the flare/burner tip(s) (in)?				
Total Flare/Burner Tip Surface Area (ft²)?	0			
What is the flare/burner tip surface area that the hourly worst case (highest flow) stream passes through (ft ²)?				
Stream Velocity Through Burner Tip (based on hourly worst case, ft/sec)	0.00			
Enter any notes here as nee	dad Vau mur			

Enter any notes here as needed. You must address the following: (1) How is this control efficiency justified? Please be specific. (2) Explain what happens when this unit is down. Include how long the unit could be down for.

Emissions Summary

The table below is a summary of all emission points for this registration. It is separated into *Project Emissions* and *Other Site Wide Emissions*.

The table has separate totals for *Project Total Emission Rates* and *Site Wide Total Emission Rates*.

On the table, for each emission source, there is a space for three emission rates on a pound per hour (lb//hr) basis and one emission rate on a ton per year (tpy) basis. Periodic emissions are authorized to exceed the steady state limits of the rule (150, 300, and 600 hours per year for PBR Level 1, PBR Level 2, and the Standard Permit, respectively), in which case the periodic emission limits must be met. Note that periodically emitting activities, such as loading and MSS activities, are not limited to occurring less than these time limits. It is only for that amount of time that the emissions can exceed the normal steady state limits.

Any formaldehyde emissions must be included as part of VOC emissions.

Update

Before pressing the *Update* button, make sure you have selected the correct VOC Type and Emission Type from the pull down menus in each emission calculation tab.

Emissions Summary Project Emissions (This needs to include all emission points being added for the first time to the registration or emission points with emissions that are changing from previously registered emissions. It does NOT include emission points for which the emissions have not changed and have previously been registered (unless the emission point emissions are chosen to be re-calculated as part of this project); those emissions will be entered below in the Other Registration Emissions section of this table.)

				Emissio	on Rates	
Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr	TPY (4)
		Total VOC	0.1226			0.5371
		Total Crude Oil or Condensate VOC	0.1226			0.5371
		Total Natural Gas VOC	0.0000			0.0000
F1	Fugitives	Benzene	0.0002			0.0009
		Formaldehyde	0.0000			0.0000
		H_2S	0.0001			0.0002
		SO_2	0.0000			0.0000
		NO _X	0.0000			0.0000
		со	0.0000			0.0000
		PM ₁₀	0.0000			0.0000
		PM _{2.5}	0.0000			0.0000
		Total VOC	0.0000			0.0000
		Total Crude Oil or Condensate VOC	0.0000			0.0000
		Total Natural Gas VOC	0.0000			0.0000
		Benzene	0.0000			0.0000
		Formaldehyde	0.0000			0.0000
		H_2S	0.0000			0.0000
		SO_2	0.0000			0.0000
		NO _X	0.0000			0.0000
		со	0.0000			0.0000
		PM ₁₀	0.0000			0.0000

		PM _{2.5}	0.0000	0.0000
		Total VOC	0.0045	0.0199
		Total Crude Oil or Condensate VOC Total Natural	0.0000	0.0000
		Gas VOC	0.0000	0.0000
H1	Heater Treater	Benzene	0.0000	0.0000
		Formaldehyde	0.0000	0.0000
		H ₂ S	0.0000	0.0000
		SO ₂	0.0006	0.0024
		NO _X CO	0.0826	0.3617
			0.0694 0.0063	0.3038 0.0275
		PM ₁₀ PM _{2.5}	0.0003	0.0275
		Total VOC	2.3570	10.3238
		Total Crude Oil or Condensate VOC	2.3570	10.3238
		Total Natural Gas VOC	0.0000	0.0000
T1	Crude Oil Tank	Benzene	0.0048	0.0208
		Formaldehyde	0.0000	0.0000
		H ₂ S	0.0000	0.0001
		SO ₂	0.0000	0.0000
		NO _X CO	0.0000	0.0000
	CO PM ₁₀	0.0000	0.0000	
		$PM_{2.5}$	0.0000	0.0000
		Total VOC	2.3570	10.3238
		Total Crude Oil or Condensate VOC	2.3570	10.3238
		or Condensate VOC Total Natural Gas VOC	0.0000	0.0000
T2	Crude Oil Tank	or Condensate VOC Total Natural Gas VOC Benzene	0.0000 0.0048	0.0000 0.0208
T2	Crude Oil Tank	or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde	0.0000 0.0048 0.0000	0.0000 0.0208 0.0000
T2	Crude Oil Tank	or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S	0.0000 0.0048 0.0000 0.0000	0.0000 0.0208 0.0000 0.0001
T2	Crude Oil Tank	or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂	0.0000 0.0048 0.0000 0.0000 0.0000	0.0000 0.0208 0.0000 0.0001 0.0000
T2	Crude Oil Tank	or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.0000 0.0048 0.0000 0.0000 0.0000 0.0000	0.0000 0.0208 0.0000 0.0001 0.0000 0.0000
T2	Crude Oil Tank	or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO	0.0000 0.0048 0.0000 0.0000 0.0000	0.0000 0.0208 0.0000 0.0001 0.0000
T2	Crude Oil Tank	or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.0000 0.0048 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0208 0.0000 0.0001 0.0000 0.0000 0.0000
T2	Crude Oil Tank	or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀	0.0000 0.0048 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0208 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
T2	Crude Oil Tank	or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC	0.0000 0.0048 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0208 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
	Crude Oil Tank	or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC	0.0000 0.0048 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2026 0.2026	 0.0000 0.0208 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.8873 0.8873
T2 T1	Crude Oil Tank	or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene	0.0000 0.0048 0.0000 0.0000 0.0000 0.0000 0.0000 0.2026 0.2026 0.2026	0.0000 0.0208 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.8873 0.8873 0.8873
		or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde	0.0000 0.0048 0.0000 0.0000 0.0000 0.0000 0.0000 0.2026 0.2026 0.2026 0.0000 0.0004 0.0000	0.0000 0.0208 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.8873 0.8873 0.8873 0.0000 0.0016 0.0000
		or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S	0.0000 0.0048 0.0000 0.0000 0.0000 0.0000 0.0000 0.2026 0.2026 0.2026 0.2026	0.0000 0.0208 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.8873 0.8873 0.8873 0.8873
		or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂	0.0000 0.0048 0.0000 0.0000 0.0000 0.0000 0.0000 0.2026 0.2026 0.2026 0.2026 0.0000 0.0004 0.0000 0.0000	0.0000 0.0208 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.8873 0.8873 0.8873 0.8873
		or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.0000 0.0048 0.0000 0.0000 0.0000 0.0000 0.0000 0.2026 0.2026 0.2026 0.2026 0.2026	0.0000 0.0208 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.8873 0.8873 0.8873 0.8873
		or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO	0.0000 0.0048 0.0000 0.0000 0.0000 0.0000 0.0000 0.2026 0.2026 0.2026 0.2026 0.2026 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0208 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.8873 0.8873 0.8873 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
		or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.0000 0.0048 0.0000 0.0000 0.0000 0.0000 0.0000 0.2026 0.2026 0.2026 0.2026 0.2026	0.0000 0.0208 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.8873 0.8873 0.8873 0.0000 0.0016 0.0000 0.0000 0.0000 0.0000 0.0000
		or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀ PM _{2.5} Total VOC Total Crude Oil or Condensate VOC Total Natural Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO PM ₁₀	0.0000 0.0048 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2026 0.2026 0.2026 0.2026 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0208 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.8873 0.8873 0.8873 0.8873 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000

		Total Crude Oil			
		or Condensate			
		VOC	0.2026		0.8873
		Total Natural			
		Gas VOC	0.0000		0.0000
T2		Benzene	0.0004		0.0016
12	Crude on Tunk	Formaldehyde	0.0000		0.0000
		H ₂ S	0.0000		0.0000
		SO ₂	0.0000		0.0000
		NO _X	0.0000		0.0000
		СО	0.0000		0.0000
		PM ₁₀	0.0000		0.0000
		PM _{2.5}	0.0000		0.0000
		Total VOC	0.0471		0.2065
		Total Crude Oil			
		or Condensate			
		VOC	0.0471		0.2065
		Total Natural			
		Gas VOC	0.0000		0.0000
WT1	Produced Water Tank	Benzene	0.0001		0.0004
		Formaldehyde	0.0000		0.0000
		H ₂ S	0.0000		0.0001
		SO ₂	0.0000		0.0000
		NO _X	0.0000		0.0000
		CO	0.0000		0.0000
		PM ₁₀ PM _{2.5}	0.0000 0.0000		0.0000
		Total VOC	0.0000		0.2065
			0.04/1		0.2005
		Total Crude Oil			
		or Condensate			
		VOC	0.0471		0.2065
		Total Natural			
		Gas VOC	0.0000		0.0000
WT2	Produced Water Tank	Benzene	0.0001		0.0004
		Formaldehyde	0.0000		0.0000
		H ₂ S	0.0000		0.0001
		SO ₂ NO _X	0.0000		0.0000 0.0000
		$\frac{NO_X}{CO}$	0.0000		0.0000
		PM ₁₀	0.0000		0.0000
		PM _{2.5}	0.0000		0.0000
		Total VOC	0.0023		0.0101
		Total Crude Oil			
		or Condensate VOC	0.0022		0.0101
			0.0023		0.0101
		Total Natural Gas VOC	0.0000		0.0000
WT1	Produced Water Tank	Gas VOC Benzene	0.0000		0.0000
WT1	Flouted water lank	Formaldehyde	0.0000		0.0000
		H ₂ S	0.0000		0.0000
		SO ₂	0.0000		0.0000
		NO _X	0.0000		0.0000
		CO	0.0000		0.0000
		PM ₁₀	0.0000		0.0000
		PM _{2.5}	0.0000		0.0000
		Total VOC	0.0023		0.0101

		i			
		Total Crude Oil			
		Total Crude Oil or Condensate			
		VOC	0.0023		0.0101
			0.0025		0.0101
		Total Natural	0.0000		0.0000
		Gas VOC	0.0000		0.0000
WT2	Produced Water Tank	Benzene	0.0000		 0.0000
		Formaldehyde	0.0000		 0.0000
		H ₂ S	0.0000		 0.0000
		SO ₂	0.0000		0.0000
		NO _X	0.0000		0.0000
		CO	0.0000		0.0000
		PM ₁₀ PM _{2.5}	0.0000 0.0000		 0.0000 0.0000
		Total VOC	0.0000	22.3591	1.8909
				22.3391	1.8909
		Total Crude Oil			
		or Condensate			
		VOC		22.3591	1.8909
		Total Natural			
		Gas VOC		0.0000	0.0000
L1	Crude Oil Loading	Benzene		0.0403	0.0034
	crude on Louding	Formaldehyde		0.0000	0.0000
		H ₂ S		0.0000	0.0000
		SO ₂		0.0000	0.0000
		NO _X		0.0000	0.0000
		CO		0.0000	0.0000
		PM ₁₀		0.0000	0.0000
		PM _{2.5}		0.0000	0.0000
		Total VOC		0.0000	0.0000
		Total Crude Oil			
		or Condensate		0.0000	0.0000
		VOC		0.0000	0.0000
		Total Natural		0.0	0.0777
		Gas VOC		0.0000	0.0000
L2	Produced Water Loading	Benzene		0.0000	0.0000
		Formaldehyde		0.0000	0.0000
		H ₂ S		0.0000	0.0000
		SO ₂		0.0000	0.0000
		NO _X		0.0000	0.0000
		CO		0.0000	0.0000
		PM ₁₀ PM _{2.5}		0.0000 0.0000	0.0000 0.0000
		PM _{2.5} Total VOC	103.5886	0.0000	72.5120
			105.5880		72.3120
		Total Crude Oil			
		or Condensate			
		VOC	103.5886		72.5120
		Total Natural			
		Gas VOC	0.0000		0.0000
V1	Process Vent	Benzene	0.1521		0.1065
		Formaldehyde	0.0000		0.0000
		H ₂ S	0.0029		0.0021
		SO ₂	0.0055		0.0039
		NO _X	0.0000		0.0000
		СО	0.0000		0.0000
		PM ₁₀	0.0000		0.0000
		PM _{2.5}	0.0000		0.0000

			Emissio	n Rates	
Project Total Emission Rates (Note that these periodic totals are NOT simply the sum of the periodic emission rates from	Air Contaminant Name (3)	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr	TPY (4)
each emission point. The periodic	Total VOC	108.93	131.29	131.29	97.82
emission limits in the rule need to be compared to the sum of steady state and periodic emissions, that is the worst case combination of continuously and periodically emitting sources that could	Total Crude Oil or Condensate VOC	108.93	131.29	131.29	97.80
occur in any one hour. The periodic emission rates shown here are the sum of	Total Natural Gas VOC	0.00	0.00	0.00	0.00
all steady state and periodic emissions in	Benzene	0.16	0.20	0.20	0.16
the project. If the worst case combination of continuously and periodically emitting	Formaldehyde	0.00	0.00	0.00	0.00
sources is less than this, then please	H_2S	0.00	0.00	0.00	0.00
input the values in this table to the right.	SO ₂	0.01	0.01	0.01	0.01
Please explain below which emission	NO _X	0.08	0.08	0.08	0.36
points are included in this worst case	СО	0.07	0.07	0.07	0.30
combination.)	PM ₁₀	0.01	0.01	0.01	0.03
	PM _{2.5}	0.00	0.00	0.00	0.02
If the automated formulas for the project emission totals (which assume that it is possible for all steady state and periodic emissions in the project to occur in the same hour) have been overwritten, explain any changes made and list the project emission points that occur in the realistic worst case hour. (Leave this blank or put NA if none of the formulas have been overwritten.)					
Other Site Wide Emissions (This needs to include any other emission points not included in the Project Emissions Summary but are associated with the site. This should be all the operationally dependent units that are within 1/4 mile of each other and are also owned/operated by the same company and located on contiguous or adjacent property. It is possible that nothing needs to be entered here.)					
There are no other site	wide emission poi	nts other than j	project emissio	n points.	

Site Wide Total Emission Rates (Note that these periodic totals are NOT simply the sum of the periodic emission rates	Air Contaminant Name (3)	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr	TPY (4)
the sum of the periodic emission rates from each emission point. The periodic	Total VOC	108.93	131.29	131.29	97.82
emission limits in the rule need to be compared to the sum of steady state and periodic emissions, that is the worst case combination of continuously and	Total Crude Oil or Condensate VOC	108.93	131.29	131.29	97.80
periodically emitting sources that could occur in any one hour. The periodic	Total Natural Gas VOC	0.00	0.00	0.00	0.00
emission rates shown here are the sum of	Benzene	0.16	0.20	0.20	0.16
all steady state and periodic emissions in	Formaldehyde	0.00	0.00	0.00	0.00
the registration. If the worst case combination of continuously and	H ₂ S	0.00	0.00	0.00	0.00
periodically emitting sources is less than	SO ₂	0.01	0.01	0.01	0.01
this, then please input the values in this	NO _x	0.08	0.08	0.08	0.36
table to the right. Please explain below	CO	0.07	0.07	0.07	0.30
which emission points are included in	PM ₁₀	0.01	0.01	0.01	0.03
this worst case combination.)	PM _{2.5}	0.00	0.00	0.00	0.02
If the automated formulas for the registration emission totals (which assume that it is possible for all steady state and periodic emissions in the registration to occur in the same hour) have been overwritten, explain any changes made and list the registration emission points that occur in the realistic worst case hour. (Leave this blank or put NA if none of the formulas have been overwritten.)					
Based on the Site Wide Total Emission	on Rates, this au	uthorization fa	alls under:	Standar	d Permit
Enter any notes here: * No PM emissions included for process vent emissions. ** Note that facility is located > 1.0 mile from the any receptors or property line so no impacts evaluation is required.					
 Emission point identification - either specific equipment designation or emission point number from 					

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.

(3)	VOC	volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
	H_2S	hydrogen sulfide

- SO₂ sulfur dioxide
- NO_X total oxides of nitrogen
- CO carbon monoxide
- PM₁₀ total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}
- PM_{2.5} particulate matter equal to or less than 2.5 microns in diameter
- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) If emissions from a source are:

(A) uncontrolled, then the uncontrolled emissions are reported in this table as being emitted from the source.

(B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU), then the controlled emissions are reported on this table as being emitted from the control device.

(C) controlled by another type of control device, then the controlled emissions are reported on this table for the source (even though emissions are actually being emitted at the control device).

- (6) For controlled tank, glycol/amine flash tank and regenerator, and MSS emissions, it is assumed that all vapors make it to the control device (100% collection efficiency). For controlled loading emissions, a 100% collection efficiency is <u>not</u> assumed.
- (7) A VRU itself is not actually considered an emission point; however, this table associates unrecovered (uncontrolled) emissions from sources controlled by a VRU at the VRU.

Major Source determination

Major Source determination: A site is required to obtain an operating permit if it is considered to be a major source (per 30 TAC Section 122.10). A site's potential to emit is an important factor to determine if the site is a major source and is thus required to apply and obtain an FOP.

	EP Energy E&P Company
Company Name	LP
	University Lands 39-11-1H
	Facility
County	Other

Annual Site Wide Emission Rates					
Air Contaminant Name (3)	TPY (4)				
Total VOC	97.82				
Benzene	0.16				
Formaldehyde	0.00				
SO ₂	0.01				
NO _X	0.36				
CO	0.30				
PM ₁₀	0.03				
PM _{2.5}	0.02				

Major Source Determination				
Air Contaminant	Major Source determination			
Name (3)				
Total VOC	NA			
Benzene	NA			
Formaldehyde	NA			
SO ₂	NA			
NO _X	NA			
CO	NA			
PM ₁₀	NA			
PM _{2.5}	NA			

Authorization Level Determination

The level of authorization is determined by comparing the Registration Total Emission Rates (as shown on the previous tab) to the emission limits of the different authorization levels.

This table is an expanded explanation of how the authorization level shown on the Emissions Summary tab was determined. The table shows which authorization level each compound's emissions fall into, and then at the bottom of the chart it shows which authorization level the entire authorization falls under.

The possible authorization levels are:

PBR Level 1 PBR Level 2 **Standard Permit** NSR Case-by-case Permit

	Based on the Registration Total Emission Rates (on the previous tab), what Level of Authorization Does Each Emission Rate Fall Into?			
		Emissio	on Rates	
Air Contaminant Name	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr	ТРҮ
Total VOC	NA, no limit	NA, no limit	NA, no limit	Standard Permit
Total Crude Oil or Condensate VOC	Standard Permit	PBR Level 1	PBR Level 1	Standard Permit
Total Natural Gas VOC	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1
Benzene	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1
Formaldehyde	NA, no limit	NA, no limit	NA, no limit	PBR Level 1
H_2S	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1
SO_2	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1
NO _X	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1
со	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1
PM ₁₀	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1
PM _{2.5}	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1

What Level of Authorization Applies to this Registration? (If any of the registration emissions are equal to or greater than the limits of a level, then the whole registration falls into that level above.)

Standard Permit

Is a Full Impacts Review Required?

and NO₂. A full impacts review involves showing protection of public health and welfare and compliance with applicable ambient air standards (state and federal) on a short term and long term basis.

A full impacts review is not required for a certain compound under these certain circumstances:

if there is no receptor (to be affected by benzene emissions) or property line (where compliance with NO₂, SO₂, and H₂S ambient air quality standards is required) within a certain distance of a registration (that is if there is no receptor or property line within a certain distance of any emitting source in the registration), or

if the net project emission increases of that compound are very small.

Based on these circumstances, the worksheet below determines whether or not a full impacts review is required for any of the four compounds (benzene, H_2S , SO_2 , and NO_2).

If any of (1)-(3) below shows that a full impacts review is not required for a compound, then under (4) it will show that no further impacts review needs to be done and it will explain that "you are done" for that compound. If all of (1)-(3) show that a full impacts review is required, then (4) will explain that one of the three methods for doing a full impacts review (screening modeling, dispersion modeling, or the modeling tables from the rule) must be used.

If the modeling tables from the rule are used, then the spreadsheet tabs labeled for benzene, H_2S , SO_2 , and NO_2 should be used. These tabs provide a way to use the modeling tables and perform the necessary calculations to show whether the impacts review is passed.

(1) Based on receptor and property line distances, is a full impacts review required for any air contaminant? (Is there a receptor or property line within the specified distance of the registration? The distances are 1/4 mile for PBR Level 1, 1/2 mile for PBR Level 2, and 1 mile for Standard Permit.) First the level of authorization must be known.

Based on the Registration Total Emission Rates, this authorization falls under: Standard Permit

What is the shortest distance in feet to any receptor from any facility/unit included in this registration?	5500	ft	
What is the shortest distance in feet to any property line from any facility/unit included in this registration?	5500	ft	

Based on the nearest receptor distance: A full impacts review is NOT required for benzene.

Based on the nearest property line distance:

A full impacts review is NOT required for H2S, SO2, and NO2.

(2) Based on the <u>net project emission increases</u>, is a full impacts review required for any air contaminent? (Are the net project emission increases less than any of the de-minimis rates?)

Net Project Emission Increases				
	Emission Rates			
Air Contaminant Name	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr	ТРҮ
Benzene	0.16	0.20	0.20	0.16
H_2S	0.00	0.00	0.00	0.00
SO ₂	0.01	0.01	0.01	0.01
NO _X	0.08	0.08	0.08	0.36
Please explain the logic behind the values here if any values are different than the Project Total Emission Rates from the Emissions Summary tab.				

De-minimis Rates		
Air contaminant Ib/hr		
Benzene	0.039	
H₂S	0.025	
SO ₂	2	
NO _x	4	

Based on the net project emission increases:	
A full impacts review is required for benzene.	
A full impacts review is NOT required for H2S.	
A full impacts review is NOT required for SO2.	
A full impacts review is NOT required for NO2.	

Based on the <u>project maximum predicted concentrations</u>, is a full impacts review required for any air contaminant? (Are the project maximum predicted benzene concentrations \leq 10% of the applicable effects screening level (ESL) or \leq 25% of the applicable ESL when combined with project increases over 60-month period after rule effective date? Are project maximum predicted H₂S, SO₂, and NO_X concentrations \leq the significant impact level, SIL, also known as a de-minimis impact in Chapter 101 of 30 TAC, where the SIL = 4% of the applicable ambient air standard (AAQS)?)

ESLs and AAQSs	(µg/m³)
Benzene Short Term ESL	170
Benzene Long Term ESL	4.5
H ₂ S Hourly SAAQS	108
SO ₂ Hourly NAAQS	196
NO ₂ Hourly NAAQS	188

concentration of <u>benzene</u> in micrograms per cubic meter? NA (µg/m³) Based on this: A full impacts review is required for benzene on an hourly basis.

What is the maximum predi benzene in micrograms per		
project combined with prev over a 60-month period afte		
this rule?	NA	(µg/m³)
Based on this:		

A full impacts review is required for benzene on an hourly basis.

What is the <u>project</u> maximum concentration of <u>benzene</u> in meter?	· ·	NA	(µg/m³)
Based on this:			

A full impacts review is required for benzene on an annual basis.

What is the maximum predi	cted annual concentration		
of <u>benzene</u> in micrograms p			
project combined with prev			
over a 60-month period after the effective date of the			
this rule?		NA	(µg/m³)
Based on this:			
A full impacts review is required for benzene on an annual basis.			

What is the <u>project</u> maximu concentration of <u>H₂S</u> in mic	· ·	NA	(µg/m³)
Based on this:			
	1 1 1 10 100		

A full impacts review is required for H2S on an hourly basis.

What is the <u>project</u> maximu concentration of <u>SO₂</u> in mic	• •	NA	(µg/m³)
Based on this:			
A full impacts re	view is required for SO2 on a	n hourly basis	

What is the <u>project</u> maximum predicted <u>1-hr</u> concentration of <u>NO₂</u> in micrograms per cubic meter?		NA	(µg/m³)
Based on this:			

(3)

A full impacts review is required for NO2 on an hourly basis.

(4)	Based on the above assessment from (1) - (3):
	A full impacts review is NOT required for benzene.
	A full impacts review is NOT required for H2S.
	A full impacts review is NOT required for SO2.
	A full impacts review is NOT required for NO2.

Press this button to make the impacts review tabs visible if needed, that is if you want to use the modeling tables from the rule for any of the four compounds.

ATTACHMENT D

TCEQ Forms

TCEQ Core Data Form

For detailed instructions regarding completion of this form, please read the Core Data Form Instructions or call 512-239-5175.

<u>SECTIO</u>	N I: Ger	neral Information									
1. Reason fo	or Submiss	ion (If other is checked plea	se descr	ibe in sp	oace pr	rovided)				
🛛 New Pe	New Permit, Registration or Authorization (Core Data Form should be submitted with the program application)										
Renewa	l (Core Da	ata Form should be submitted	with the	renewal	form)] Ot	her			
2. Attachme	nts	Describe Any Attachments:	: (ex. Title	e V Appl	ication,	Waste	Transp	oorter Application	n, etc.)		
⊠Yes	No	116.620 Standard Perr	mit Co	nversi	on						
3. Customer	Reference	Number (if issued)		<u>w this lin</u> N or RN			4. Re	gulated Entity	y Refere	nce Numbe	r (if issued)
CN 6040	89854			entral Re			RN	10611806	0		
SECTION	N II: Cu	stomer Information	<u>1</u>								
5. Effective	Date for Cu	stomer Information Updates	s (mm/de	d/yyyy)	9/	1/201	3				
6. Customer	Role (Prop	osed or Actual) – as it relates to t	the <u>Regula</u>	ated Enti	<u>ty</u> listed	l on this	form.	Please check or	nly <u>one</u> of	the following:	
Owner		Operator	[🛛 Own		•					
	onal License	e 🗌 Responsible Party	[Volu	ntary C	Cleanup	o Appl	licant	Other:		
7. General C	ustomer In	formation									
New Cus	tomer		Update to	o Custo	mer Inf	formati	on		hange in	Regulated E	Entity Ownership
-	-	ne (Verifiable with the Texas S	-						o Change) <u>**</u>	
**If "No Cha	nge" and S	Section I is complete, skip to	Section	i III – Re	egulate	ed Enti	ty Inf	ormation.			
8. Type of C	ustomer:	Corporation		🗌 Indiv	vidual			Sole Pro	prietorsh	ip- D.B.A	
City Gove	ernment	County Government		🗌 Fed	eral Go	overnm	ent	State Go	overnmer	nt	
Other Go	vernment	General Partnership		🖂 Limi	ited Pa	rtnersh	ip	Other:			
9. Customer	Legal Nan	ne (If an individual, print last nam	e first: ex.	Doe, Jo	hn)	lf ne belov		tomer, enter pr	evious Cu	istomer	End Date:
EP Energy	y E&P C	ompany, L.P.					<u> </u>				
	1001 L	ouisiana Street									I
10. Mailing											
Address:	City	Houston	Sta	to	ГХ	ZI	D	77002		ZIP + 4	
			014							211 ' 4	
11. Country	mailing Inf	ormation (if outside USA)			12	2. E-Ma	all Ad	Idress (if applica	able)		
13. Telephor	ne Number		14. Ext	ension	or Coc	de		15. Fax	Numbe	r (if applicat	ole)
(713) 997-5464 (713) 455-8380											
16. Federal Tax ID (9 digits) 17. TX State Franchise Tax ID (11 digits) 18. DUNS Number (if applicable) 19. TX SOS Filing Number (if applicable)											
20. Number	of Employe	ees						21. I	ndepend	ently Owne	ed and Operated?
0-20	21-100	101-250 251-500	5 🖂	01 and	higher				א 🖂	′es	🗌 No
SECTION III · Regulated Entity Information											

SECTION III: Regulated Entity Information

22. General Regulated Entity Information (If 'New Regulated Entity'' is selected below this form should be accompanied by a permit application)								
New Regulated Entity	Update to Regulated Entity Name	Update to Regulated Entity Information	No Change** (See below)					
	**If "NO CHANGE" is checked and Section I	I is complete, skip to Section IV, Preparer Information.						
23. Regulated Entity Name	23. Regulated Entity Name (name of the site where the regulated action is taking place)							
University Lands 39	-11-1H Facility							

24. Street Address	1001	Louisiana Street							
of the Regulated Entity:									
(No P.O. Boxes)	City	Houston	State	TX	ZIP	77002		ZIP + 4	
	1001	Louisiana Street							
25. Mailing Address:									
	City	Houston	State	ТХ	ZIP	77002		ZIP + 4	
26. E-Mail Address:									
27. Telephone Numbe	r		28. Extensio	on or Code	29.	Fax Numbe	r (if applicable))	
(713) 997-5464					(7	713) 455-8	8380		
30. Primary SIC Code	(4 digits)	31. Secondary SIC C	ode (4 digits)	32. Primary (5 or 6 digits)	NAICS	Code	33. Secon (5 or 6 digits)	dary NAICS	6 Code
1311				21111					
34. What is the Prima	ry Busi	ness of this entity? (Ple	ease do not rep	beat the SIC or N	IAICS de	scription.)			
Oil and Gas Production									
Q	uestion	s 34 – 37 address geogr	aphic locatio	on. Please ref	er to the	e instruction	s for applic	ability.	
35. Description to		n Barnhart, travel S	2		· ·	•	for 5.9 m	ni on leas	e road, R

r nysical Location.	neadin	lg 5 10 2.8 I		facility of w	side of the for	au.			
36. Nearest City				County		State		Nearest ZIP C	ode
Barnhart				Crockett		ΤX		76930	
37. Latitude (N) In Decimal:					38. Longitude (W) In	Decimal:		
Degrees	Minutes		Seconds	S	Degrees		Minutes	Seconds	
30	57		20.24	4	101		5	40.26	

39. TCEQ Programs and ID Numbers Check all Programs and write in the permits/registration numbers that will be affected by the updates submitted on this form or the updates may not be made. If your Program is not listed, check other and write it in. See the Core Data Form instructions for additional guidance.

Dam Safety	Districts	Edwards Aquifer	Industrial Hazardous Waste	Municipal Solid Waste
New Source Review – Air	OSSF	Petroleum Storage Tank	PWS	Sludge
Stormwater	🔲 Title V – Air	Tires	Used Oil	Utilities
Voluntary Cleanup	Waste Water	Wastewater Agriculture	Water Rights	Other:

SECTION IV: Preparer Information

40. Name:	Paul E. DeC	Ciutiis, P.E., BCE	E	41. Title:	Consultant
42. Telephon	e Number	43. Ext./Code	44. Fax Number	45. E-Mail A	Address
(512)699	-2444		(512)351-3081	paul.deci	utiis@gmail.com

SECTION V: Authorized Signature

46. By my signature below, I certify, to the best of my knowledge, that the information provided in this form is true and complete, and that I have signature authority to submit this form on behalf of the entity specified in Section II, Field 9 and/or as required for the updates to the ID numbers identified in field 39.

(See the Core Data Form instructions for more information on who should sign this form.)

Company:	EP Energy E&P Company, L.P.	S Specialis	st	
Name(In Print) :	Bernard Kadlubar		Phone:	(713)997-5464
Signature:			Date:	

TABLE 7(a)

VERTICAL FIXED ROOF STORAGE TANK SUMMARY

	 Tank Identification (Use a separate form for each tank). Applicant's Name: <u>EP Energy E&P Company L.P. – University Lands</u> 									
			d provide coordinates): <u>Se</u>							
3.	Tank No. WT1-WT	2	4. Emission Point No. V	<u>12</u>						
	FIN <u>WT1-WT2</u>									
6.	6. Status: New tanks [] Altered tank [X] Relocation [] Change of Service []									
Pr	Previous permit or exemption number(s)									
11 77										
	I. Tank Physical Characteristics (each tank)									
1.	Dimensions	250 0								
	a. Shell Height:b. Diameter: 12.0									
	c. Maximum Liquid	-	50 ft							
			<u></u>	llons						
	e. Turnovers per yea		1g volume. <u>21,000</u> ga	110115.						
	1 2		0.00 gallons/year (100 b	and)						
	g. Maximum Filling			(pu)						
2.	Paint Characteristics	, <u></u>	<u> </u>							
	a. Shell Color/Shade	e: White/	White [X] Aluminum	n/Specular [] Alu	uminum/Diffuse []					
			lium [] Red/Primer							
	b. Shell Condition:	Good [X]	Poor []							
			White [X] Aluminun							
			dium [] Red/Primer	[] Other [] (Describe)					
-	d. Roof Condition :	-	[] Poor []							
3.	Roof Characteristics									
	a. Roof Type: Don		Cone [X]							
	b. Roof Height: <u>1</u> .	$\frac{0}{1}$ ft. (<i>i</i>	not including shell height)						
	c. Radius (Dome Red	ooj Oniy): _								
	d. Slope (Cone Roo	of Only)	0.107 11/11.							
4.	Breather Vent Settings				SPECIFY					
	_				"Atmosphere" or					
Valv	е Туре	Number	Pressure Setting (psig)	Vacuum Setting (psig)	Discharging to: (name					
					of abatement device)					
Com	Combination Vent Valve									
Press	ure Vent Valve		0.3		Discharge to Atmosph.					
Vacu	um Vent Valve			-0.3						
Oper	Vent Valve									

02-95

III. Liquid Properties of Stored Material

- 1. Chemical Category: Organic Liquids [] Petroleum Distillates [] Crude Oils [X]
- 2. Single or Multi-Component Liquid
 - Single [] Complete Section III.3

Multiple [X] Complete Section III.4

- 3. Single Component Information
 - a. Chemical Name: Crude Oil RVP 4.76
 - b. CAS Number: ____
 - c. Average Liquid Surface Temperature: <u>74.5</u> F.
 - d. True Vapor Pressure at Average Liquid Surface Temperature: <u>3.56</u> psia.
 - e. Liquid Molecular Weight: 207.0
- 4. Multiple Component Information
 - a. Mixture Name: _____
 - b. Average Liquid Surface Temperature: F.
 - c. Minimum Liquid Surface Temperature: F.
 - d. Maximum Liquid Surface Temperature: F.
 - e. True Vapor Pressure at Average Liquid Surface Temperature: psia.
 - f. True Vapor Pressure at Minimum Liquid Surface Temperature: psia.
 - g. True Vapor Pressure at Maximum Liquid Surface Temperature: psia.
 - h. Liquid Molecular Weight:
 - i. Vapor Molecular Weight:

j. Chemical Components Information

Chemical Name	CAS Number	Percent of Total Liquid Weight (typical)	Percent of Total Vapor Weight (typical)	Molecular Weight
Crude Oil – RVP 4.76				

TABLE 7(a)

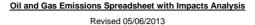
VERTICAL FIXED ROOF STORAGE TANK SUMMARY

I. <i>Tank Identification</i> (Use 1. Applicant's Name: El		form for each tank). 2P Company L.P. – Univers	ity Lands							
2. Location (indicate on	plot plan and	d provide coordinates): <u>Se</u>	e plot							
3. Tank No.T1-T24. Emission Point No.V2										
5. FIN <u>T1-T2</u> CIN										
6. Status: New tanks [] Altered tank [X] Relocation [] Change of Service []										
Previous permit or exempt	Previous permit or exemption number(s)									
II. Tank Physical Characte	eristics (eac	ch tank)								
1. Dimensions										
a. Shell Height:	25.0 ft.									
b. Diameter: 12.0										
c. Maximum Liquid	-	50 ft								
1	U	ng Volume: 21,000 ga	llons							
1 1		1g volume. <u>21,000</u> ga	110115.							
e. Turnovers per yea			X							
		<u>00</u> gallons/year (50 bpd)							
g. Maximum Filling	3 Rate: <u>37.5</u>	0 gallons/hour.								
2. Paint Characteristics										
a Shell Color/Shade	e [.] White/	White [X] Aluminur	n/Specular [] Al	uminum/Diffuse []						
		dium [] Red/Primer								
)						
b. Shell Condition:		Poor []								
		White [X] Aluminum								
Gray/Light []	Gray/Me	dium [] Red/Primer	[] Other [] (Describe _)						
d. Roof Condition :	Good [X	[] Poor []								
3. Roof Characteristics	-]								
		Cono [V]								
a. Roof Type: Don)							
		not including shell height)							
c. Radius (<i>Dome R</i>	oof Only): _	ft.								
d. Slope (Cone Roo	of Only):	<u>0.167</u> ft/ft.								
4. Breather Vent Settings				SPECIFY						
				"Atmosphere" or						
Valve Type	Number	Pressure Setting (psig)	Vacuum Setting (psig)	Discharging to: (name						
				Discharging to. (name						
	of abatement device)									
Combination Vent Valve	Combination Vent Valve									
Pressure Vent Valve		0.3		Discharge to Atmosph.						
Vacuum Vent Valve	Vacuum Vent Valve -0.3									

Open Vent Valve

02-95

III. Liquid Properties of Stored Material


- 1. Chemical Category: Organic Liquids [] Petroleum Distillates [] Crude Oils [X]
- 2. Single or Multi-Component Liquid
 - Single [] Complete Section III.3

Multiple [X] Complete Section III.4

- 3. Single Component Information
 - a. Chemical Name: Crude Oil RVP 4.76
 - b. CAS Number: ____
 - c. Average Liquid Surface Temperature: <u>74.5</u> F.
 - d. True Vapor Pressure at Average Liquid Surface Temperature: <u>3.56</u> psia.
 - e. Liquid Molecular Weight: 207.0
- 4. Multiple Component Information
 - a. Mixture Name: _____
 - b. Average Liquid Surface Temperature: F.
 - c. Minimum Liquid Surface Temperature: F.
 - d. Maximum Liquid Surface Temperature: F.
 - e. True Vapor Pressure at Average Liquid Surface Temperature: psia.
 - f. True Vapor Pressure at Minimum Liquid Surface Temperature: psia.
 - g. True Vapor Pressure at Maximum Liquid Surface Temperature: psia.
 - h. Liquid Molecular Weight:
 - i. Vapor Molecular Weight:

j. Chemical Components Information

	-			-
Chemical Name	CAS Number	Percent of Total Liquid Weight (typical)	Percent of Total Vapor Weight (typical)	Molecular Weight
Crude Oil – RVP 4.76				

General Notes

*** Before beginning, make sure to enable macros, so that this spreadsheet will run properly. *** See the links below for more information on creating a trusted location and enabling macros for this spreadsheet.

Enable Macro Link

Trusted Location Link

See comments in individual cells and other written notes. Cells with red corners contain comments; place cursor anywhere in a cell which has a red corner, to view comment. These were added to guide you through using this spreadsheet and make it as easy as possible to use.

This spreadsheet should be used as follows: (1) Enter information into this Facility Information spreadsheet tab, (2) after running the macro (which is explained below), fill out the emission calculation tabs, (3) populate the Emissions Summary table (you press a button on the Emissions Summary tab and the macro will populate the table with the values from the emission calculation tabs), and (4) go through the impacts review tabs (if applicable). This basically means estimate what each of the individual source emissions are, then summarize them in a table, then evaluate the impact of the emissions (if impacts review is applicable).

If you want to use any of the impacts review tabs, you will need to have answered "Yes" to the initial question of "Are you using this to meet the new Barnett Shale area rule requirements?". You can press the "Reset" button at the bottom of this tab to have the question pop up again.

Yellow cells require information to be entered. Red cells contain calculated values.

Worst case emissions must be estimated on both an hourly and annual basis for air permitting purposes.

Hourly emissions must be based on worst case maximum parameters realistically expected to occur over the course of any one hour. As an example, where ambient temperature is used as a parameter to estimate <u>hourly</u> emissions, the maximum temperature from the hottest day of the year must be used.

<u>Annual</u> emissions can be based on average parameters. As an example, where ambient temperature is used as a parameter to estimate <u>annual</u> emissions, the average ambient temperature may be used.

This difference between hourly and annual emissions could potentially mean that separate calculations or program runs will have to be done to estimate hourly and annual emission rates.

<u>Planned Maintenance, Start-up, and Shutdown (MSS) versus Alternate Operating Scenarios</u>: Planned MSS emissions do not need to be claimed for oil and gas sites until January 5, 2014. Before this date, it is voluntary to factor in planned MSS emissions. Alternate operating scenario emissions should be factored in now. Although historically alternate operating scenarios have sometimes been treated as planned MSS, it is actually different and should be addressed now to ensure that during these periods and continuously, the applicable emission limits are not exceeded.

What is Different About Estimating Emissions for the Barnett Shale Area Rule Requirements?

There are level limits (or caps) for the different levels of authorization, which are: PBR Level 1, PBR Level 2, and Standard Permit. The level limits are emission limits of the following air pollutants: Total VOC, Total crude oil or condensate VOC, Total natural gas VOC, benzene, hydrogen sulfide (H₂S), sulfur dioxide (SO₂), nitrogen oxides (NOx), carbon monoxide (CO), and particulate matter (PM₁₀ and PM_{2.5}). There are different level limits for hourly and annual emissions and within hourly emissions there are different level limits for steady state emissions versus periodic emissions.

There is an impacts review for both the Permit by Rule (PBR) and Standard Permit for the following air pollutants: benzene, H₂S, SO₂, and NOx.

VOC emissions need to be separated into (1) Crude Oil or Condensate VOC and (2) Natural Gas VOC.

Hourly and annual emissions need to be estimated. There are potentially three hourly emission types that need to be estimated (1) steady state hourly, (2) low pressure periodic, and (3) high pressure periodic. These are described in detail on the Emissions Summary tab.

Benzene emissions need to be speciated for all sources.

Oil and Gas Site General I	nformation
Administrative Inform	ation
Company Name	EP Energy E&P Company LP
Facility/Well Name	University Lands 39-11-1H Facility
Field Name	Wolfcamp
Nearest City/Town	Barnhart
API Number/SIC Code	211111/1311
Latitude/Longitude	30d 57' 20.24" / 101d 5' 40.26"
County	Crockett
Are you using a Form PI-7, PI-7-CERT, APD-CERT, PI-7 and APD- CERT, or are you using ePermits?	ePermits
Customer Number, CNxxxxxxx (if known)	CN604089854
Regulated Entity Number, RNxxxxxxxx (if known)	RN106118060
Technical Informati	on
Natural Gas Site Throughput (MMSCF/day):	5
Oil/Condensate Site Throughput (bbl/day):	100
Produced Water Site Throughput (bbl/day):	200
Are there any sour gas streams at this site?	No
Is this site currently operational/producing?	Yes
What is the date of the site start of construction or the date that the project changes were implemented (whichever is applicable to this project, anticipated date if in the future)?	2013
Has this site been registered before?	Yes

Ē	quipment/Processes at Site	
***Before entering any numbers into the Equipment/Processes the table. These should make it clear what numbers need to be		
Equipment/Process Types	How many for this project?	How many for this site?
Fugitives	1	1
IC Engines	1	1
Turbines	0	0
Diesel Engines	0	0
Heaters-Boilers	1	1
Oil / Condensate Tanks	2	2
Produced Water Tanks	2	2
Miscellaneous Tanks	0	0
Loading Jobs	2	2
Glycol Units	0	0
Amine Units	0	0
Vapor Recovery Units	0	0
Flares-Vapor Combustors	1	1
Thermal Oxidizers	0	0
MSS Blowdowns	0	0
MSS FLR Tank Landing Loss	0	0
MSS Tank Non Forced Vent	0	0
MSS Tank Forced Vent Degas	0	0
MSS Other	0	0
Other	0	0

When you are finished entering information on this tab, press the "Run" button below. When it is pressed, the spreadsheet tabs needed will be added and the "Emissions Summary" tab will also be added with the number of rows corresponding to the number of emission points in this registration.

Before pressing "Run", please make sure to review all of the comments in the cells of the table above. These should make it clear what numbers need to be entered and where they need to be entered.

The spreadsheet can be reset if needed by pressing the "Reset" button below. If the "Reset" button is pressed, everything will be cleared and you can start over (the added sheets will disappear along with any data entered into the sheets). When the "Reset" button is pressed and there is anything to clear, a question will pop up asking "Delete all macro created worksheets?". Then if you click "Yes", the question will pop back up asking "Are you using this to meet the new Barnett Shale area requirements?".

If the "Run" button is pressed a second time, everything will be cleared and you can start over (the added sheets will disappear along with any data entered into the sheets). When the "Run" button is pressed a second time, a question will pop up asking "Delete all macro created worksheets?". The question will <u>not</u> pop back up asking "Are you using this to meet the new Barnett Shale area requirements?".

Do not press "Run" again or "Reset", unless you intend to clear all of the added sheets (and any data entered into the sheets). This means that it is important to make sure the right numbers of each equipment/process type are entered. If it is possible that an extra piece of equipment could be included, include it because it is better to have too many entered than not enough.

Run		Reset
	Next Tab	

Gas and Liquid Analyses

A) Enter information into the yellow boxes.

B) The purpose of this tab is to extract information from a lab analysis that will be used in emission calculations. Unlike the other other tabs which calculate emissions, nothing from this tab gets pulled to the Emissions Summary table. The big pieces of information needed for emissions estimates are the VOC, benzene, and H₂S weight percents. Sampling of gas and liquid streams from appropriate process sampling points is required in order to determine composition or other properties needed to estimate emissions such as heat content, specific gravity, and vapor pressure. It is essential that stream lab analyses/reports include a measurement of H₂S, individual HAPs, and at least all those hydrocarbons up to at least 10 carbon atoms per molecule (C10+).

C) There are two boxes on the left, for gas and liquid analyses, which take component weight percent inputs and there are two boxes on the right, for gas and liquid analyses, which take component mole percent inputs. You can either fill out the weight percent box <u>OR</u> the mole percent box, depending on what informaton you have available to you.

The boxes are set up in the following arrangement:

Gas Analysis Wt% Inputs	Gas Analysis Mol% Inputs
Liquid Analysis Wt% Inputs	Liquid Analysis Mol% Inputs

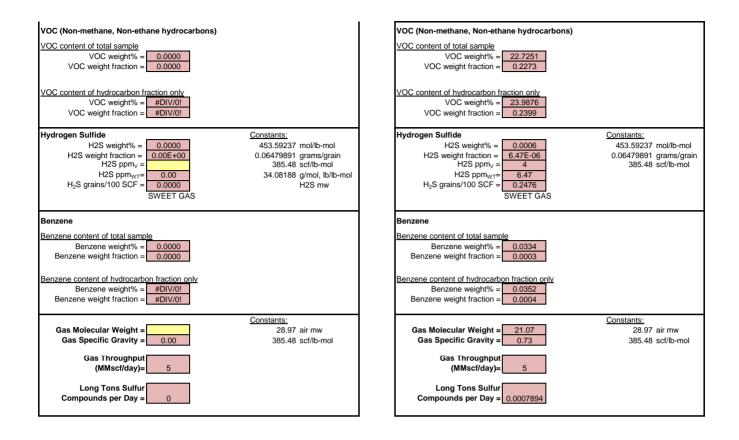
D) If weight percents are provided on the lab report, use the boxes on the left. If only mole percents are provided on the lab report, use the boxes on the right.

E) Make sure to select whether you are inputting weight percents or mole percents from the pull down menus below.

F) If you are using the weight percent boxes (left two), in addition to the component weight percents, you need to enter the gas molecular weight (molecular weight of the total sample) and the gas and liquid H₂S content in parts per million by volume (H₂S ppmv). This will allow for the calcultion of the gas specific gravity and the long tons of sulfur per day in the gas, and the determination of sweet versus sour gas.

G) If you are using the mole percent boxes (right two), in addition to the component mole percents, you need to enter a real value, specific to this sample, for the molecular weight of the deacnes plus (C10+) fraction. You may use the default values listed below for the moleclar weights of the other hexanes (C6), other heptanes (C7), other ocatnes (C8), and nonanes (C9) fractions, unless you have a more accurate number. If you enter number other than the default, you need to explain where the number came from and why it is appropriate to use.

H) What is expected to be inlcuded on these tables is the the inlet gas and liquid streams (the liquid would most likely be sampled from a separator if there is separation at the site). These tables can also be used for any sampled gas and liquid streams as needed. If needed, make a copy of this tab.

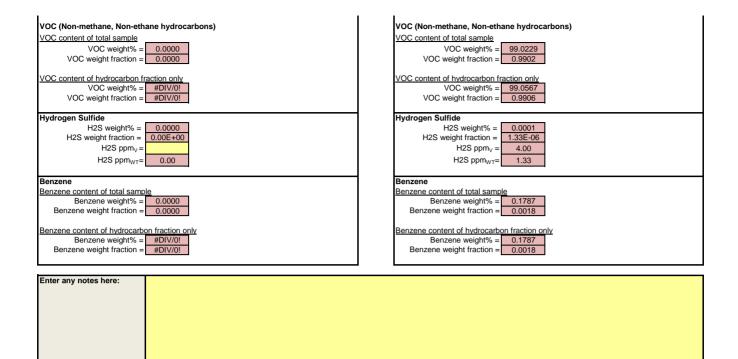

I) Use the box provided below for entering any notes necessary.

For the gas sample, I am inputting (pick from list): Select whether weight percents or mole percents are being entered for this gas sample.

Then fill out this table OR fill out this table.

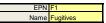
<u>Gas Analysi</u>	<u>s</u> - Use if th	e Inputs are <u>Weight</u> Percents
Analysis Identifier/Name		
What site is the sample from?		
If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).		
Where in the process was the sample taken?		
What is the temperature and pressure of the sample (include units)?		
Who analyzed the sample?		
Date of sample:		
Component	weight %	
hydrogen		
helium		
nitrogen CO2		
H2S		
methane (C1)		
ethane (C2)		
propane (C3)		
butanes (C4)		
pentanes (C5)		
benzene		
other hexanes (C6)		
toluene		
other heptanes (C7)		
ethylbenzene		
xylenes (o, m, p)		
other octanes (C8)		
nonanes (C9) decanes plus (C10+)		
Totals:	0.0000	
Totais.	0.0000	

<u>Gas Analysi</u>	<u>s</u> - Use if the	e Inputs are <u>Mol</u> e	e Percents	
Analysis Identifier/Name	Inlet Gas			
Where was the sample taken?	Separator			
If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).		rom similar facilitț e University 38-2		the same
Where in the process was the sample taken?	Inlet			
What is the temperature and pressure of the sample (include units)?	105 psi at 53	3 F		
Who analyzed the sample?	FESCO, Ltd			
Date of sample:	Jan 15, 201	1 (Job No. 10290	.001)	
Component	mole %	Molecular Weight (grams/mole, lb/lb-mol)	grams per 100 moles of gas	weight %
hydrogen	0.0000	2.01588	0	0.0000
helium	0.0000	4.0026	0	0.0000
nitrogen	3.2000	28.01340	90	4.2555
CO2	0.4820	44.00950	21	1.0070
H2S	0.0004	34.08188	0	0.0006
methane (C1)	78.4260	16.04246	1258	59.7260
ethane (C2)	8.6070	30.06904	259	12.2858
propane (C3)	6.0450	44.09562	267	12.6539
butanes (C4)	2.1380	58.12220	124	5.8990
pentanes (C5)	0.6570	72.14878	47	2.2502
benzene	0.0090	78.110000	1	0.0334
other hexanes (C6)	0.3196	86.18000	28	1.3075
toluene	0.0060	92.140000	1	0.0262
other heptanes (C7)	0.0620	100.20000	6	0.2949
othylhonzono			0	0.0050
ethylbenzene	0.0010	106.170000		0.0000
xylenes (o, m, p)	0.0010	106.170000	0	0.0000
xylenes (o, m, p) other octanes (C8)	0.0010	106.170000 114.23000	0	0.2549
xylenes (o, m, p) other octanes (C8) nonanes (C9)	0.0010	106.170000	0 5 0	0.2549 0.0000
xylenes (o, m, p) other octanes (C8)	0.0010	106.170000 114.23000	0	0.2549


For the liquid sample, I am inputting (pick from list):

Select whether weight percents or mole percents are being entered for this liquid sample.

Then fill out this table **OR** fill out this table.


Liquid Analys	<u>sis</u> - Use if tl	ne Inputs are <u>Weight</u> Percents
Analysis Identifier/Name		
What site is the sample from?		
If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).		
Where in the process was the sample taken?		
What is the temperature and pressure of the sample (include units)?		
Who analyzed the sample?		
Date of sample:		
Component hydrogen	weight %	
helium		
nitrogen		
CO2		
H2S		
methane (C1)		
ethane (C2)		
propane (C3)		
butanes (C4)		
pentanes (C5)		
benzene other hexanes (C6)		
toluene		
other heptanes (C7)		
ethylbenzene		
xylenes (o, m, p)		
other octanes (C8)		
nonanes (C9)		
decanes plus (C10+)		
Totals:	0.0000	

Liquid Analys	<u>sis</u> - Use if th	ne Inputs are <u>Mo</u>	le Percents	
Analysis Identifier/Name	Pressurized	Liquid Analysis		
What site is the sample from?	Separator			
If the sample is from a representaive site, explain how this sampled stream is representative of the similar stream at this site (use the notes box provided below if more space is needed).		rom similar facilit e University 8-12		the same
Where in the process was the sample taken?	Separator			
What is the temperature and pressure of the sample (include units)?	63 psi @ 10	9 F		
Who analyzed the sample?		. (PVT Study)		
Date of sample:	2-Jun-11			
Component	mole %	Molecular Weight (grams/mole, lb/lb-mol)	grams per 100 moles of gas	weight %
hydrogen	0.0000	2.01588	<u>gu</u> 0	0.0000
helium	0.0000	4.0026	0	0.0000
nitrogen	0.0620	28.01340	2	0.0169
CO2	0.0400	44.00950	2	0.0171
H2S	0.0004	34.08188	0	0.0001
methane (C1)	2.0130	16.04246	32	0.3143
ethane (C2)	2.1480	30.06904	65	0.6286
propane (C3) butanes (C4)	6.9160 7.1680	44.09562 58.12220	305 417	2.9682 4.0549
pentanes (C5)	7.1680	72.14878	539	4.0549
benzene	0.2350	78.110000	18	0.1787
other hexanes (C6)	6.7570	86.18000	582	5.6676
toluene	0.5910	92.140000	54	0.5300
other heptanes (C7)	5.6050	100.20000	562	5.4662
ethylbenzene	0.1000	106.170000	11	0.1033
xylenes (o, m, p)	0.7710	106.170000	82	0.7967
other octanes (C8)	7.6550	114.23000	874	8.5107
nonanes (C9)	5.4810	128.26000	703	6.8421
decanes plus (C10+) Totals:	46.9920 100.0004	128.26000 102.74	6027 10274.4822	58.6618 100.00

EP Energy E&P Company LP University Lands 39-11-1H Facility

Fugitives Emissions

A) Enter information into the yellow boxes.

B) VOC and H₂S control efficiencies may be entered (as applicable for reductions from leak detection and repair programs).

C) The vapor VOC, benzene, and H₂S weight percents may be entered. The weight percents from the Analyses tab are displayed below.

D) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

E) This sheet has five parts to it. Part (1) is for Gas Service, (2) is for Heavy Oil Service, (3) is for Light Oil Service, (4) is for Water/Oil Service, and (5) is for a combination of all the results. Fill out all applicable yellow cells in parts (1)-(4) and the final results will be in part (5).

The five parts are set up in this arrangement:

(1)	(2)
(3)	(4)
(5)	

F) Make sure to select the correct VOC Type and Emission Type from the pull down menus below in part (5).

	Gas Weight Per Analyses Tab:	rcents From				
	VOC wt %	23.9876				
	Benzene wt %	0.0352				
	H ₂ S wt %	0.0006				
(1)	Gas					
	number	component	emission factor (lb/hr of TOC per component)	lb/hr	tpy	
	10	Valve	0.009920	0.0992	0.434496	
	0	Pump Seal	0.005290	0	0	
	25	Connector	0.000440	0.011	0.04818	
	25	Flange	0.000860	0.0215	0.09417	
0		Open-ended Line	0.004410	0	0	
	1	Other	0.019400	0.0194	0.084972	
			Total:	0.1511	0.661818	
				Control		
	VOC content	Benzene	H ₂ S content	Efficiency		
	(wt %)	content (wt%)	(wt%)	(%)		
alves		content (wt%) 0.0334	(wt%) 0.0334	0.0000		
/alves ^P ump Seal	(wt %)	, ,	. ,			
Pump Seal Connector	(wt %) 22.7251 22.7251 22.7251	0.0334 0.0334 0.0334	0.0334 0.0334 0.0334	0.0000 0.0000 0.0000		
Pump Seal Connector Flange	(wt %) 22.7251 22.7251 22.7251 22.7251 22.7251	0.0334 0.0334 0.0334 0.0334 0.0334	0.0334 0.0334 0.0334 0.0334 0.0334	0.0000 0.0000 0.0000 0.0000		
ump Seal connector lange open-ended Line	(wt %) 22.7251 22.7251 22.7251 22.7251 22.7251 22.7251	0.0334 0.0334 0.0334 0.0334 0.0334 0.0334	0.0334 0.0334 0.0334 0.0334 0.0334 0.0334	0.0000 0.0000 0.0000 0.0000 0.0000		
Pump Seal Connector Tange Open-ended Line	(wt %) 22.7251 22.7251 22.7251 22.7251 22.7251	0.0334 0.0334 0.0334 0.0334 0.0334	0.0334 0.0334 0.0334 0.0334 0.0334	0.0000 0.0000 0.0000 0.0000		
	(wt %) 22.7251 22.7251 22.7251 22.7251 22.7251 22.7251	0.0334 0.0334 0.0334 0.0334 0.0334 0.0334	0.0334 0.0334 0.0334 0.0334 0.0334 0.0334	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Benzene B	Emissions
Pump Seal Connector Tange Open-ended Line	(wt %) 22.7251 22.7251 22.7251 22.7251 22.7251 22.7251	0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 missions tpy	0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Benzene I Ib/hr	tpy
Pump Seal Connector Tange Open-ended Line Other /alves	(wt %) 22.7251 22.7251 22.7251 22.7251 22.7251 22.7251 VOC E Ib/hr 0.02	0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 missions tpy 0.10	0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 H ₂ S Emis: Ib/hr 0.00	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 sions tpy 0.00	lb/hr 0.00	tpy 0.00
Pump Seal Connector Flange Den-ended Line Other /alves Pump Seal	(wt %) 22.7251 22.7251 22.7251 22.7251 22.7251 22.7251 VOC E Ib/hr 0.02 0.00	0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 missions tpy 0.10 0.00	0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 H ₂ S Emiss Ib/hr 0.00	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 sions tpy 0.00 0.00	lb/hr 0.00 0.00	tpy 0.00 0.00
Pump Seal Connector Teange Deen-ended Line Dther Valves Pump Seal Connector	(wt %) 22.7251 22.7251 22.7251 22.7251 22.7251 22.7251 VOC E Ib/hr 0.02 0.00 0.00	0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0034 0.10 0.10 0.00	0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 H ₂ S Emis: Ib/hr 0.000 0.000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 sions tpy 0.00 0.00 0.00	lb/hr 0.00 0.00 0.00	tpy 0.00 0.00 0.00
Pump Seal Connector Flange Dpen-ended Line Dther Valves Valves Connector Flange	(wt %) 22.7251 22.7251 22.7251 22.7251 22.7251 22.7251 VOC E Ib/hr 0.02 0.00 0.00 0.00	0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 missions tpy 0.10 0.00 0.01 0.02	0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 H ₂ S Emis: Ib/hr 0.00 0.00 0.00	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.00 0.00 0.00	lb/hr 0.00 0.00 0.00 0.00	tpy 0.00 0.00 0.00 0.00
Pump Seal Connector Teange Deen-ended Line Dther Valves Pump Seal Connector	(wt %) 22.7251 22.7251 22.7251 22.7251 22.7251 22.7251 VOC E Ib/hr 0.02 0.00 0.00	0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0034 0.10 0.10 0.00	0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 0.0334 H ₂ S Emis: Ib/hr 0.000 0.000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 sions tpy 0.00 0.00 0.00	lb/hr 0.00 0.00 0.00	tpy 0.00 0.00 0.00

	Liquid Weight Analyses Tab:	Percents From				
	VOC wt %	99.0567				
	Benzene wt %	0.1787				
	H ₂ S wt %	0.0001				
		0.0001				
(2)	Heavy Oil					1
			emission factor (lb/hr of TOC per component)			
	number	component		lb/hr	tpy	
		Valve	0.0000185	0	0	
		Pumps	0.0011300	0	0	
		Connector	0.0000165	0	0	
		Flange	0.00000086	0	0	
		<u> </u>				
		Open-ended Line	0.0003090	0	0	
		Other	0.0000683	0	0	
			Total:	0	0	
						l.
	VOC content (wt%)	Benzene content (wt%)	H ₂ S content (wt%)	Control Efficiency (%)		
alves						
ımp Seal						
imp Seal						
ump Seal onnector ange						
mp Seal nnector ange en-ended Line						
Imp Seal onnector ange oen-ended Line						
aves vump Seal connector lange Open-ended Line Other	VOC E	missions	H ₂ S Emis	sions	Benzene I	Emissions
ump Seal onnector lange lpen-ended Line	VOC E	missions	H ₂ S Emis	sions	Benzene I Ib/hr	Emissions tpy
ump Seal onnector lange pen-ended Line ther alves	lb/hr 0.00	tpy 0.00	lb/hr 0.00	tpy 0.00	lb/hr 0.00	tpy 0.00
Imp Seal onnector ange pen-ended Line ther alves ump Seal	lb/hr 0.00 0.00	tpy 0.00 0.00	lb/hr 0.00 0.00	tpy 0.00 0.00	lb/hr 0.00 0.00	tpy 0.00 0.00
Imp Seal onnector ange pen-ended Line hter alves Imp Seal onnector	lb/hr 0.00 0.00 0.00	tpy 0.00 0.00 0.00	lb/hr 0.00 0.00 0.00	tpy 0.00 0.00 0.00	lb/hr 0.00 0.00 0.00	tpy 0.00 0.00 0.00
ump Seal onnector ange pen-ended Line ther alves ump Seal onnector ange	lb/hr 0.00 0.00 0.00 0.00	tpy 0.00 0.00 0.00 0.00	lb/hr 0.00 0.00 0.00 0.00	tpy 0.00 0.00 0.00 0.00	lb/hr 0.00 0.00 0.00 0.00	tpy 0.00 0.00 0.00 0.00
ump Seal onnector lange pen-ended Line	lb/hr 0.00 0.00 0.00	tpy 0.00 0.00 0.00	lb/hr 0.00 0.00 0.00	tpy 0.00 0.00 0.00	lb/hr 0.00 0.00 0.00	tpy 0.00 0.00 0.00

	Liquid Weight I	Percents From											
	Analyses Tab:												
	VOC wt %	99.0567											
	Benzene wt %	0.1787											
	H₂S wt %	0.0001											
	1120 111 /0	0.0001	i i i i i i i i i i i i i i i i i i i										
		1							1				
(3)	Light Oil						(4)	Water/Oil					
			emission							emission			
			factor (lb/hr of TOC per							factor (lb/hr of TOC per			
	number	component	component)	lb/hr	tpy			number	component	component)	lb/hr	tpy	
	10	Valve	0.005500	0.055	0.2409				Valve	0.000216	0	0	
	0	Pump Seal	0.028660	0	0				Pump Seal	0.000052	0	0	
	25	Connector	0.000463	0.011575	0.0506985				Connector	0.000243	0	0	
	25	Flange	0.000243	0.006075	0.0266085				Flange	0.000006	0	0	
											_		
	0	Open-ended Line Other	0.003090 0.016500	0.0165	0				Open-ended Line Other	0.000550 0.030900	0	0	
		Outer	Total:	0.0105	0.390477				Oulei	Total:	0	0	
			i otali	0.00010	0.000111					, otal.	Ū	Ŭ	
				Control							Control		
	VOC content	Benzene	H ₂ S content	Efficiency				VOC content	Benzene	H ₂ S content	Efficiency		
	(wt%)	content (wt%)	(wt%)	(%)				(wt%)	content (wt%)	(wt%)	(%)		
alves	99.0229	0.1787	0.0001	0.0000			Valves						
ump Seal	99.0229	0.1787	0.0001	0.0000			Pump Seal						
onnector ange	99.0229 99.0229	0.1787 0.1787	0.0001	0.0000 0.0000			Connector Flange						
ange pen-ended Line	99.0229	0.1787	0.0001	0.0000			Open-ended Line						
ther	99.0229	0.1787	0.0001	0.0000			Other						
					l .								
	VOC E	missions	H₂S Emis	sions	Benzene B	missions		VOC E	missions	H ₂ S Emissions		Benzene B	Emissions
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy		lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
alves	0.05	0.24	0.00	0.00	0.00	0.00	Valves	0.00	0.00	0.00	0.00	0.00	0.00
ımp Seal	0.00	0.00	0.00	0.00	0.00	0.00	Pump Seal	0.00	0.00	0.00	0.00	0.00	0.00
onnector	0.01	0.05	0.00	0.00	0.00	0.00	Connector	0.00	0.00	0.00	0.00	0.00	0.00
ange	0.01	0.03	0.00	0.00	0.00	0.00	Flange	0.00	0.00	0.00	0.00	0.00	0.00
pen-ended Line ther	0.00	0.00	0.00	0.00	0.00	0.00	Open-ended Line Other	0.00	0.00	0.00	0.00	0.00	0.00
rtner Total:		0.39	0.00	0.00	0.00	0.00	Other Total:	0.00	0.00	0.00	0.00	0.00	0.00
I Otal	0.09	0.59	0.00	0.00	0.00	0.00	i otai:	0.00	0.00	0.00	0.00	0.00	0.00

(5)	Fugitive Total Emissions	Notes:	Reference to Emission factors used: 1. Emission factors are for oil and gas production facilities (not refineries) come from the EPA's "Protocol for Equipment Leak Emission Estimates" November 1995, EPA 4531, R-95-017, Table 2-4. 2. Emission factors that are not based on the EPA document are from the TCEQ "Air Permit Technical Guidance for Chemical Source Equipment Le Fugitives (Draft October 2000) 3. For fugitive calculations, VOC content should be VOC content of total hydrocarbons, not of total sample.						
	Hourly Emissions (Ib/hr) Annual Emissions (tpy) VOC 0.12 0.54 benzene 0.00 0.00 H ₂ S 0.00 0.00 VOC Type: (pick from list) Crude Oil or Condensate VOC Emission Type: (pick from list) Steady State (continuous)								
Enter any notes here:									

Internal Combustion Engine Emissions

A) Enter information into the yellow boxes.

B) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

C) Make sure to select the correct *Emission Type* from the pull down menus below. A *VOC type* does not need to be selected here; see the note in the comment for more explanation.

Engine Emission Calculations

Note: The TCEQ prefers the following basis for calculating emissions (in order of preference): 1. Stack test data from the engine 2. Manufacturer's specification sheet and control specification sheet (if control used) 3. AP-42 emission factors

> County Region

Existing or new source:

Installation date

Site Location

Engine Data

	Discharge Parameters	
	Stack height (feet)	
	Stack diameter (feet)	
	Stage Temperature (°F)	
pick from list	Exit Velocity (fps)	

Method of Emission Control

5	
EPN	
Name	
Manufacturer	
Model Number	
Serial Number	
Manufacture Date	
Last Rebuild Date	
Application	
Ignition/Injection Timing	pick from list
Horsepower:	0
Fuel consumption (Btu/hp-hr):	0
Hours of operation per year:	0
Engine Type:	pick from list

Method of Emission Control	Yes/No
NSCR Catalyst	
SCR Catalyst	
JLCC Catalyst	
Parameter Adjustment	
Stratified Charge	
Other (Specify)	

Fuel Type	pick from list
Fuel Consumption (BTU/bhp-hr)	
Heat Value (HHV)	
Heat Value (LHV)	
Sulfur Content (grains/100scf)	

Federal/State Standards

Fuel Data

	Yes/No
NSPS Subpart JJJJ	
MACT Subpart ZZZZ	
30 TAC, Chapter 117	

Additional Required Information

1. Submit a copy of the engine manufacturer's site rating or general rating specification data.

2. Submit a typical fuel analysis, including sulfur content and heating value. For gaseous fuels, provide mole percent of constituents.

3. Submit a description of the air/fuel ratio control system (manufactuer's information is acceptable).

						Calculation:								
O ₂ Mass Balance calculation for sour gas fu	ol:					Galculation.								
O2 Mass balance calculation for sour gas to	01.						viccione: (a/b	o br)*(0/\/OC)*(bp))*(8760hr/yr)/454/2	2000				
Fuel Heat Value (Btu/SCF)	0.00	1	MAL SO	04.00						2000				
	0.00		MW SO ₂ =		-			hr)*(hp)*(8760hr/y						
Fuel H ₂ S content (mol%)	0.00	J	Ideal Gas Law	378.61					/hp-hr)*(hp)*(8760	hr/yr)/454/2000				
SO ₂ produced (lb/hr) =	0.00	-						ms of Ib/MMBtu	orsepower) * (Con					
SO ₂ produced (ib/ii) = SO ₂ produced (tpy) =	0.00	-						(hp) * (1 MMBtu/1		version factor)				
SO ₂ produced (tpy) =	0.00	J				(ID/IVIIVIBLU)	(Blu/np-nr)	(np) (Tiviivibiu/T	,000,000 Blu)					
		1												
Does the VOC emission factor being used														
below include formaldehyde? (pick Yes or														
No from list)	No													
Determine Emissions for Air Permitting			from AP-42:		1									
D Determine Emissions for Air Permitting	If available, enter the test results or	Table 3.2-1 2 stroke, lean- burn engine emission factors	Table 3.2-2 4 stroke, lean-							If present, enter				
o Determine Emissions for Air Permitting	test results or manufacturer's	Table 3.2-1 2 stroke, lean- burn engine	Table 3.2-2 4 stroke, lean- burn engine	4 stroke, rich burn engine						the efficiency of	If present, enter	control		
o Determine Emissions for Air Permitting	test results or manufacturer's emission factors	Table 3.2-1 2 stroke, lean- burn engine emission factors	Table 3.2-2 5 4 stroke, lean- burn engine emission	4 stroke, rich burn engine emission		emission		Incontrolled		the efficiency of any control	If present, enter the controlled	control		
o Determine Emissions for Air Permitting	test results or manufacturer's emission factors before control	Table 3.2-1 2 stroke, lean- burn engine emission factors	Table 3.2-2 4 stroke, lean- burn engine emission factors	4 stroke, rich burn engine emission factors	appropriate	emission	units	Uncontrolled	Uncontrolled	the efficiency of any control device	If present, enter the controlled emission factor	factor	lb/hr	fn
o Determine Emissions for Air Permitting	test results or manufacturer's emission factors	Table 3.2-1 2 stroke, lean- burn engine emission factors	Table 3.2-2 5 4 stroke, lean- burn engine emission	4 stroke, rich burn engine emission		emission factor used 0.0296	units Ib/MMBtu	Uncontrolled lb/hr 0.000	Uncontrolled tpy 0.000	the efficiency of any control	If present, enter the controlled		lb/hr 0.00	
-	test results or manufacturer's emission factors before control (g/hp-hr)	Table 3.2-1 2 stroke, lean- burn engine emission factors (Ib/MMBtu)	Table 3.2-2 4 stroke, lean- burn engine emission factors (Ib/MMBtu)	4 stroke, rich burn engine emission factors (Ib/MMBtu)	appropriate AP-42 factor	factor used		lb/hr	tpy	the efficiency of any control device	If present, enter the controlled emission factor	factor used		0.0
VOC NOx	test results or manufacturer's emission factors before control (g/hp-hr) 0	Table 3.2-1 2 stroke, lean- burn engine emission factors (Ib/MMBtu) 0.12 3.17	Table 3.2-2 4 stroke, lean- burn engine emission factors (Ib/MMBtu) 0.118 4.08	4 stroke, rich burn engine emission factors (Ib/MMBtu) 0.0296 2.21	appropriate AP-42 factor 0.0296 2.21	factor used 0.0296 2.21	Ib/MMBtu Ib/MMBtu	lb/hr 0.000 0.000	tpy 0.000 0.000	the efficiency of any control device	If present, enter the controlled emission factor	factor used 0	0.00 0.00	0.0
voc	test results or manufacturer's emission factors before control (g/hp-hr) 0 0	Table 3.2-1 2 stroke, lean- burn engine emission factors (lb/MMBtu) 0.12	Table 3.2-2 4 stroke, lean- burn engine emission factors (Ib/MMBtu) 0.118	4 stroke, rich burn engine emission factors (Ib/MMBtu) 0.0296	appropriate AP-42 factor 0.0296	factor used 0.0296	lb/MMBtu	lb/hr 0.000	tpy 0.000	the efficiency of any control device	If present, enter the controlled emission factor	factor used 0 0	0.00	0.0
VOC NOX CO PM ₁₀	test results or manufacturer's emission factors before control (g/hp-hr) 0 0 0	Table 3.2-1 2 stroke, lean- burn engine emission factors (Ib/MMBtu) 0.12 3.17 0.386	Table 3.2-2 4 stroke, lean- burn engine emission factors (lb/MMBtu) 0.118 4.08 0.317	4 stroke, rich burn engine emission factors (Ib/MMBtu) 0.0296 2.21 3.72	appropriate AP-42 factor 0.0296 2.21 3.72	factor used 0.0296 2.21 3.72	Ib/MMBtu Ib/MMBtu Ib/MMBtu	lb/hr 0.000 0.000 0.000	tpy 0.000 0.000 0.000	the efficiency of any control device	If present, enter the controlled emission factor	factor used 0 0 0	0.00 0.00 0.00	0.0
VOC NOx CO PM ₁₀ PM ₂₅	test results or manufacturer's emission factors before control (g/hp-hr) 0 0 0 0	Table 3.2-1 2 stroke, lean- burn engine emission factors (Ib/MMBtu) 0.12 3.17 0.386 0.04831	Table 3.2-2 4 stroke, lean- burn engine emission factors (lb/MMBtu) 0.118 4.08 0.317 0.0099871	4 stroke, rich burn engine emission factors (Ib/MMBtu) 0.0296 2.21 3.72 0.01941 0.01941	appropriate AP-42 factor 0.0296 2.21 3.72 0.01941 0.01941	factor used 0.0296 2.21 3.72 0.01941 0.01941	Ib/MMBtu Ib/MMBtu Ib/MMBtu Ib/MMBtu	Ib/hr 0.000 0.000 0.000 0.000 0.000 0.000 0.000	tpy 0.000 0.000 0.000 0.000 0.000	the efficiency of any control device	If present, enter the controlled emission factor	factor used 0 0 0 0	0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0
VOC NOX CO PM ₁₀ SO ₂	test results or manufacturer's emission factors before control (g/hp-hr) 0 0 0 0 0 0	Table 3.2-1 2 stroke, lean- burn engine emission factors (lb/MMBtu) 0.12 3.17 0.386 0.04831 0.000588	Table 3.2-2 4 stroke, lean- burn engine emission factors (lb/MMBtu) 0.118 4.08 0.317 0.0099871 0.0099871 0.000588	4 stroke, rich burn engine emission factors (Ib/MMBtu) 0.0296 2.21 3.72 0.01941	appropriate AP-42 factor 0.0296 2.21 3.72 0.01941	factor used 0.0296 2.21 3.72 0.01941 0.01941 0.000588	Ib/MMBtu Ib/MMBtu Ib/MMBtu Ib/MMBtu Ib/MMBtu	Ib/hr 0.000 0.000 0.000 0.000 0.000 0.000	tpy 0.000 0.000 0.000 0.000 0.000 0.000	the efficiency of any control device	If present, enter the controlled emission factor	factor used 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0
VOC NOx CO PM ₁₀ PM ₂₅	test results or manufacturer's emission factors before control (g/hp-hr) 0 0 0 0 0 0 0 0 0	Table 3.2-1 2 stroke, lean- burn engine emission factors (Ib/MMBtu) 0.12 3.17 0.386 0.04831	Table 3.2-2 4 stroke, lean- burn engine emission factors (lb/MMBtu) 0.118 4.08 0.317 0.0099871	4 stroke, rich burn engine emission factors (Ib/MMBtu) 0.0296 2.21 3.72 0.01941 0.01941 0.000588	appropriate AP-42 factor 0.0296 2.21 3.72 0.01941 0.01941 0.000588	factor used 0.0296 2.21 3.72 0.01941 0.01941	Ib/MMBtu Ib/MMBtu Ib/MMBtu Ib/MMBtu Ib/MMBtu	Ib/hr 0.000 0.000 0.000 0.000 0.000 0.000 0.000	tpy 0.000 0.000 0.000 0.000 0.000	the efficiency of any control device	If present, enter the controlled emission factor	factor used 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00	tp) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Emission Type: (pick from list) Steady State (continuous)

Enter any notes here:

Next Tab

Heaters-Boilers Emissions

A) Enter information into the yellow boxes.

B) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

C) Make sure to select the correct *Emission Type* from the pull down menus below. A *VOC type* does not need to be selected here; see the note in the comment for more explanation.

EPN	H1			
Name	Heater Treater			
Heater/Boiler rating (MMBtu/hr):	1			
Rating above is (select from list):	below 100 MMBtu/hr, uncontrolled	(assume un	controlled, un	less specifically stated otherwise)
Operating hours/year:	8760			
Fuel Heat Value (Btu/SCF):	1211			
				_
Pollutant	Emission Factor (Ib/MMCF)	lb/hr	tpy	
VOC	5.5	0.005	0.020	1
NOx	100	0.083	0.362	
CO	84	0.069	0.304	
PM ₁₀	7.6	0.006	0.027	
PM _{2.5}	5.7	0.005	0.021	
2.5				

If the heater/boiler is fueled by Sour Gas, cannot use emission factors above to calculate SO ₂ emissions, must use SO ₂ mass balance:											
SO ₂ Mass Balar	ce calculation:										
Evel II O seatent (mel 8/)	0.0004										
Fuel H ₂ S content (mol %) =	0.0004	assumptions:									
SO ₂ produced (lb/hr) =	0.0006	SO2 MW	64.06 lb/lb-mole								
SO ₂ produced (tpy) =	0.0024	Ideal Gas Law	378.61 SCF/lb-mole								
		-									

Enter any notes here:		

Next Tab

EP Energy E&P Company LP University Lands 39-11-1H Facility Tank Emissions - Lab Gas Oil Ratio (GOR) Method

A) Enter information into the yellow boxes.

B) VOC and H₂S control efficiencies may be entered (if applicable).

C) A reduction for produced water tank emissions calculated as oil/condensate may be entered.

D) The tank vapor VOC, benzene, and H₂S weight percents may be entered.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) The table below can be used to calculate the flash gas molecular weight and the component weight percents if needed.

G) Make sure to answer the control device question.

H) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

GOR [FOR ESTIMATING FLASH LOSSES FROM STORAGE TANKS]

EPN	Tank Identifier	Flash Initial Press. (psig)		Flash Final Press. (psig)	(°F)				Flash Gas VOC wt%	Flash Gas Benzene wt%	Flash Gas H₂S wt%	Percent Reduction for Produced	Are tank vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?	Control	H ₂ S Control Efficiency (%)	VOC Results (lb/hr)	VOC Results (tpy)	Benzene Results (Ib/hr)		H₂S Results (Ib/hr)	H₂S Results (tpy)
T1	Crude Oil Tank	54	81	0	70	19.1	50	34.771666	64.6458	0.1303	0.0004	0	(A) uncontrolled			2.36	10.32	0.00	0.02	0.00	0.00
T2	Crude Oil Tank	54	81	0	70	19.1	50	34.771666	64.6458	0.1303	0.0004	0	(A) uncontrolled			2.36	10.32	0.00	0.02	0.00	0.00
															Totals:	4.71	20.65	0.01	0.04	0.00	0.00

VOC Type: (pick from list)
Crude Oil or Condensate VOC

Emission Type: (pick from list)

Steady State (continuous)

Enter any notes here:

F

GOR Calculator												
This table can be used to calcula	to the flash na	s molecular v	voight and	the compo	ment weight percents if need	led if the flash da	e m					
percents are entered. It can also												
throughput are entered.												
Gas Oil Ratio:	19.1	in standard cu produced	ibic feet of	flash gas pe	er barrel (SCF/bbl) of oil/conde	nsate						
Barrels of Oil or Condensate per	13.1	produced										
dav: 100												
Flash Gas Speciation: Flash Gas MW = 34.771666												
		Molecular	grams									
		Weight	per 100									
Component	mole %	(grams/mole, lb/lb-mol)		woight 9/								
	0,0000	2.01588	gas 0	weight %	Total gas amittadi							
hydrogen helium	0.0000	4.0026	0	0.0000	Total gas emitted: lb/hr:	7.2921412						
nitrogen	0.7970	28.01340	22	0.6421	tov:	31.939579						
CO2	0.7520	44.00950	33	0.9518	+).							
H2S	0.0004	34.08188	0	0.0004	VOC wt% =	64.6458						
methane (C1)	37.8800	16.04246	608	17.4765								
ethane (C2)	18.8300	30.06904	566	16.2834	VOC, lb/hr:	4.7140642						
propane (C3)	23.5040	44.09562	1036	29.8066	VOC, tpy:	20.647601						
butanes (C4)	11.2060	58.12220	651	18.7313								
pentanes (C5)	4.1960	72.14878	303	8.7064	Benzene wt% =	0.1303						
benzene	0.0580	78.110000	5	0.1303								
other hexanes (C6)	1.9240	86.18000	166	4.7685	Benzene, lb/hr:	0.0095009						
toluene	0.0220	92.140000	2	0.0583	Benzene, tpy:	0.0416139						
other heptanes (C7)	0.7140	100.20000 106.170000	72	2.0575	11.0	0.0004						
ethylbenzene					H ₂ S wt% =	0.0004						
xylenes (o, m, p) other octanes (C8)	0.0000	106.170000	0	0.0000	H ₂ S, lb/hr:	2.859E-05						
nonanes (C9)	0.1090	128.26000	12	0.3581	H ₂ S, ID/III: H ₂ S, tpy:	2.859E-05 0.0001252						
decanes plus (C10+)	0.0070	120.20000	0	0.0258	п ₂ 3, фу.	0.0001252						
Totals:	100.0004	34.77	3477	100.00								

EP Energy E&P Company LP University Lands 39-11-1H Facility Tank Emissions - Tanks 4.0

A) Enter information into the yellow boxes.

B) VOC and H₂S control efficiencies may be entered (if applicable).

C) A reduction for produced water tank emissions calculated as oil/condensate may be entered.

D) The tank vapor VOC, benzene, and H_2S weight percents may be entered.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) Make sure to answer the control device question.

G) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

Tanks 4.0 So	tware TANKS 4.0 SOFTWARE [FOR I	ESTIMATING W	ORKING AND	BREATHING LOSSES	ROM STORAGE	TANKS]															
EPN	Tank Identifier	Throughput (gal/year)	Turnovers per year	Mixture/Component	Basis for VP Calculations	Vapor MW	Total Uncontrolled Emissions (Ib/hr)	Total Uncontrolled Emissions (ton/yr)	Tank Vapor VOC wt%	Tank Vapor Benzene wt%	Vapor H ₂ S wt%		(V/PLI): or (C)	VOC Control Efficiency (%)	H₂S Control Efficiency (%)	VOC Results (Ib/hr)	VOC Results (tpy)	Benzene Results (Ib/hr)	Benzene Results (tpy)	H ₂ S Results (lb/hr)	H ₂ S Results (tpy)
T1	Crude Oil Tank	766,500	37.75	Crude Oil - RVP 4.76	Lab Analysis	50	0.2046	0.8961	99.02289	0.178655	0.00013	0	(A) uncontrolled			0.20	0.89	0.00	0.00	0.00	0.00
T2	Crude Oil Tank	766,500	37.75	Crude Oil - RVP 4.76	Lab Analysis	50	0.2046	0.8961	99.02289	0.178655	0.00013	0	(A) uncontrolled			0.20	0.89	0.00	0.00	0.00	0.00
															Totals:	0.41	1.77	0.00	0.00	0.00	0.00

Steady State (continuous)

Enter any	
notes here:	

EP Energy E&P Company LP University Lands 39-11-1H Facility Tank Emissions - Lab Gas Oil Ratio (GOR) Method

A) Enter information into the yellow boxes.

B) VOC and H₂S control efficiencies may be entered (if applicable).

C) A reduction for produced water tank emissions calculated as oil/condensate may be entered.

D) The tank vapor VOC, benzene, and H₂S weight percents may be entered.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) The table below can be used to calculate the flash gas molecular weight and the component weight percents if needed.

G) Make sure to answer the control device question.

H) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

GOR [FOR ESTIMATING FLASH LOSSES FROM STORAGE TANKS]

EPN	Tank Identifier	Flash Initial Press. (psig)		Flash Final Press. (psig)	(°F)		Barrels of Oil or Condensate per day (bbl/day)	Flash Gas Molecular Weight	Flash Gas VOC wt%	Flash Gas Benzene wt%	Flash Gas H ₂ S wt%	for Produced	Are tank vapors (A) uncontrolled; (B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU); or (C) controlled by another type of control device?	Control	H ₂ S Control Efficiency (%)	VOC Results (lb/hr)	VOC Results (tpy)	Benzene Results (lb/hr)		H₂S Results (lb/hr)	H₂S Results (tpy)
WT1	Produced Water Tank	54	81	0	70	19.1	100	34.771666	64.6458	0.1303	0.0004	99	(A) uncontrolled			0.05	0.21	0.00	0.00	0.00	0.00
WT2	Produced Water Tank	54	81	0	70	19.1	100	34.771666	64.6458	0.1303	0.0004	99	(A) uncontrolled			0.05	0.21	0.00	0.00	0.00	0.00
															Totals:	0.09	0.41	0.00	0.00	0.00	0.00

VOC Type: (pick from list)
Crude Oil or Condensate VOC

Emission Type: (pick from list)

Steady State (continuous)

Enter any notes here:

F

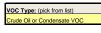
GOR Calculator												
This table can be used to calcula	ate the flash da	s molecular v	veight and	the compo	ment weight nercents if nee	led if the flash gas	mole					
percents are entered. It can also												
hroughput are entered.												
				a .	1 1/005/11 1/ 1/							
Gas Oil Ratio:	10.1	in standard cu produced	IDIC TEET OF	flash gas pe	er barrel (SCF/bbl) of oil/conde	nsate						
Barrels of Oil or Condensate per	15.1	produced				<u>.</u>						
dav:	200											
Flash Gas Speciation: Flash Gas MW = 34.771666												
		Molecular	grams									
		Weight	per 100									
Component	mole %	(grams/mole, lb/lb-mol)	moles of	underlacks of								
	0.0000	2.01588	gas 0	weight % 0.0000	Total gas emitted:							
hydrogen helium	0.0000	4.0026	0	0.0000	lotal gas emitted: lb/hr:	14.584282						
nitrogen	0.7970	28.01340	22	0.6421	tov:	63.879157						
CO2	0.7520	44.00950	33	0.9518	47	00.010101						
H2S	0.0004	34.08188	0	0.0004	VOC wt% =	64.6458						
methane (C1)	37.8800	16.04246	608	17.4765								
ethane (C2)	18.8300	30.06904	566	16.2834	VOC, lb/hr:	9.4281285						
propane (C3)	23.5040	44.09562	1036	29.8066	VOC, tpy:	41.295203						
butanes (C4)	11.2060	58.12220	651	18.7313								
pentanes (C5)	4.1960	72.14878	303	8.7064	Benzene wt% =	0.1303						
benzene	0.0580	78.110000	5	0.1303								
other hexanes (C6)	1.9240	86.18000	166	4.7685	Benzene, lb/hr:	0.0190018						
toluene	0.0220	92.140000	2	0.0583	Benzene, tpy:	0.0832278						
other heptanes (C7)	0.7140	100.20000	72	2.0575	11.0	0.000.4						
ethylbenzene	0.0010	106.170000	0	0.0031	H ₂ S wt% =	0.0004						
xylenes (o, m, p) other octanes (C8)	0.0000	106.170000	0	0.0000		5.718E-05						
					H ₂ S, lb/hr:							
nonanes (C9)	0.0070	128.26000	1	0.0258	H ₂ S, tpy:	0.0002504						
decanes plus (C10+) Totals:	100.0004	24.77	0	0.0000								
I otals:	100.0004	34.77	3477	100.00								

EP Energy E&P Company LP University Lands 39-11-1H Facility Tank Emissions - Tanks 4.0

A) Enter information into the yellow boxes.

B) VOC and H₂S control efficiencies may be entered (if applicable).

C) A reduction for produced water tank emissions calculated as oil/condensate may be entered.


D) The tank vapor VOC, benzene, and H_2S weight percents may be entered.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) Make sure to answer the control device question.

G) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

Tanks 4.0 Softw	are TANKS 4.0 SOFTWARE [FOR	ESTIMATING W	ORKING AND	D BREATHING LOSSES	ROM STORAGE	TANKS]															
EPN	Tank identifier	Throughput (gal∕year)	Turnovers per year	Mixture/Component	Basis for VP Calculations	Vapor MW	Total Uncontrolled Emissions (Ib/hr)	Total Uncontrolled Emissions (ton/yr)	Tank Vapor VOC wt%	Tank Vapor Benzene wt%	Vapor H ₂ S wt%	Oil/Cond. (%)	(VRII): or (C)	VOC Control Efficiency (%)	H ₂ S Control Efficiency (%)	VOC Results (Ib/hr)	VOC Results (tpy)	Benzene Results (Ib/hr)	Benzene Results (tpy)	H ₂ S Results (lb/hr)	H₂S Results (tpy)
WT1	Produced Water Tank	1,533,000	75.5	5 Crude Oil RVP 4.76	Lab Analysis	50	0.232	1.016	99.02289	0.178655	0.00013	99	(A) uncontrolled			0.00	0.01	0.00	0.00	0.00	0.00
WT2	Produced Water Tank	1,533,000	75.5	5 Crude Oil RVP 4.76	Lab Analysis	50	0.232	1.016	99.02289	0.178655	0.00013	99	(A) uncontrolled			0.00	0.01	0.00	0.00	0.00	0.00
															Totals:	0.00	0.02	0.00	0.00	0.00	0.00

Enter any notes here:

EP Energy E&P Company LP University Lands 39-11-1H Facility

Loading Emissions

A) Enter information into the yellow boxes

B) VOC and H₂S control and collection efficiencies may be entered (if applicable).

C) The vapor VOC, benzene, and H_2S weight percents may be entered.

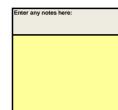
D) There are two separate areas below to calculate <u>hourly</u> and <u>annual</u> loading emissions. Then underneath, there is a table summarizing the hourly and annual loading emissions. E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) If vapor balancing is being performed and the tank is not being controlled, contact TCEQ about the appropriate tank working loss calculation.

G) Make sure to answer the control device question.

H) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

EPN	14			1	
	Crude Oil Lo	ading			
Truck Hourly Loa	ading Em	ission Calculations			
Using equation $L_L = 12$.	46* SPM/T fr	om AP-42, Chapter 5, Section 5.2-4			
S =	0.60	Saturation Factor		Enter temperatur	
P = M =	4.09 50.00	True vapor pressure of liquid load		in Fahrenheit °F)	Rankine (°R):
WI =	50.00	Molecular Weight of Vapors (Ib/Ib	-mole)		
T =	541.67	Temperature of bulk liquid loade	d (in degrees Rankine)	82	541.67
				Enter Barrels of	Gallons of liquid:
Hourly Loading Rate	8000	Gallons Loaded per Hour		Liquid	
L. =	2.82	Loading Loss (Ib VOC released/1		100	4200
	22.58	VOC Uncontrolled Emissions (lb/	hr)		
Are loading vapors (A)	uncontrolled	; (B) controlled by a flare, vapor		Enter college as	
		or recovery unit (VRU); or (C)	(A) uncontrolled	Enter gallons pe year	Barrels per day:
controlled by another ty	pe of contro	ol device?		,	
				1533000	100
		Vapor Weight Percents			
				Enter any notes h	oro.
VOC	99.02	Vapor VOC wt%		Liner any notes in	
benzene H ₂ S	0.18	Vapor Benzene wt% Vapor H ₂ S wt%			
1120	0.00	Vapor H ₂ S wt /6			
		Produced Water Reduction			
	-				
	0.00	Percent Reduction for Produced (%)	Water Tank Calc. as Oil/Cond.		
	0.00	(%)			
		Uncontrolled Emissions			
VOC	22.36	Emissions Uncontrolled VOC (lb/			
benzene	0.04	Emissions Uncontrolled Benzene			
H ₂ S	0.00	Emissions Uncontrolled H ₂ S (lb/h	r)		
		0			
		Control Efficiency			
	-				
VOC	0.00	VOC Control Efficiency (%)			
H ₂ S	0.00	H ₂ S Control Efficiency (%)			
Vapor	s Uncontro	lled by Control Device (Controll	ed Emissions)		
voc	0.00	VOC Results (lb/hr)			
benzene	0.00	Benzene Results (lb/hr)			
H ₂ S	0.00	H ₂ S Results (lb/hr)			
1128	0.00				


Truck Annual Lo	ading Em	ission Calculations
	-	m AP-42, Chapter 5, Section 5.2-4
S =	0.60	= Saturation Factor
P =	3.56	= True vapor pressure of liquid loaded (psia)
 M =	50.00	= Molecular Weight of Vapors (lb/lb-mole)
	534.17	= Temperature of bulk liquid loaded (in degrees Rankine)
Annual Loading Rate	1533000	= Gallons Loaded per Year
L _i =	2.49	Loading Loss (Ib VOC released/1000 gal liquid loaded)
	1.91	VOC Uncontrolled Emissions (ton/yr)
	1.91	voc oncontrolled Emissions (tollyr)
		Vapor Weight Percents
VOC	99.02	Vapor VOC wt%
benzene	0.18	Vapor Benzene wt%
H₂S	0.00	Vapor H ₂ S wt%
		Produced Water Reduction
	0.00	Percent Reduction for Produced Water Tank Calc. as Oil/Cond. (%)
		Uncontrolled Emissions
VOC	1.89	Emissions Uncontrolled VOC (ton/yr)
benzene	0.00	Emissions Uncontrolled Benzene (ton/yr)
H₂S	0.00	Emissions Uncontrolled H ₂ S (ton/yr)
		Control Efficiency
VOC	0.00	VOC Control Efficiency (%)
H ₂ S	0.00	H ₂ S Control Efficiency (%)
		led by Control Device (Controlled Emissions)
VOC		VOC Results (ton/yr)
benzene H ₂ S	0.00	Benzene Results (ton/yr)
H ₂ S	0.00	H ₂ S Results (ton/yr)
Loading	g Emissions	
	Hourly	Annual
	Emissions (lb/hr)	Emissions (tpy)
VOC	(lb/hr) 22.36	(tpy) 1.89
VOC benzene H ₂ S	(lb/hr)	(tpy)

VOC Type: (pick from list) Crude Oil or Condensate VOC

Emission Type: (pick from list) Low Pressure Periodic

Enter temperature in Fahrenheit °F):	Temperature in Rankine (°R):
74.5	534.17
Enter Barrels of Liquid	Gallons of liquid:
100	4200

Enter gallons per year	Barrels per day:
1533000	100

EP Energy E&P Company LP University Lands 39-11-1H Facility

Loading Emissions

A) Enter information into the yellow boxes

B) VOC and H₂S control and collection efficiencies may be entered (if applicable).

C) The vapor VOC, benzene, and H_2S weight percents may be entered.

D) There are two separate areas below to calculate <u>hourly</u> and <u>annual</u> loading emissions. Then underneath, there is a table summarizing the hourly and annual loading emissions.

E) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

F) If vapor balancing is being performed and the tank is not being controlled, contact TCEQ about the appropriate tank working loss calculation.

G) Make sure to answer the control device question.

H) Make sure to select the correct VOC Type and Emission Type from the pull down menus below.

EPN			1		
Identifier	Produced Wa	iter Loading	1		
Truck <u>Hourly</u> Lo	ading Em	ission Calculations	1		
Using equation $L_L = 12$.	.46* SPM/T fro	om AP-42, Chapter 5, Section 5.2-4			
S =	0.60	Saturation Factor	I [Enter temperature	Te
P =	4.09	True vapor pressure of liquid loaded (psia)		in Fahrenheit °F):	F
M =	50.00	Molecular Weight of Vapors (Ib/Ib-mole)			
T =	541.67	Temperature of bulk liquid loaded (in degrees Rankine)		82	
				Enter Barrels of Liquid	Ga
Hourly Loading Rate	8000	Gallons Loaded per Hour		-	
L _L =	2.82 22.58	Loading Loss (Ib VOC released/1000 gal liquid loaded)		200	
	22.58	VOC Uncontrolled Emissions (lb/hr)			
	idizer, or vapo			Enter gallons per year 3066000	Ba
		Vapor Weight Percents			
VOC	99.02	Vapor VOC wt%	E	Enter any notes her	e:
benzene	0.18	Vapor Benzene wt%			
H ₂ S	0.00	Vapor H ₂ S wt%			
		Uncontrolled Emissions			
VOC	0.22	Emissions Uncontrolled VOC (lb/hr)			
benzene H ₂ S	0.00	Emissions Uncontrolled Benzene (Ib/hr)			
п ₂ 5	0.00	Emissions Uncontrolled H ₂ S (lb/hr)			
		Collection Efficiency			
	0.00	Collection Efficiency (%)			
	Vapo	rs Uncaptured by Control Device			
VOC	0.00	VOC Uncaptured Vapors (lb/hr)			
benzene H ₂ S	0.00	benzene Uncaptured Vapors (Ib/hr)			
п ₂ 5	0.00	H ₂ S Uncaptured Vapors (lb/hr)			
	Vap	ors Captured by Control Device			
VOC	0.00	VOC Uncaptured Vapors (lb/hr)			
benzene	0.00	benzene Uncaptured Vapors (Ib/hr)	1		
H ₂ S	0.00	H ₂ S Uncaptured Vapors (lb/hr)	1		
		Control Efficiency			

Control Efficiency						
voc	0.00	VOC Control Efficiency (%)				
H₂S	0.00	H ₂ S Control Efficiency (%)				
Vapors Uncontrolled by Control Device (Controlled Emissions)						
voc	0.00	VOC Results (lb/hr)				
benzene	0.00	Benzene Results (Ib/hr)				
H₂S	0.00	H ₂ S Results (lb/hr)				

Enter temperature in Fahrenheit °F):	Temperature in Rankine (°R):	
82	541.67	
Enter Barrels of Liquid	Gallons of liquid:	
200	8400	

Enter gallons per year	Barrels per day:
0000000	000

	ading Em	ission Calculations
		m AP-42, Chapter 5, Section 5.2-4
S =	0.60	= Saturation Factor
P =	3.56	= True vapor pressure of liquid loaded (psia)
M =	50.00	= Molecular Weight of Vapors (lb/lb-mole)
T =	534.17	= Temperature of bulk liquid loaded (in degrees Rankine)
	3066000	= Gallons Loaded per Year
Annual Loading Rate L _L =	2.49	Loading Loss (Ib VOC released/1000 gal liquid loaded)
-L-	3.82	VOC Uncontrolled Emissions (ton/yr)
	5.02	
		Vapor Weight Percents
VOC	99.02	Vapor VOC wt%
benzene	0.18	Vapor Benzene wt%
H ₂ S	0.00	Vapor H ₂ S wt%
		Produced Water Reduction
	99.00	Percent Reduction for Produced Water Tank Calc. as Oil/Cond. (%)
		Uncontrolled Emissions
VOC	0.04	Emissions Uncontrolled VOC (ton/yr)
benzene	0.00	Emissions Uncontrolled Benzene (ton/yr)
H ₂ S	0.00	Emissions Uncontrolled H ₂ S (ton/yr)
	0.00	Collection Efficiency (%)
	Vapo	rs Uncaptured by Control Device
VOC		rs Uncaptured by Control Device
VOC	0.00	rs Uncaptured by Control Device VOC Uncaptured Vapors (ton/yr)
VOC benzene H ₂ S		rs Uncaptured by Control Device
benzene	0.00 0.00 0.00	rs Uncaptured by Control Device VOC Uncaptured Vapors (ton/yr) benzene Uncaptured Vapors (ton/yr)
benzene H ₂ S	0.00 0.00 0.00 <u>Vap</u>	rs Uncaptured by Control Device VOC Uncaptured Vapors (ton/yr) benzene Uncaptured Vapors (ton/yr) H ₂ S Uncaptured Vapors (ton/yr) ors Captured by Control Device
benzene H ₂ S	0.00 0.00 0.00 <u>Vap</u> 0.00	rs Uncaptured by Control Device VOC Uncaptured Vapors (ton/yr) benzene Uncaptured Vapors (ton/yr) H ₂ S Uncaptured Vapors (ton/yr) ors Captured by Control Device VOC Uncaptured Vapors (tb/hr)
benzene H ₂ S	0.00 0.00 0.00 <u>Vap</u>	rs Uncaptured by Control Device VOC Uncaptured Vapors (ton/yr) benzene Uncaptured Vapors (ton/yr) H ₂ S Uncaptured Vapors (ton/yr) ors Captured by Control Device VOC Uncaptured Vapors (tb/hr) benzene Uncaptured Vapors (tb/hr)
benzene H ₂ S VOC benzene	0.00 0.00 0.00 <u>Vap</u> 0.00 0.00	rs Uncaptured by Control Device VOC Uncaptured Vapors (ton/yr) benzene Uncaptured Vapors (ton/yr) H ₂ S Uncaptured Vapors (ton/yr) ors Captured by Control Device VOC Uncaptured Vapors (tb/hr)
benzene H ₂ S VOC benzene H ₂ S	0.00 0.00 0.00 <u>Vap</u> 0.00 0.00	rs Uncaptured by Control Device VOC Uncaptured Vapors (ton/yr) benzene Uncaptured Vapors (ton/yr) H ₂ S Uncaptured Vapors (ton/yr) ors Captured by Control Device VOC Uncaptured Vapors (tb/hr) benzene Uncaptured Vapors (tb/hr) H ₂ S Uncaptured Vapors (tb/hr)
benzene H ₂ S VOC benzene H ₂ S	0.00 0.00 0.00 <u>Vap</u> 0.00 0.00	rs Uncaptured by Control Device VOC Uncaptured Vapors (ton/yr) benzene Uncaptured Vapors (ton/yr) H ₂ S Uncaptured Vapors (ton/yr) ors Captured by Control Device VOC Uncaptured Vapors (tb/hr) benzene Uncaptured Vapors (tb/hr) H ₂ S Uncaptured Vapors (tb/hr) Control Efficiency
VOC H ₂ S VOC benzene H ₂ S	0.00 0.00 0.00 <u>Vap</u> 0.00 0.00 0.00	rs Uncaptured by Control Device VOC Uncaptured Vapors (ton/yr) benzene Uncaptured Vapors (ton/yr) H ₂ S Uncaptured Vapors (ton/yr) ors Captured by Control Device VOC Uncaptured Vapors (tb/hr) benzene Uncaptured Vapors (tb/hr) Control Efficiency VOC Control Efficiency (%)
VOC H ₂ S VOC benzene H ₂ S	0.00 0.00 0.00 <u>Vap</u> 0.00 0.00 0.00	rs Uncaptured by Control Device VOC Uncaptured Vapors (ton/yr) benzene Uncaptured Vapors (ton/yr) H ₂ S Uncaptured Vapors (ton/yr) Ors Captured by Control Device VOC Uncaptured Vapors (lb/hr) benzene Uncaptured Vapors (lb/hr) H ₂ S Uncaptured Vapors (lb/hr) Control Efficiency VOC Control Efficiency (%) H ₂ S Control Efficiency (%)
<u>benzene</u> H ₂ S <u>voc</u> <u>benzene</u> H ₂ S <u>voc</u> <u>Vapo</u> <u>voc</u> benzene	0.00 0.00 Vap 0.00 0.00 0.00 0.00 0.00	rs Uncaptured by Control Device VOC Uncaptured Vapors (ton/yr) benzene Uncaptured Vapors (ton/yr) H ₂ S Uncaptured Vapors (ton/yr) Ors Captured by Control Device VOC Uncaptured Vapors (tb/hr) benzene Uncaptured Vapors (tb/hr) H ₂ S Uncaptured Vapors (tb/hr) Control Efficiency VOC Control Efficiency (%) H ₂ S Control Efficiency (%) led by Control Device (Controlled Emissions)
VOC benzene H ₂ S VOC benzene H ₂ S VOC H ₂ S VOC	0.00 0.00 Vap 0.00 0.00 0.00 0.00 rs Uncontrol	rs Uncaptured by Control Device VOC Uncaptured Vapors (ton/yr) benzene Uncaptured Vapors (ton/yr) H ₂ S Uncaptured Vapors (ton/yr) Ors Captured by Control Device VOC Uncaptured Vapors (tb/hr) benzene Uncaptured Vapors (tb/hr) H ₂ S Uncaptured Vapors (tb/hr) Control Efficiency VOC Control Efficiency (%) H ₂ S Control Efficiency (%) led by Control Device (Controlled Emissions) VOC Results (ton/yr)
VOC benzene H ₂ S VOC benzene H ₂ S VOC VOC VOC benzene H ₂ S	0.00 0.00 Vap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	rs Uncaptured by Control Device VOC Uncaptured Vapors (ton/yr) benzene Uncaptured Vapors (ton/yr) H ₂ S Uncaptured Vapors (ton/yr) Ors Captured by Control Device VOC Uncaptured Vapors (tb/hr) benzene Uncaptured Vapors (tb/hr) H ₂ S Uncaptured Vapors (tb/hr) Control Efficiency (%) H ₂ S Control Efficiency (%) H ₂ S Control Efficiency (%) H ₂ S Control Efficiency (%) VOC Results (ton/yr) Benzene Results (ton/yr) H ₂ S Results (ton/yr)
benzene H ₂ S VOC benzene H ₃ S VOC VOC benzene VOC benzene H ₂ S	0.00 0.00 Vap 0.00 0.00 0.00 0.00 0.00 ** Uncontrol 0.00 0.00	rs Uncaptured by Control Device VOC Uncaptured Vapors (ton/yr) benzene Uncaptured Vapors (ton/yr) HyS Uncaptured Vapors (ton/yr) Ors Captured by Control Device VOC Uncaptured Vapors (tb/hr) benzene Uncaptured Vapors (tb/hr) HyS Uncaptured Vapors (tb/hr) Control Efficiency VOC Control Efficiency (%) HyS Control Efficiency (%) HyS Control Efficiency (%) HyS Control Device (Controlled Emissions) VOC Results (ton/yr) Benzene Results (ton/yr)
benzene H ₂ S VOC	0.00 0.00 Vap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	rs Uncaptured by Control Device VOC Uncaptured Vapors (ton/yr) benzene Uncaptured Vapors (ton/yr) H ₂ S Uncaptured Vapors (ton/yr) Ors Captured by Control Device VOC Uncaptured Vapors (tb/hr) benzene Uncaptured Vapors (tb/hr) M ₂ S Uncaptured Vapors (tb/hr) Control Efficiency (b/hr) H ₂ S Control Efficiency (%) H ₂ S Control Efficiency (%) VOC Control Efficiency (%) H ₂ S Control Efficiency (%) VOC Results (ton/yr) Benzene Results (ton/yr) Annual Emissions
VOC benzene H ₂ S VOC benzene H ₂ S VOC VOC VOC benzene H ₂ S	0.00 0.00 Vap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	rs Uncaptured by Control Device VOC Uncaptured Vapors (ton/yr) benzene Uncaptured Vapors (ton/yr) H ₂ S Uncaptured Vapors (ton/yr) Ors Captured by Control Device VOC Uncaptured Vapors (tb/hr) benzene Uncaptured Vapors (tb/hr) M ₂ S Uncaptured Vapors (tb/hr) Control Efficiency (b/hr) H ₂ S Control Efficiency (%) H ₂ S Control Efficiency (%) VOC Control Efficiency (%) H ₂ S Control Efficiency (%) VOC Results (ton/yr) Benzene Results (ton/yr) Annual Emissions
benzene H ₂ S VOC benzene H ₂ S VOC benzene H ₂ S Loadim	0.00 0.00 Vap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	rs Uncaptured by Control Device VOC Uncaptured Vapors (ton/yr) benzene Uncaptured Vapors (ton/yr) H ₂ S Uncaptured Vapors (ton/yr) Ors Captured by Control Device VOC Uncaptured Vapors (lb/hr) benzene Uncaptured Vapors (lb/hr) H ₂ S Uncaptured Vapors (lb/hr) Control Efficiency (%) H ₂ S Results (ton/yr) Benzene Results (ton/yr) Annual Annual Emissions

Loading	<u>a Emissions</u>	
	Hourly Emissions (lb/hr)	Annual Emission (tpy)
VOC		
benzene		
H ₂ S		
VOC Type: (pick from lis Crude Oil or Condensate		
Emission Type: (pick fro Low Pressure Periodic	om list)]

Enter temperature in Fahrenheit °F):	Temperature in Rankine (°R):
74.5	534.17
Enter Barrels of Liquid	Gallons of liquid:
	8400

Enter gallons per year	Barrels per day:
3066000	200

Enter any notes here:

Flare / Vapor Combustor

A) Enter information into the yellow boxes.

B) See notes/instructions incuded below.

C) Use the box provided below for entering any notes necessary (such as the source/justification for any calculation inputs).

D) Make sure to select the correct *Emission Type* from the pull down menu below.

	Com							
		eral Information						
Unit Name:	Process Vent	V1						
Unit EPN: Which is utilized for this								
device? automatic ignition system								
	NOx and	CO Emission Factors						
	Fo	or <u>Waste</u> Gas:						
What kind of device is this? Pick from list.	non-	steam assisted flare with high Btu stream flared						
NOx	0.138	lb/MMBtu						
со		lb/MMBtu						
	0.2.30							
	For	Pilot Stream(s):						
If there is one or more pilot streams, are they made up of pipeline quality natural gas, propane, or field gas? Pick from drop down list to the right and follow instructions below. NOx 0 CO 0 Since there is no pilot, you do not need to enter anything in the column for Stream No. 1 below.								
	For <u>Add</u>	led Fuel Stream(s):						
If there is one or more added fuel streams, are they made up of pipeline quality natural gas, propane, or field gas? Pick from drop down list to the right and follow instructions below.								
NOx	0							
co	0							
		not need to enter anything in the column for Stream No. 2 below.						

Destruction Efficiency					
VOC percent destruction efficiency (%)	0				
propane percent destruction efficiency (%) *OPTIONAL*	0				
H ₂ S percent destruction efficiency (%)	0				

111551011	Factors from AP-42 T	able 1.4-1 and 1.	4-2 (lb/MMscf)	
	NOx CO	100 84		
	PM10, PM2.5	7.6	5.7	
Emission	Factors from TCEQ G	uidance (Ib/MME	<u>Btu)</u>	
	Non-steam assis	ted, high Btu	Steam ass	isted, high Btu
	NOx	0.138	NOx	0.0485
	со	0.2755	со	0.3503
	Non-steam assis	ted, low Btu	Steam ass	isted, low Btu
	NOx	0.0641	NOx	0.068
	со	0.5496	со	0.3465
Emission I	Factors from AP-42 T	able 1.4-2 and 1.	4-3 (lb/MMscf)	
	SO ₂	0.6		
	VOC	5.5		
	benzene	a .a= aa		

Constants	
Btu/MMBtu	1,000,000
scf/MMscf Ib/ton	1,000,000 2,000
H ₂ S molecular weight	34.08
SO ₂ molecular weight	64.06
seconds/hour	3,600
inches/ft	12

Stream Information

Each numbered column represents a stream. The first two columns are always for pilot and added fuel streams. The next ten columns, Columns 3-12, are for any streams sent to the control device, suct as "tank 1", "amine regenerator vent", etc. Under the column numbers, these columns should be labeled with the stream name. Information only needs to be entered for the number of streams sent to the flare. If for example, there are only two process/waste streams routed to the flare, only colums 3 and 4 need to be filled out, and potentially 1 and 2 if there are also any pilot or added fuel streams. Stream Sent to Flare/Vapor Combustor No. Total 1 2 3 4 5 6 7 8 9 10 11 12 Stream Sent to Flare/Vapor Combustor Name (Enter Names of Each Stream dded fuel Produced Here) pilot(s) stream(s) Gas Maximum Expected Hourly Volumtric Flow Rate of 200000 200000 Stream (scf/hr) Amount of Time Stream Routed to Flare/Vapor Combustor (hrs/yr) 1400 Maximum Expected Annual Volumtric Flow Rate of Stream (scf/yr) 28000000 28000000 Heat Value of Stream - from program results or gas analysis (Btu/scf) propane weight percent of total stream (%) *OPTIONAL* VOC weight percent of total stream (%) *OPTIONAL* 22.7251083 It is suggested that you link these cells below to the cells in the other tabs of this spreadsheet which contain the calculated uncontrolled emissions for the stream.

			<u>Mass F</u>	low Rates of	the Vapors Se	ent to this Cor	ntrol Device, H	lourly Basis (I	lb/hr)				
Stream Sent to Flare/Vapor Combustor No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Stream Sent to Flare/Vapor Combustor Name	pilot(s)		Produced Gas										_
H2S	-	-	2.95E-03										0.00295
Crude or Condensate VOC	-	-	103.588618										103.588618
Natural Gas VOC	-	-	0										0
Total VOC	-	-	103.588618										103.588618
benzene	-	-	0.15212039										0.15212039
					the Vapors S	ent to this Co	ntrol Device,	Annual Basis	<u>(tpv)</u>				
H2S	-	-	2.06E-03										0.002065
Crude or Condensate VOC	-	-	72.5120329										72.5120329
Natural Gas VOC	-	-	0										0
Total VOC	-	-	72.5120329										72.5120329
benzene	-	-	0.10648428										0.10648428

	Controlled Emissions												
	Hourly (lb/hr)												
Stream Sent to Flare/Vapor Combustor No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Stream Sent to Flare/Vapor Combustor Name	pilot(s)	added fuel stream(s)	Produced Gas										-
NOx	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
со	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
PM2.5	0.000	0.000	1.140	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.14
PM10	0.000	0.000	1.520	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.52
H2S	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
SO2	0.000	0.000	0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.01
Crude or Condensate VOC	-	-	103.589	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	103.59
Natural Gas VOC	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Total VOC	0.000	0.000	103.589	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	103.59
benzene	0.000	0.000	0.152	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.15
					<u>/</u>	Annual (tpy)							
Stream Sent to Flare/Vapor Combustor No.	1	2	3	4	5	6	7	8	9	10	11	12	Total
Stream Sent to Flare/Vapor Combustor Name	pilot(s)	added fuel stream(s)	Produced Gas										-
NOx	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
со	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
PM2.5	0.000	0.000	0.798	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.80
PM10	0.000	0.000	1.064	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.06
H2S	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
SO2	0.000	0.000	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Crude or Condensate VOC	-	-	72.512	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	72.51
Natural Gas VOC	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00
Total VOC	0.000	0.000	72.512	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	72.51
benzene	0.000	0.000	0.106	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.11

	Hourly Emissions	Annual Emissions
	(lb/hr)	(tpy)
Total Crude Oil or		
Condensate VOC	103.5	9 72.51
Total Natural Gas VOC	0.0	0.00
Total VOC	103.5	9 72.51
NOx	0.0	0.00
CO	0.0	0.00
PM2.5	1.1	4 0.80
PM10	1.5	2 1.06
H2S	0.0	0.00
SO2	0.0	1 0.00
benzene	0.1	5 0.11

Calculations

Scf/hr = (Uncontrolled (lb/hr) / Molecular Weight (lb/lb-mole)) * 379 (ft3/lb-mole)

VOC = Uncontrooled (lb/hr) * ((100-DRE%)/100) NOx = (Flow rate = scf/hr) * (Heat content = Btu/scf) * (Emission factor = lb/MM Btu)*(1MM Btu / 1,000,000 Btu) CO = (Flow rate = scf/hr)*(Heat content = Btu/scf) * (Emission factor = lb/MM Btu) * (1MM Btu/1,000,000 Btu)

Emission Type: (pick from list) Steady State (continuous)

PBR/Standard Permit Co	mpliance
Minimum Heat Value Rec	uirement
Total Stream Heat Value (weighted with hourly volumetric flow rates, Btu/scf)	0
Total Stream Heat Value (weighted with annual volumetric flow rates, Btu/scf)	0
<u>Maximum Flare/Burner Ti</u> <u>Requirement</u>	p Velocity
How many flare/burner tips does the unit have?	
What is the diameter of the flare/burner tip(s) (in)?	
Total Flare/Burner Tip Surface Area (ft²)?	0
What is the flare/burner tip surface area that the hourly worst case (highest flow) stream passes through (ft²)?	
Stream Velocity Through Burner Tip (based on hourly worst case, ft/sec)	0.00

Enter any notes here as needed. You must address the following: (1) How is this control efficiency justified? Please be specific.

(1) How is this control efficiency justified? Please be specific.
 (2) Explain what happens when this unit is down. Include how long the unit could be down for.

EP Energy E&P Company LP University Lands 39-11-1H Facility

Emissions Summary

The table below is a summary of all emission points for this registration. It is separated into *Project Emissions* and *Other Site Wide Emissions*.

The table has separate totals for *Project Total Emission Rates* and *Site Wide Total Emission Rates*.

On the table, for each emission source, there is a space for three emission rates on a pound per hour (lb//hr) basis and one emission rate on a ton per year (tpy) basis. Periodic emissions are authorized to exceed the steady state limits of the rule (150, 300, and 600 hours per year for PBR Level 1, PBR Level 2, and the Standard Permit, respectively), in which case the periodic emission limits must be met. Note that periodically emitting activities, such as loading and MSS activities, are not limited to occurring less than these time limits. It is only for that amount of time that the emissions can exceed the normal steady state limits.

Any formaldehyde emissions must be included as part of VOC emissions.

Update

Before pressing the *Update* button, make sure you have selected the correct VOC Type and Emission Type from the pull down menus in each emission calculation tab.

Emissions Summary

<u>Project Emissions</u> (This needs to include all emission points being added for the first time to the registration or emission points with emissions that are changing from previously registered emissions. It does NOT include emission points for which the emissions have not changed and have previously been registered (unless the emission point emissions are chosen to be re-calculated as part of this project); those emissions will be entered below in the Other Registration Emissions section of this table.)

			Emission Rates			
Emission Point No. (1) Source Name (2)		Air Contaminant Name (3)	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr	TPY (4)
		Total VOC	0.1226			0.5371
			0.1226			0.5371
		Total Natural Gas VOC	0.0000			0.0000
F1	Fugitives	Benzene	0.0002			0.0009
	, i i i i i i i i i i i i i i i i i i i	Formaldehyde	0.0000			0.0000
		H_2S	0.0001			0.0002
		SO_2	0.0000			0.0000
		NO _X	0.0000			0.0000
		СО	0.0000			0.0000
	PM ₁₀	0.0000			0.0000	
		PM _{2.5}	0.0000			0.0000
		Total VOC	0.0000			0.0000
		Total Crude Oil or Condensate VOC	0.0000			0.0000
		Total Natural Gas VOC	0.0000			0.0000
		Benzene	0.0000			0.0000
		Formaldehyde	0.0000			0.0000
		H_2S	0.0000			0.0000
		SO_2	0.0000			0.0000
		NO _X	0.0000			0.0000
		со	0.0000			0.0000
		PM_{10}	0.0000			0.0000
		PM _{2.5}	0.0000			0.0000

		Total VOC	0.0045	0.0199
		Total Crude	0.0045	0.0199
		Oil or		
		Condensate		
		VOC	0.0000	0.0000
		Total Natural		
		Gas VOC	0.0000	0.0000
H1	Heater Treater	Benzene	0.0000	0.0000
		Formaldehyde	0.0000	0.0000
		H_2S	0.0000	0.0000
		SO_2	0.0006	0.0024
		NO _X	0.0826	0.3617
		СО	0.0694	0.3038
		PM ₁₀ PM _{2.5}	0.0063 0.0047	0.0275 0.0206
		Total VOC	2.3570	10.3238
		Total Crude	2.3370	10.3238
		Oil or		
		Condensate		
		VOC	2.3570	10.3238
		Total Natural		
		Gas VOC	0.0000	0.0000
T1	Crude Oil Tank	Benzene	0.0048	0.0208
		Formaldehyde	0.0000	0.0000
		H_2S	0.0000	0.0001
		SO_2	0.0000	0.0000
		NO _X	0.0000	0.0000
		CO	0.0000	0.0000
		PM ₁₀ PM _{2.5}	0.0000	0.0000 0.0000
		Total VOC	2.3570	10.3238
		Total Crude	2.3310	10.5250
		Oil or		
		Condensate		
		voc	2.3570	10.3238
		Total Natural		
		Gas VOC	0.0000	0.0000
T2	Crude Oil Tank	Benzene	0.0048	0.0208
		Formaldehyde	0.0000	0.0000
		H ₂ S	0.0000	0.0001
		SO ₂	0.0000	0.0000
		NO _X CO	0.0000	0.0000
			0.0000	0.0000 0.0000
		PM ₁₀ PM _{2.5}	0.0000	0.0000
		Total VOC	0.2026	0.8873
		Total Crude	0.2020	0.0075
		Oil or		
		Condensate		
		VOC	0.2026	0.8873
		Total Natural		
		Gas VOC	0.0000	0.0000
T1	Crude Oil Tank	Benzene	0.0004	0.0016
		Formaldehyde	0.0000	0.0000
		H ₂ S	0.0000	0.0000
		SO ₂	0.0000	0.0000
		NO _X CO	0.0000	0.0000
		CO PM ₁₀	0.0000	0.0000
		$\frac{\mathbf{PM}_{10}}{\mathbf{PM}_{2.5}}$	0.0000	0.0000
		Total VOC	0.2026	0.8873
			0.2020	0.0075

		Total Crude		
		Oil or		
		Condensate VOC	0.0007	0.0072
			0.2026	0.8873
		Total Natural	0.0000	0.0000
		Gas VOC	0.0000	0.0000
T2	T2 Crude Oil Tank	Benzene	0.0004	0.0016
		Formaldehyde	0.0000	0.0000
		H ₂ S	0.0000	0.0000
		SO_2	0.0000	0.0000
		NO _X	0.0000	0.0000
		СО	0.0000	0.0000
		PM ₁₀	0.0000	0.0000
		PM _{2.5}	0.0000	0.0000
		Total VOC	0.0471	0.2065
		Total Crude		
		Oil or Condensate		
		VOC	0.0471	0.2065
			0.04/1	0.2005
		Total Natural Gas VOC	0.0000	0.0000
W/T1	Des dessed Weter Tauls	Benzene	0.0000	0.0004
WT1	Produced Water Tank	Formaldehyde	0.0000	0.0004
		H ₂ S	0.0000	0.0000
		SO ₂	0.0000	0.0000
		NO _X	0.0000	0.0000
		CO	0.0000	0.0000
		PM ₁₀	0.0000	0.0000
		PM _{2.5}	0.0000	0.0000
		Total VOC	0.0471	0.2065
		Total Crude		
		Oil or		
		Condensate		
		VOC	0.0471	0.2065
		Total Natural		
		Gas VOC	0.0000	0.0000
WT2	Produced Water Tank	Benzene	0.0001	0.0004
		Formaldehyde	0.0000	0.0000
		H ₂ S	0.0000	0.0001
		SO ₂	0.0000	0.0000
		NO _X	0.0000	0.0000
		CO	0.0000	0.0000
		PM ₁₀	0.0000 0.0000	0.0000 0.0000
		PM _{2.5} Total VOC		
		Total VOC	0.0023	0.0101
		Total Crude Oil or		
		On or Condensate		
		VOC	0.0023	0.0101
		Total Natural		
		Gas VOC	0.0000	0.0000
WT1	Produced Water Tank	Benzene	0.0000	0.0000
	rioucou water rank	Formaldehyde	0.0000	0.0000
		H_2S	0.0000	0.0000
		50 ₂	0.0000	0.0000
		NO _X	0.0000	0.0000
		CO	0.0000	0.0000
		PM_{10}	0.0000	0.0000
		PM _{2.5}	0.0000	0.0000
		Total VOC	0.0023	0.0101

		Total Crude			
		Oil or			
		Condensate			
		VOC	0.0023		0.0101
		Total Natural			
		Gas VOC	0.0000		0.0000
WT2	Produced Water Tank	Benzene	0.0000		0.0000
	Troduced Water Talk	Formaldehyde	0.0000		0.0000
		H ₂ S	0.0000		0.0000
		N25 SO2	0.0000		0.0000
			0.0000		0.0000
		NO _X CO	0.0000		
					0.0000
		PM ₁₀	0.0000		0.0000
		PM _{2.5}	0.0000		0.0000
		Total VOC		22.3591	1.8909
		Total Crude			
		Oil or			
		Condensate			
		VOC		22.3591	1.8909
		Total Natural			
		Gas VOC		0.0000	0.0000
L1	Crude Oil Loading	Benzene		0.0403	0.0034
2.	Line on Louding	Formaldehyde		0.0000	0.0000
		H ₂ S		0.0000	0.0000
		N25 SO2		0.0000	0.0000
		NO _X		0.0000	0.0000
		$\frac{NO_X}{CO}$			
				0.0000	0.0000
		PM ₁₀		0.0000	0.0000
		PM _{2.5}		0.0000	 0.0000
		Total VOC		0.0000	0.0000
		Total Crude			
		Oil or			
		Condensate		0.0000	0.0000
		VOC		0.0000	0.0000
		Total Natural			
		Gas VOC		0.0000	0.0000
L2	Produced Water Loading	Benzene		0.0000	0.0000
		Formaldehyde		0.0000	0.0000
		H ₂ S		0.0000	0.0000
		SO ₂		0.0000	0.0000
		NO _X		0.0000	0.0000
		CO		0.0000	0.0000
		PM ₁₀		0.0000	0.0000
		PM ₁₀ PM _{2.5}		0.0000	0.0000
		Total VOC	103.5886	0.0000	72.5120
			105.5880		72.3120
		Total Crude			
		Oil or Condensate			
		VOC	103.5886		72.5120
		,00	105.5660		72.3120
		Total Natural			
		Gas VOC	0.0000		0.0000
V1	Process Vent	Gas VOC Benzene	0.1521		0.1065
V1	Process Vent	Gas VOC			
V1	Process Vent	Gas VOC Benzene	0.1521		0.1065
V1	Process Vent	Gas VOC Benzene Formaldehyde	0.1521 0.0000		0.1065 0.0000
V1	Process Vent	Gas VOC Benzene Formaldehyde H ₂ S	0.1521 0.0000 0.0029		0.1065 0.0000 0.0021
V1	Process Vent	Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.1521 0.0000 0.0029 0.0055 0.0000		0.1065 0.0000 0.0021 0.0039 0.0000
V1	Process Vent	Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X CO	0.1521 0.0000 0.0029 0.0055 0.0000 0.0000		0.1065 0.0000 0.0021 0.0039 0.0000 0.0000
V1	Process Vent	Gas VOC Benzene Formaldehyde H ₂ S SO ₂ NO _X	0.1521 0.0000 0.0029 0.0055 0.0000		0.1065 0.0000 0.0021 0.0039 0.0000

			Emissio	n Rates	
emission limits in the rule need to be compared to the sum of steady state and periodic emissions, that is the worst case combination of continuously and	Air Contaminant Name (3)	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr	TPY (4)
	Total VOC	108.93	131.29	131.29	97.82
	Total Crude Oil or Condensate VOC	108.93	131.29	131.29	97.80
occur in any one hour. The periodic emission rates shown here are the sum	Total Natural Gas VOC	0.00	0.00	0.00	0.00
of all steady state and periodic emissions	Benzene	0.16	0.20	0.20	0.16
in the project. If the worst case combination of continuously and	Formaldehyde	0.00	0.00	0.00	0.00
periodically emitting sources is less than	H ₂ S	0.00	0.00	0.00	0.00
this, then please input the values in this	SO ₂	0.01	0.01	0.01	0.01
table to the right. Please explain below	NO _X	0.08	0.08	0.08	0.36
which emission points are included in	со	0.07	0.07	0.07	0.30
this worst case combination.)	PM ₁₀	0.01	0.01	0.01	0.03
	PM _{2.5}	0.00	0.00	0.00	0.02
If the automated formulas for the project emission totals (which assume that it is possible for all steady state and periodic emissions in the project to occur in the same hour) have been overwritten, explain any changes made and list the project emission points that occur in the realistic worst case hour. (Leave this blank or put NA if none of the formulas have been overwritten.)					
<u>Other Site Wide Emissions</u> (This needs to include any other emission points not included in the Project Emissions Summary but are associated with the site. This should be all the operationally dependent units that are within 1/4 mile of each other and are also owned/operated by the same company and located on contiguous or adjacent property. It is possible that nothing needs to be entered here.)					

There are no other site wide emission points other than project emission points.

Site Wide Total Emission Rates (Note that these periodic totals are NOT simply the periodic are included and an entry of the periodic are periodic and an entry of the periodic are periodi	Air Contaminant Name (3)	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr	TPY (4)
the sum of the periodic emission rates from each emission point. The periodic	Total VOC	108.93	131.29	131.29	97.82
emission limits in the rule need to be compared to the sum of steady state and periodic emissions, that is the worst case combination of continuously and	Total Crude Oil or Condensate VOC	108.93	131.29	131.29	97.80
periodically emitting sources that could occur in any one hour. The periodic	Total Natural Gas VOC	0.00	0.00	0.00	0.00
emission rates shown here are the sum of all steady state and periodic emissions	Benzene	0.16	0.20	0.20	0.16
in the registration. If the worst case	Formaldehyde	0.00	0.00	0.00	0.00
combination of continuously and	H ₂ S	0.00	0.00	0.00	0.00
periodically emitting sources is less than	SO ₂	0.01	0.01	0.01	0.01
this, then please input the values in this	NO _X	0.08	0.08	0.08	0.36
table to the right. Please explain below	СО	0.07	0.07	0.07	0.30
which emission points are included in	PM ₁₀	0.01	0.01	0.01	0.03
this worst case combination.)	PM _{2.5}	0.00	0.00	0.00	0.02
If the automated formulas for the registration emission totals (which assume that it is possible for all steady state and periodic emissions in the registration to occur in the same hour) have been overwritten, explain any changes made and list the registration emission points that occur in the realistic worst case hour. (Leave this blank or put NA if none of the formulas have been overwritten.)	n Beten this a	utherization (Stondor	d Darmić
Based on the Site Wide Total Emission	on Rates, this a	utnorization f	alls under:	Standard	d Permit

Enter any notes here: * No PM emissions included for process vent emissions. ** Note that facility is located > 1.0 mile from the any receptors or property line so no impacts evaluation is required.

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
- (3) VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1 H₂S hydrogen sulfide
 - SO₂ sulfur dioxide
 - NO_x total oxides of nitrogen
 - CO carbon monoxide
 - PM₁₀ total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}
 - PM_{2.5} particulate matter equal to or less than 2.5 microns in diameter
- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) If emissions from a source are:

 (\mbox{A}) uncontrolled, then the uncontrolled emissions are reported in this table as being emitted from the source.

(B) controlled by a flare, vapor combustor, thermal oxidizer, or vapor recovery unit (VRU), then the controlled emissions are reported on this table as being emitted from the control device.

(C) controlled by another type of control device, then the controlled emissions are reported on this table for the source (even though emissions are actually being emitted at the control device).

- (6) For controlled tank, glycol/amine flash tank and regenerator, and MSS emissions, it is assumed that all vapors make it to the control device (100% collection efficiency). For controlled loading emissions, a 100% collection efficiency is <u>not</u> assumed.
- (7) A VRU itself is not actually considered an emission point; however, this table associates unrecovered (uncontrolled) emissions from sources controlled by a VRU at the VRU.

Major Source determination

Major Source determination: A site is required to obtain an operating permit if it is considered to be a major source (per 30 TAC Section 122.10). A site's potential to emit is an important factor to determine if the site is a major source and is thus required to apply and obtain an FOP.

	EP Energy E&P Company
Company Name	LP
	University Lands 39-11-1H
Site Name	Facility
County	Other

Annual Site Wide Emission Rates						
Air Contaminant Name (3)	TPY (4)					
Total VOC	97.82					
Benzene	0.16					
Formaldehyde	0.00					
SO ₂	0.01					
NO _X	0.36					
CO	0.30					
PM_{10}	0.03					
PM _{2.5}	0.02					

Major So	ource Determination
Air Contaminant	Major Source determination
Name (3)	
Total VOC	NA
Benzene	NA
Formaldehyde	NA
SO ₂	NA
NO _X	NA
CO	NA
PM ₁₀	NA
PM _{2.5}	NA

Authorization Level Determination

The level of authorization is determined by comparing the Registration Total Emission Rates (as shown on the previous tab) to the emission limits of the different authorization levels.

This table is an expanded explanation of how the authorization level shown on the Emissions Summary tab was determined. The table shows which authorization level each compound's emissions fall into, and then at the bottom of the chart it shows which authorization level the entire authorization falls under.

The possible authorization levels are:

PBR Level 1 PBR Level 2 Standard Permit NSR Case-by-case Permit

	Based on the Registration Total Emission Rates (on the previous tab), what Level of Authorization Does Each Emission Rate Fall Into?						
		Emissio	on Rates				
Air Contaminant Name	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr	ТРҮ			
Total VOC	NA, no limit	NA, no limit	NA, no limit	Standard Permit			
Total Crude Oil or Condensate VOC	Standard Permit	PBR Level 1	PBR Level 1	Standard Permit			
Total Natural Gas VOC	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1			
Benzene	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1			
Formaldehyde	NA, no limit	NA, no limit	NA, no limit	PBR Level 1			
H ₂ S	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1			
SO ₂	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1			
NO _X	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1			
со	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1			
PM ₁₀	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1			
PM _{2.5}	PBR Level 1	PBR Level 1	PBR Level 1	PBR Level 1			

What Level of Authorization Applies to this Registration? (If any of the registration emissions are equal to or greater than the limits of a level, then the whole registration falls into that level above.)

Standard Permit

EP Energy E&P Company LP University Lands 39-11-1H Facility

Is a Full Impacts Review Required?

and NO₂. A full impacts review involves showing protection of public health and welfare and compliance with applicable ambient air standards (state and federal) on a short term and long term basis.

A full impacts review is not required for a certain compound under these certain circumstances:

if there is no receptor (to be affected by benzene emissions) or property line (where compliance with NO₂, SO₂, and H₂S ambient air quality standards is required) within a certain distance of a registration (that is if there is no receptor or property line within a certain distance of any emitting source in the registration), or

if the net project emission increases of that compound are very small.

Based on these circumstances, the worksheet below determines whether or not a full impacts review is required for any of the four compounds (benzene, H_2S , SO_2 , and NO_2).

If any of (1)-(3) below shows that a full impacts review is not required for a compound, then under (4) it will show that no further impacts review needs to be done and it will explain that "you are done" for that compound. If all of (1)-(3) show that a full impacts review is required, then (4) will explain that one of the three methods for doing a full impacts review (screening modeling, dispersion modeling, or the modeling tables from the rule) must be used.

If the modeling tables from the rule are used, then the spreadsheet tabs labeled for benzene, H_2S , SO_2 , and NO_2 should be used. These tabs provide a way to use the modeling tables and perform the necessary calculations to show whether the impacts review is passed.

(1) Based on receptor and property line distances, is a full impacts review required for any air contaminant? (Is there a receptor or property line within the specified distance of the registration? The distances are 1/4 mile for PBR Level 1, 1/2 mile for PBR Level 2, and 1 mile for Standard Permit.) First the level of authorization must be known.

Based on the Registration Total Emission Rates, this authorization falls under: Standard Permit

What is the shortest distance in feet to any receptor from any facility/unit included in this registration?	5500	ft
What is the shortest distance in feet to any property line from any facility/unit included in this registration?	5500	ft

Based on the nearest receptor distance: A full impacts review is NOT required for benzene.

Based on the nearest property line distance:

A full impacts review is NOT required for H2S, SO2, and NO2.

(2) Based on the <u>net project emission increases</u>, is a full impacts review required for any air contaminent? (Are the net project emission increases less than any of the de-minimis rates?)

	Net Project Emission Increases							
	Emission Rates							
Air Contaminant Name	steady state lbs/hr	< 30 psig periodic lbs/hr	≥ 30 psig periodic lbs/hr	TPY				
Benzene	0.16	0.20	0.20	0.16				
H ₂ S	0.00	0.00	0.00	0.00				
SO_2	0.01	0.01	0.01	0.01				
NO _X	0.08	0.08	0.08	0.36				
Please explain the logic behind the values here if any values are different than the Project Total Emission Rates from the Emissions Summary tab.								

De-minimis Rates	
Air contaminant	lb/hr
Benzene	0.039
H₂S	0.025
SO ₂	2
NO _x	4

Based on the net project emission increases:

- A full impacts review is required for benzene.
- A full impacts review is NOT required for H2S. A full impacts review is NOT required for SO2.
- A full impacts review is NOT required for NO2.

Based on the <u>project maximum predicted concentrations</u>, is a full impacts review required for any air contaminant? (Are the project maximum predicted benzene concentrations \leq 10% of the applicable effects screening level (ESL) or \leq 25% of the applicable ESL when combined with project increases over 60-month period after rule effective date? Are project maximum predicted H₂S, SO₂, and NO_X concentrations \leq the significant impact level, SIL, also known as a de-minimis impact in Chapter 101 of 30 TAC, where the SIL = 4% of the applicable ambient air standard (AAQS)?)

LOLS and AAQO needed				
review:				
ESLs and AAQSs	(µg/m³)			
Benzene Short Term ESL	170			
Benzene Long Term ESL	4.5			
H ₂ S Hourly SAAQS	108			
SO ₂ Hourly NAAQS	196			
NO ₂ Hourly NAAQS	188			
What is the <u>project</u> maximu concentration of <u>benzene</u> ir meter?			NA	(µg/m ³)
Based on this:				
A full impacts revi	ew is required	for benzene o	n an hourly bas	sis.
What is the maximum predi <u>benzene</u> in micrograms per <u>project combined with prev</u> over a 60-month period afte	cubic meter f	or the creases		(, 3)
this rule?			NA	(µg/m³)
Based on this:	L	(-1-
A full impacts revi	ew is required	for benzene of	n an hourly bas	SIS.
What is the <u>project</u> maximu concentration of <u>benzene</u> ir meter?			NA	(µg/m³)
Based on this:			-	
A full impacts revi	ew is required f	or benzene or	n an annual ba	sis.
What is the maximum predi of <u>benzene</u> in micrograms p <u>project combined with prev</u> over a 60-month period afte this rule?	per cubic mete ious project ir	er for the acreases	NA	(µg/m³)
Based on this:				-
A full impacts revi	ew is required f	or benzene or	n an annual ba	sis.
What is the <u>project</u> maximu concentration of <u>H₂S</u> in mic Based on this:			NA	(µg/m³)
A full impacts re		d for USE on a	p hourly hosis	
A full impacts re	eview is require		an nouny basis).
What is the <u>project</u> maximu concentration of <u>SO₂ in mic</u>			NA	(µg/m³)
Based on this:				
A full impacts re	eview is require	d for SO2 on a	an hourly basis	s.
What is the <u>project</u> maximu concentration of <u>NO₂</u> in mic			NA	(µg/m³)
Based on this:	-			
A full impacts re	viow is roquiro	d for NO2 on t	an hourly basis	、

(3)

Based on the above assessment from (1) - (3):	
A full impacts review is NOT required for benzene.	
A full impacts review is NOT required for H2S.	
A full impacts review is NOT required for SO2.	
A full impacts review is NOT required for NO2.	

Press this button to make the impacts review tabs visible if needed, that is if you want to use the modeling tables from the rule for any of the four compounds.

Texas Commission on Environmental Quality OGS SP for New Registration

113502

Site Information (Regulated Entity)

What is the name of the site to be authorized?	UNIVERSITY LANDS 39-11-1H FACILITY
Does the site have a physical address?	
County	STERLING
Latitude (N) (##.######)	31.9556
Longitude (W) (-###.######)	-101.0945
Primary SIC Code	1311
Secondary SIC Code	
Primary NAICS Code	211111
Secondary NAICS Code	
Regulated Entity Site Information	
What is the Regulated Entity's Number (RN)?	RN106118060
What is the name of the Regulated Entity (RE)?	UNIVERSITY LANDS 39 20 1H FACILITY
Does the RE site have a physical address?	No
Because there is no physical address, describe how to locate this site:	FROM STERLING CITY TRAVEL W ON HWY 87 FOR 8.0 MI R ON KINNEBREW LN FOR 3.5 MI TO FACIITY ON L W SIDE OF ROAD
City	STERLING CITY
State	ТХ
ZIP	76951
County	STERLING
Latitude (N) (##.######)	0.0
Longitude (W) (-###.######)	0.0
What is the primary business of this entity?	OIL AND GAS PRODUCTION

EP Ener-Customer (Applicant) Information

How is this applicant associated with this site?	OWNER OPERATOR
What is the applicant's Customer Number (CN)?	CN604089854
Type of Customer	Partnership
Full legal name of the applicant:	
Legal Name	EP Energy E&P Company, L.P.
Texas SOS Filing Number	8567711
Federal Tax ID	
State Franchise Tax ID	17604870927
DUNS Number	
Number of Employees	501+
Independently Owned and Operated?	No
I certify that the full legal name of the entity applying for this permit has been provided and is legally	Yes

http://ida.tceq.texas.gov/steersstaff/index.cfm?fuseaction=openadmin.viewcor&submitId=683621[1/22/2014 6:57:50 AM]

authorized to do business in Texas.	
Responsible Authority Contact	
Organization Name	EP Energy E&P Company, L.P.
Prefix	MR
First	BERNARD
Middle	
Last	KADLUBAR
Suffix	
Title	SR. EHS SPECIALIST
Responsible Authority Mailing Address	
Enter new address or copy one from list:	
Address Type	Domestic
Mailing Address (include Suite or Bldg. here, if applicable)	1001 LOUISIANA ST
Routing (such as Mail Code, Dept., or Attn:)	PO BOX 4660
City	HOUSTON
State	ТХ
ZIP	77002
Phone (###-###-####)	7139975464
Extension	
Alternate Phone (###-###-####)	
Alternate Phone (###-###) Fax (###-###-####)	
E-mail	BERNARD.KADLUBAR@EPENERGY.COM
Fax (###-###+####)	BERNARD.KADLUBAR@EPENERGY.COM
Fax (###-######) E-mail Responsible Official Contact Person TCEQ should contact for questions about this	BERNARD.KADLUBAR@EPENERGY.COM EP Energy E&P Company, L.P.
Fax (###-#################################	
Fax (###-#################################	EP Energy E&P Company, L.P.
Fax (###-#################################	EP Energy E&P Company, L.P. EP Energy E&P Company LP
Fax (###-#####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix First	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR
Fax (###-#################################	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR
Fax (###-####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix First Middle Last	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR BERNARD
Fax (###-####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix First Middle Last	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR BERNARD
Fax (###-####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix Prefix First Middle Last Suffix	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR BERNARD KADLUBAR
Fax (###-#####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix Prefix First Middle Last Suffix Title Enter new address or copy one from list:	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR BERNARD BERNARD KADLUBAR SR. EHS SPECIALIST
Fax (###-####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix First Middle Last Suffix Title Enter new address or copy one from list: Mailing Address	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR BERNARD BERNARD KADLUBAR SR. EHS SPECIALIST
Fax (###-####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix Prefix First Middle Last Suffix Title Enter new address or copy one from list: Mailing Address Address Type Mailing Address (include Suite or Bldg. here, if	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR BERNARD BERNARD KADLUBAR SR. EHS SPECIALIST EP Energy E&P Company, L.P.
Fax (###-####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix Prefix First Middle Last Suffix Title Enter new address or copy one from list: Mailing Address Address Type Mailing Address (include Suite or Bldg. here, if	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR BERNARD BERNARD KADLUBAR SR. EHS SPECIALIST EP Energy E&P Company, L.P. Domestic
Fax (###-#####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix Prefix First Middle Last Suffix Suffix Title Enter new address or copy one from list: Mailing Address Address Type Mailing Address (include Suite or Bldg. here, if applicable) Routing (such as Mail Code, Dept., or Attn:)	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR BERNARD BERNARD KADLUBAR SR. EHS SPECIALIST EP Energy E&P Company, L.P. Domestic 1001 LOUISIANA ST
Fax (###-####) E-mail Responsible Official Contact Person TCEQ should contact for questions about this application: Same as another contact? Organization Name Prefix First Middle Last Suffix Title Enter new address or copy one from list: Mailing Address Address Type Mailing Address (include Suite or Bldg. here, if applicable)	EP Energy E&P Company, L.P. EP Energy E&P Company LP MR BERNARD KADLUBAR SR. EHS SPECIALIST EP Energy E&P Company, L.P. Domestic 1001 LOUISIANA ST

Phone (###-####-####)	7139975464
Extension	
Alternate Phone (###-###+-####)	
Fax (###-###+###)	
E-mail	BERNARD.KADLUBAR@EPENERGY.COM

Technical Contact

Person TCEQ should contact for questions about this application:	
Same as another contact?	
Organization Name	EP ENERGY E&P COMPANY LP
Prefix	MR
First	BERNARD
Middle	
Last	KADLUBAR
Suffix	
Title	SR. EHS SPECIALIST
Enter new address or copy one from list:	
Mailing Address	
Address Type	Domestic
Mailing Address (include Suite or Bldg. here, if applicable)	1001 LOUISIANA ST
Routing (such as Mail Code, Dept., or Attn:)	PO BOX 4660
City	HOUSTON
State	ТХ
ZIP	77002
Phone (###-#####)	7139975464
Extension	
Alternate Phone (###-###-####)	
Fax (###-#####)	
E-mail	BERNARD.KADLUBAR@EPENERGY.COM

OGS General Information- Standard Permit New Sites

1) Is this a new or existing site?	New
2) Select the Oil and Gas rule being applied for	6002 - NON RULE 2012-NOV-08
3) In what county is the site located?	CROCKETT
4) Is this site a petroleum storage and transfer unit with a total storage capacity exceeding 300,000 barrels according to the PSD source categories?	Νο
4.1. Are emissions of any criteria pollutant increasing by 250 tpy?	Νο
5) Does this business qualify as a small business, non- profit organization, or small government entity?	Νο

Scope Standard Permits New Sites	
1) Are all emissions from operationally dependent facilities located within a 1/4 mile included in this registration?	Yes
2) Has the TCEQ Oil and Gas Spreadsheet been used to calculate emissions for this registration and will it be attached?	Yes
3) When relying on control or recovery devices in emission calculations, are you going to monitor and keep records, per Table 8?	NA
MSS Standard Permit New Sites	
1) Will planned MSS emissions be registered with this authorization?	No
Standard Permit New	
1) Whichever occurred first, is this registration being submitted within 90 days from either the start of operation or implemented changes?	Yes
2) What are the annual VOC emissions in tons per year (tpy) for this registration?	97.82
3) What are the total steady-state emissions from crude oil or condensate in lb/hr for this registration?	103.59
4) What are the total periodic emissions from crude oil or condensate in lb/hr if less than 30 psig?	22.36
5) What are the total periodic emissions from crude oil or condensate in lb/hr if greater than 30 psig?	0
6) What are the total VOC steady-state emissions from natural gas in lb/hr for this registration?	0
7) What are the total periodic emissions from natural gas VOC in lb/hr if less than 30 psig?	0
8) What are the total periodic emissions from natural gas VOC in lb/hr if more than 30 psig?	0
9) What are the total annual benzene emissions in tpy?	0.16
10) What are the total steady-state benzene emissions in lb/hr for this registration?	0.16
11) What are the total periodic emissions from benzene in lb/hr if less than 30 psig?	0
12) What are the total periodic emissions from benzene in lb/hr if more than 30 psig?	0
13) What are the total annual hydrogen sulfide (H2S) emissions in tpy for this registration?	0.01
14) What are the total steady-state H2S emissions in lb/hr for this registration?	0.01
15) What are the total periodic emissions from H2S in lb/hr if less than 30 psig?	0
16) What are the total periodic emissions from H2S in	0

lb/hr if greater than 30 psig?	
17) What are the total annual SO2 emissions in tpy for this registration?	0.01
18) What are the total steady-state SO2 emissions in lb/hr for this registration?	0.01
19) What are the total periodic SO2 emissions in lb/hr if less than 30 psig for this registration?	0
20) What are the total annual NOx emissions in tpy for this registration?	0.36
21) What are the total steady-state NOx emissions in lb/hr for this registration?	0.08
22) What are the total annual CO emissions in tpy for this registration?	0.3
23) What are the total steady-state CO emissions in lb/hr for this registration?	0.07
24) What are the total annual PM10/PM2.5 emissions in tpy for this registration?	0.05
25) What are the total steady-state PM10/PM2.5 emissions in lb/hr for this registration?	0.01
26) What is the distance in feet to the nearest property line?	5500
27) What is the distance in feet to the nearest receptor?	5500

Best Management Practice Standard Permit New Sites

1) Has a program been developed and will it be followed to replace, repair, and/or maintain facilities in good working order?	Yes
2) Are there any engines or turbines located at this site?	No
3) Are there any open-topped tanks or ponds located at this site?	No
4) Will all fugitive components found to be leaking be repaired in a timely manner consistent with the rule?	Yes
5) Will tank hatches remain closed (but not completely sealed in order to maintain safe design functionality) except during sampling, gauging, loading, unloading, or planned maintenance activities?	Yes
6) Will new and reworked valves and piping connections be located in a place that is reasonably accessible for leak checking?	Yes
7) When a Leak Detection and Repair (LDAR) program has been used to reduce emissions, have the requirements of Table 9 been met?	NA
8) Are there any tanks or vessels located at this site?	Yes
8.1. List the color of the tanks or vessels.	Tan
8.2. Are any tanks applicable to Chapter 115, 40 CFR part 60, or any other state or federal standards?	No
9) Are any of the following units needed to meet the limitations of this rule?	None

http://ida.tceq.texas.gov/steersstaff/index.cfm?fuseaction=openadmin.viewcor&submitId=683621[1/22/2014 6:57:50 AM]

10) If there are any other state or federal standard applicable to this site, be prepared to attach an explanation showing how the requirements have b met.				
11) Will the site be in compliance with all other recordkeeping, sampling and monitoring requirements?	Yes			
OGS Attachments Standard Permits New Sites				
Please attach all required documents to complete	the project.			
[File Properties]				
File Name	UL 39-11-1H NR Standard Permit 9-24-2013.pdf			
Hash	302CB492F21E75A532C4891EEE7D0BB0E3C56B6AA011EC37C91D0DF2EBE0C829			
MIME-Type	application/pdf			
Please attach additional information needed to complete the registration.				
[File Properties]				
File Name	<a href="/ePermitsExternalWEB/file?<br">fileId=11041>University Lands 39-11-1H 09-24- 2013.xlsm			
Hash	3FE8EAC35406A3B7577642949EEB728016F01E5E5B21F818BC87A8CBC9B6FCB4			
MIME-Type	application/vnd.ms-excel.sheet.macroenabled.12			

Please attach any other information needed to complete the registration.

Certification

The electronic signature below indicates that the Responsible Official has knowledge of the facts herein set forth and that the same are true, accurate, and complete to the best of my knowledge and belief. By this signature, the maximum emission rates listed on this certification reflect the maximum anticipated emissions due to the operation of this facility and all representations in this certification of emissions are conditions upon which the facilities and sources will operate. It is understood that it is unlawful to vary from these representations unless the certification is first revised. The signature certifies that to the best of the Responsible Officials knowledge and belief, the project will satisfy the conditions and limitations of the indicated exemption or permit by rule and the facility will operated in compliance with all regulations of the Texas Commission on Environmental Quality and with Federal U.S. Environmental Protection Agency regulations governing air pollution. The signature below certifies that, based on information and belief formed after reasonable inquiry, the statements and information above and contained in the attached document(s) are true, accurate, and complete.

- 1. I am Bernard J Kadlubar, the owner of the STEERS account ER031441.
- 2. I have the authority to sign this data on behalf of the applicant named above.
- 3. I have personally examined the foregoing and am familiar with its content and the content of any attachments, and based upon my personal knowledge and/or inquiry of any individual responsible for information contained herein, that this information is true, accurate, and complete.
- 4. I further certify that I have not violated any term in my TCEQ STEERS participation agreement and that I have no reason to believe that the confidentiality or use of my password has been compromised at any time.
- 5. I understand that use of my password constitutes an electronic signature legally equivalent to my written signature.
- 6. I also understand that the attestations of fact contained herein pertain to the implementation, oversight and enforcement of a state and/or federal environmental program and must be true and complete to the best of my knowledge.
- 7. I am aware that criminal penalties may be imposed for statements or omissions that I know or have reason to believe are untrue or misleading.

- 8. I am knowingly and intentionally signing OGS SP for New Registration.
- 9. My signature indicates that I am in agreement with the information on this form, and authorize its submittal to the TCEQ.

OWNER OPERATOR Signature: Bernard J Kadlubar OWNER OPERATOR

Account Number:	ER031441
Signature IP Address:	136.143.128.40
Signature Date:	2013-09-26
Signature Hash:	051ECE7A58C94EA32F05C98E1CFB1CF9E680F3AC2EE24201B2277B0AA388E262
Form Hash Code at time of Signature:	7D238DF172ED7ED3DC4C24ED4056FEF9A22EAB7484F319A9BFA1ECADECF5C65A

Fee Payment

Transaction by:	The application fee payment transaction was made by ER028035/Paul E Deciutiis
Paid by:	The application fee was paid by PAUL DECIUTIIS
Fee Amount:	\$850.00
Paid Date:	The application fee was paid on 2013-09-26
Transaction/Voucher number:	The transaction number is 582EA000150026 and the voucher number is 188776

Submission

Reference Number:	The application reference number is 74639
Submitted by:	The application was submitted by ER028035/Paul E Deciutiis
Submitted Timestamp:	The application was submitted on 2013-09-26 at 08:19:56 CDT
Submitted From:	The application was submitted from IP address 72.183.111.162
Confirmation Number:	The confirmation number is 75972
Steers Version:	The STEERS version is 5.90
Permit Number:	The permit number is 113502

Additional Information

Application Creator: This account was created by Paul E Deciutiis