Attachment #1 AIR PERMIT FOLDER LEVEL

AIR PA #:	LE0020A X-I	PERMIT						
File Type:	PERMITS							
Volume:	001							
Inclusive Dates:	<u>1/1/1999 - 12/31</u>	1/1/1999 - 12/31/2004						
Media	Code/ Form		Microfiche					
		\boxtimes	Roll Microfilm					
		\boxtimes	Electronic Image					

Files appearing on this roll of microfilm/ electronic image were filmed/ scanned as received and per instructions from the Texas Commission on Environmental Quality's Records Managemgent Coordinator, Kate Fitzpatrick.

Box Barcode:

Robert J. Huston, *Chairman* R. B. "Ralph" Marquez, *Commissioner* John M. Baker, *Commissioner* Jeffrey A. Saitas, *Executive Director*

TEXAS NATURAL RESOURCE CONSERVATION COMMISSION

Protecting Texas by Reducing and Preventing Pollution

December 3, 1999

Mr. Walter D. Scott, III Engineer and Environmental Manager Alamo Concrete Products, Ltd. P.O. Box 34210 San Antonio, Texas 78265-4210

Re: Permit Requirements Concrete Batch Plant Hallettsville, Lavaca County Account ID No. LE-0020-A

Dear Mr. Scott:

This is in response to your letter dated August 23, 1999. We understand you proposed to install a central baghouse to capture the emissions of your grandfathered facility.

After evaluation of the information which you have furnished, we have determined that your proposed installation will not create a new source of air contaminants or increase emissions of air contaminants from existing sources. On this basis, no permit will be required. We thank you for informing us of this event. However, there is no necessary action required. We will keep your information in records for future reference. You are reminded that regardless of whether a construction permit is required, this facility must be in compliance with all air quality rules and regulations of the Texas Natural Resource Conservation Commission at all times.

Your cooperation in this matter is appreciated. If you need further information or have any questions, please call Ms. Lourdes C. Rosenberg at (512) 239-6148 or write to her at Texas Natural Resource Conservation Commission, Office of Permitting, Remediation, and Registration, Air Permitting Division (MC-162), P.O. Box 13087, Austin, Texas 78711-3087.

Sincerely,

Mark S. Gibbs, P.E. Manager, Mechanical and Combustion Section Air Permits Division

MG/LR/ss

cc: Mr. Jim Bowman, Air Program Manager, Corpus Christi

Record No. 67934

NO PERMIT REQUIRED TECHNICAL REVIEW

Permit No: M Project Type: MLTR Record No: 67934 Account No: LE-0020-A Company: Alamo Concrete Products, Ltd. Facility Name: Concrete Batch Plant City: Hallettsville County: Lavaca

PROJECT OVERVIEW

On August 23, 1999, Alamo Concrete Products, Ltd., submitted a SB1126 request for Permit No. M, Record No. 67934. There were various issues that had to be discussed as to if SB1126 was the right plan of action. Alamo Concrete Products, Ltd then on November 17, 1999 came in and had a meeting to discuss the pending issues. In this case, it was decided that SB1126 was not the type of appropriate method action for this grandfathered permit.

Alamo Concrete Products, Ltd. wants to install a central baghouse to their grandfathered facility to better control the emissions that are produced. Since there will not be any increase in the potential to emit, no change in character of emissions, nor increase in production, no permit required was the appropriate method required for this type of construction. The information that was sent was evaluated and will be kept in the file for information purposes only.

Rosellore 12/3/4 Date Team Leader/Section Manager/Backup C:\NSRFORMS\FM\TECHRVW.FM Revised 08-06-97

NO PERMIT REQUIRED TECHNICAL REVIEW

Permit No: M Project Type: MLTR Record No: 67934 Account No: LE-0020-A Company: Alamo Concrete Products, Ltd. Facility Name: Concrete Batch Plant City: Hallettsville County: Lavaca

PROJECT OVERVIEW

On August 23, 1999, Alamo Concrete Products, Ltd., submitted a SB1126 request for Permit No. M, Record No. 67934. There were various issues that had to be discussed as to if SB1126 was the right plan of action. Alamo Concrete Products, Ltd then on November 17, 1999 came in and had a meeting to discuss the pending issues. In this case, it was decided that SB1126 was not the type of appropriate method action for this grandfathered permit.

Alamo Concrete Products, Ltd. wants to install a central baghouse to their grandfathered facility to better control the emissions that are produced. Since there will not be any increase in the potential to emit, no change in character of emissions, nor increase in production, no permit required was the appropriate method required for this type of construction. The information that was sent was evaluated and will be kept in the file for information purposes only.

pate

C:\NSRFORMS\FM\TECHRVW.FM

Team Leader/Section Manager/Backup

Revised 08-06-97

Date

OC TEXAS NATURAL RESOURCE CONSERVATION COMMISSION

NOTIFICATION OF CHANGES TO QUALIFIED FACILITIES FORM PI-E

Please mail to: TNRCC, Office of Air Quality, New Source Review Division (MC-162), PO Box 13087, Austin, TX 78711-3087, TNRCC Regional Office and, if applicable, any Local Air Pollution Control Program.

I. Company Name	Company Name Alamo Concrete Products, Ltd. (Corporation, Company, Government Agency, Firm, etc.)										
Mailing Address	P O Box 34210 San Antonio,	Texas 78265-4210		<u></u>							
Individual Authorize	ed to Act for Company: NameW	alter D. Scott III	Titl <u>e Engineeri</u>	ng/Environmental Ma	nager						
Address <u>(Sam</u>	e) Telephone (2	. <u>10) 208-1561</u> Fa	<u>(210) 208-1553</u>								
Name of Plant or S	ite Alamo Concrete Products. Itd	– Hallettsville #38									
TNRCC Air Quality											
Street Address	Street Address 210 Depot Street, Hallettsville, TX 77964										
Nearest City Halle	Nearest City Hallettsville County Lavaca Latitude N 29° 26' 20° Longitude W 96° 56' 20°										
	PERMITS PROGRAM										
III.TYPE OF FACILITY:			· D	- "- 4 #20	Harrison and the second						
A. Name of Fac B. Facility Perm	illity and Company's Facility Number it Status: I Grandfathered I Per	mit D Special Exen	te Products, Ltd. – r nption 🛛 Standard	Exemption D Stand	ard Permit						
C. Permit/Exem	ption number, it applicable <u>N/A</u>										
IV. DESCRIPTION OF	CHANGE						.				
Provide a written de Attach additional p	escription of the physical or operatio ages if necessary.	nal change, equipme	ent being installed, th	ne affected air contam	inants, and the prop	osed date on which	h the change will occu				
Installation of centra	al dust collection system to control e	missions from silos,	load out point and w	reigh batcher	6315	REM	ALU				
Temporary Change PSD/Nonattainmen	e? □ Yes ⊠No Duration, if Ten It Applicable □ Yes ⊠ No	nporary				- 103 F-4 03 0					
Type of Change:	Same Facility Increase LI Intra For Intraplant Trades and Int	iplant Trade □ Inte erchanges please ∝	rchange omplete page 2 (bac	k) of this form	U.S.	AUG 23 T	999				
V. EMISSIONS	Furnish a description of	the emission increas	ses resulting from th	e change.	P	ERMITS PRO	OGRAM				
	when requesting Please use a sep	a pre-change quaim arate PI-E form for e	cation please provid ach facility where a	e all relevant calculat change is occuring.	ions.	1					
Name	Emission	Allowable	Emissions	Actuals	Before	Actu	als After				
Facility	Number	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr				
Central Baghouse	10	0	0	0	0	0.050	0.090				
Truck Loadout	6	0.5	0.16	0.40	0.060	0.040	0.006				
Drop points	4,5,6,7	001872	0.13075	0.0872	0.013075	0.0872	0.013075				
Stockpile	1,2	0	0.1982	0	0.0982	0	0.0982				
batcher	8,9	0.2046	0.2958	0.1046	0.1958	0	0				
Totals		0	0	0	0.367	0	0.207				
If actual emissions after the	he change are greater than the allo	wables (lbs/hr or ton:	s/yr), please comple	te page 2 (back) of th	is form						
VI. A copy of this notificat A copy of this notification	VI. A copy of this notification has been sent to the Regional Office of the TNRCC: ⊠ Yes □ No A copy of this notification has been sent to the Local Programs: □ Yes ⊠ No N/A										

Name of	Emission Point	Name of	Contaminant	Emission Increase/Decrease		
Facility	Number	Air Contaminant	ESL	lbs/hr	tons/yr	Tr (Y
				······		
· · · · · · · ·						
		· · ·			·	
·····						

For Intraplant Trades: A.Submit a plot plan to scale of the property showing the location of plant boundaries, plant equipment, and surrounding area. B. Furnish an area map with a scale showing the facility location relative to highways and towns. C. Provide the facility permit status (see III. B and C above) for each facility contributing to the trade.

VIII. INTRAPLANT TRADES: For intraplant trades please provide plant-wide modeling data for each contaminant or complete the following:										
Name of Facility	Emission Point Number	Distance to Closest Property Boundary (ft.)	Distance Factor (F)	Amount of Trade (E _A)	Calculated Emission Reduction (E _R)	Amount of Actual Reduction				
For definitions or help dete	ermining F, E_A or E_R , please refer to	the guidance document, "Modif	ication of Existing Fr	acilities Under Senate B	Bill 1126".					
IX I Wa	ter D. Scott III. REM. CEA		Engi	neering/Environmental	Manager					

Walter D. Scott III, REM, CEA I,

Engineering/Environmental Manager

SIGNATURE

(Name) (Title) state that I have knowledge of the facts herein set forth and that the same are true and correct to the best of my knowledge and belief. I further state that to the best of m knowledge and belief the project will satisfy the conditions and limitations of 30 TAC §116.116(E). The facility will operate in compliance with all Regulations of the Texas Nature Personne Concentration Compliance and with Endered Environment of the Concentration Stream St Platech Resource Conservation Commission and with Federal Environment ming air pollution.

49 DATE E23

AUG 2 3 1999 PERMITS PROGRAM

1	

Revised 03/13/98

ALAMO CONCRETE PRODUCTS, Ltd. CORPORATE OFFICE

P.O. Box 34210 San Antonio, TX 78265-4210 (210) 208-1880 FAX (210) 208-1501

August 23, 1999

Mr. Mark Gibbs New Source Review Office of Air Quality TNRCC P O Box 13087 Austin, TX 78711-3087

RE: Concrete Batch Plant Hallettsville #38, LavacaCounty Account ID No.: LE-0020-A

Dear Mr. Gibbs:

We respectfully request a revision be made to the aforementioned account. We are process off acquiring a central baghouse dust collection system for future installation with collection points at the load out points and the cement weigh batcher, and the replacement of the silo top dust collectors (see attached).

There is no increase in production related to this additional control equipment. The reduced emissions from the installation of this system will improve air quality around this facility.

If you have any questions please contact me.

Sincerely.

Walter D. Scott III, REM, CEA Engineering/Environmental Manager

WDS/rjg

cc: Charles D. Wells Neil Ackerman Region 14 TNRCC – Corpus Christi

PERMITS PRUGRAM

SAN ANTONIO DIVISION AUSTIN DIVISION EAST GULF COAST DIVISION WEST GULF COAST DIVISION SOUTH TEXAS DIVISION

EAGLE PASS DIVISION

Rest for Comments --Senate Bill 112 TNRC -- New Source Review Permits Division Phone: (512)239-1000

Fax: (512)239-4500

Mailing Address: TNRCC, New Source Review Permits Division, P.O. Box 13087, Austin, TX 78711-3087

REGIONAL OFFICES/LOCAL PROGRAM: NSR Permits Division has received a request for a Senate Bill 1126 permit action for the facility below. Please make comment, if necessary, regarding the referenced permit, as affected by the attached request. Please return comments no later than the comments deadline which is 10 working days from the submittal date or contact engineer. If comments are not received by deadline, then "no comments" is assumed.

TO: DRegion: <u>14</u> DCity: <u>Hallettsville</u> DCounty: <u>Lavaca</u>
Submitted by: <u>SANDY MOHLER</u> E-Mail Initials: <u>SMOHLER</u> Phone: <u>512 239 1926</u>
Date Request Submitted: <u>August 24, 1999</u>
Comments Deadline: <u>9/7/99</u> Date Application Received by New Source Review: <u>8/23/99</u>
NSR RECORD NO.: <u>67934</u> PERMIT NO.: <u>M</u> TNRCC ACCOUNT NO.: <u>LE 0020 A</u> Company Name: Alamo Concrete Products Ltd
Plant Name: <u>HALLETTSVILLE #38</u> Unit Name: Hallettsville #38
Technical Contact: WALTER D. SCOTT III Phone: 210 208 1561
NOTES:
Local Program Applicable?: Yes:_, No: X: LP1 _, LP2 _
Copy of Application Received by your Office:YESNO Date Received:
Investigator's/Compliance Officer's Name (Please Print):
Date of Last Site Visit:
GENERAL COMMENTS:
PERMIT ALTERATION APPROVAL:

No objection to alteration If you have any objections to approval, please note them here:

08/24/99	14:20	8512	239	4500	TNRCC AIR PERMIT	4 001
				**** *** ****	**************************************	
	Т	RANSMISS	ION ()K		
	T	X/RX NO.			8017	
	C	ONNECTIO	N TEI		9 361 980 3101	
	C	ONNECTIO	N ID		REG 14	
	S	TART TIM	E		08/24 14:19	
	U	SAGE TIM	E		01'36	
	P	AGES			5	
	R	ESULT			OK	

.....

TO:	Name	
	Organization	AIR PROGRAM
	FAX Number	
FROM:	TEXAS NATURAL RESO	URCE CONSERVATION COMMISS
	Name	SANDY MOHLER
	Division/Region	NEW SOURCE REVIEW, COR
	Telephone Number	512 239-1926
	FAX Number	512 239-4500
NOTES:		
PERMIT	NAME	
	al	and Concrete
5 ⁵	Aid	dimos # 38
101	<u>euv</u>	UMOS TT J

		TABLE 20 CONCRETE BATCH PLANTS
1.	What t	type of plant? (Check One) X Permanent Portable
2.	What t	type of batching will be accomplished? (Check One)
•	¥	
3.	Maxim	num Production Rates: <u>100</u> yd ³ /hour <u>30,000</u> yd ³ /year
	Maxim Does t	num Operations: <u>12</u> hours/day <u>6</u> days/wk <u>52</u> weeks/yr <u>3,744</u> hour/year the facility operate at night? <u>√</u> Yes _No
4.	Cemer	nt/Flyash/Additive Silo Information:
	a)	How many silos will this plant have? <u>2</u>
	b)	What is the volume of each silo? <u>1,500</u> ft ³ <u>2,089</u> ft ³ <u>ft³</u> ft ³
	C)	Explain method of loading silo(s): Pneumatic unloading from tanker truck
	d)	Is each silo equipped with overload warning devices?YesNo
	e)	Please describe: <u>Visual warning light</u>
	e) f)	If baghouses are used on the vent(s), for each device submit the following data and attach a Table 11:
		Flow rate cfm Total filtering area ft ²
		Air to cloth ratio Outlet arain loading ar/dscf
		Method of cleaning bags
		Automatic (not manual) sequenced cleaning? Yes No
	11.	Flow rate cfm Total filtering areaft ²
		Air to cloth ratio Outlet grain loadinggr/dscf
		Method of cleaning bags
		Automatic (not manual) sequenced cleaning? Yes No
	III .	Flow rate cfm Total filtering areaft ²
		Air to cloth ratio Outlet grain loadinggr/dscf
		Method of cleaning bags
		Automatic (not manual) sequenced cleaning? Yes No
5.	How w	ill the batch drop to truck or central mixer be controlled to prevent dust emissions?
	<u>_X_</u> Su	iction shroud with exhaust air to central baghouse? (complete following and attach Table 11)
	Flov	w rate <u>6,500</u> cfm I otal filtering area <u>1,400</u> ft ²
	AI	to cloth ratio <u>4.51</u> Outlet grain loading <u>0.01</u> gr/dscr
	Aut	tomatic (not manual) sequenced cleaning? ✓ Yes No
		exible Discharge Speut with Motor Fog Ping (ettach design drawing)
		exible Discharge Spoul with Water Fog Ring (attach design drawing)
	Oth	her type of abatement device (explain in detail and attach design drawing):
6.	The ce	ement weigh hopper will be vented to the: (Pick One)
	Ce	ment\Flyash Silo Baghouse 🛛 🗹 Central Baghouse 🛄 Discharge Spout
	Oth	her:
7.Li	ist all add	ditives or ad-mixtures and maximum usage rates at your facility:
	Concre	ete Mater Reducing Agents
	Concre	ete Accelerator Agents
	Concre	ete Air Entraining Agents
_		
Pro	vide add	ditional information on any items requested above in this space:

- 8. Will the sand and aggregate be wasined prior to delivery at your facility? ___Yes ___No
- 9. The number of acres or square feet which may be covered by aggregate stockpiles: 0.183
- 10. Explain the method of moving aggregate from storage piles to the mixing area (in detail): <u>Rubber tired F.E.L. moves the aggregate from the stockpile to the charging hopper. The material is conveyed to the overhead aggregate bins. From the overhead bins the material is gravity fed to the weigh batcher and mixing truck.</u>

11.	Will water sprays	be used	at the	following	locations?	
-----	-------------------	---------	--------	-----------	------------	--

- a) Stockpiles ____Yes ___No
- b) Aggregate bin outlets
 __Yes ___No

 c) Conveyor transfer points
 __Yes ___No
- c) Conveyor transfer points ____Yes _✔__No d) Screens ____Yes _✔__No
- 12. Plant roads will be:
 Paved & Cleaned Paved & Vacuumed Oil Coated
 Gravel
 Gravel
 Chemical Sprayed
 Water Sprinkled
- 13. Aggregate transport trucks have: _____ Beds Covered by Tarps _____A sprinkler system
- 14. Please provide the following information for all vehicles which travel on plant property

		Weight	(tons)	No. of	Distanc	e Traveled	
Vehicle Type	Speed	Speed Empty Full wheels		wheels	per round trip (miles or feet)		
					Paved	Unpaved	
Raw Aggregate							
Loaders							
Cement Tankers							
Flyash Tankers							
Additives							
Mix Trucks				<u></u>			
				· · · · · · · · · · · · · · · · · · ·		<u> </u>	
	· · · · · · · · · · · · · · · · · · ·						

PROCESS DESCRIPTION

Raw materials, i.e., sand, gravel, crushed limestone, cement, and fly ash are transported to the plant site via tandem trailer and cement tanker trucks, which enter the plant through the driveway fronting Depot Street. The sand and aggregate are unloaded and stockpiled on site (Emissions Pts. # 1-2). The bulk cement and fly ash are unloaded into the elevated silos through pressurized lines from the transport truck to the top of the silo (Emission Pts. # 8&9). The silos are vented to the central dust collector (Emission Pt. #10) in order to filter any air displaced though the top of the silo during the off-loading of the transport tanker. All haul trucks exit the plant thorough the driveway fronting Depot Street.

The process by which ready mix concrete is batched for sale begins with the charging of the load hopper (Emission Pt. #3) with sand and aggregate from the various stockpiles by a front-end loader. The material is then conveyed to the overhead aggregate bins (Emission Pt. #4). From the overhead aggregate bins, the material is gravity loaded into the aggregate weigh batcher (Emission Pt. #5). From the aggregate weigh batcher the material is conveyed to the truck charging chute (Emission Pt. #6). Simultaneously while the sand and aggregate are being weighed out, the cement/fly ash is gravity loaded into the mixer truck through the charge chute (Emission Pt. #6). The materials are loaded into the mixer truck through the charge chute (Emission Pt. #6). After the transit mix trucks have been loaded with concrete mixture they depart the plant site via the driveway on Depot Street. After off-loading at job site destinations, they return through the same driveway.

MAERT TABLE Facility: Halletsville

	Permitted I	Emissions	Existing Emissions			Proposed Emission		
Name of			w/vented baghouse		CDS of		only	
Facility	lbs/hr	tons/yr	lbs/hr	tons/yr		lbs/hr	tons/yr	
Central bag								
house	0	0	0	0		0.05	0.09	
Truck loadout	0	0	0.4	0.06		0.04	0.006	
Drop pts.	0	0	0.0872	0.013075		0.0872	0.013075	
Stockpile	0	0	0	0.0982		0	0.0982	
Silo top dust coll. +cement batcher	0	0	0.1046	0.1958		0	0	
						······································		
Totals	0	0	0.5918	0.367075		0.1772	0.207275	

Production Permitted hours n/a

Weigh

Company: Alamo Concrete Products - Halletsville, Existing Bin Top Baghouses

Completed by: Walter D. Scott III

Table 1: Plant Capacity

HP	max. hr. production (yd^3/hr)	100
AP	max. annual prod. (yd^3/yr)	30000

AP max. annual prod. (yd^3/yr)

AH max. annual operating hrs (hr/yr)

Note: Information in Table 1 will be used throughout the calculations

Table 2: Vent style baghouse emmissions from silo & weigh hopper

(Outlet grain loading method)

		Silo #1	Silo #2	Hopper	Totals
ACFM	Actual air flow through baghouse (cfm)	550	550	120	
GL	Outlet grain loading of filter (gr/dscf)	0.01	0.01	0.01	-
AH	max. annual operating hrs (hr/yr)	3744	3744	3744	_
F1	lb PM10/br	0.0471	0.0471	0.0103	0 1046
L 1		0.0471	0.0471	0.0100	0.1040
E2	lb PM10/yr	0.0883	0.0883	0.0193	0.1958

3744

E1 = ACFM*GL*(1/7000gr)*(60min/1hr)

E2 = E1*AH*(1ton/2000lb)

Completed by: Walter D. Scott III

 Table 3: Vent Style baghouse emissions from silos & weigh hopper

(Control de	vice efficiency method)	-	Weigh		
(Silo*	Hopper**	Totals	
HP	max. hr. prod. (yd^3/hr)	550	120		
AP	max. annual prod. (yd^3/yr)	30000	30000	•	
CF	control factor, table A	0.01	0.01	•	
EF	emision factor (lb/yd^3)	0.07	0.04		
E3	lb PM10/hr	0.385	0.048	0.433	
E4	ton PM10/yr	0.0105	0.006	0.0165	

* Calc. Should be used once regardless of number of silos since the emission factor has been calculated based on production of typ. concrete recipe.

** Calc. Determines emissions from weigh hopper usage. If weigh hopper has its own baghouse, this emission should be listed as a separate emission source on the Max. Allowable Rates Table (MAERT). If the weigh hopper is vented to silo, add the calculated emissions to that silo's emissions on the MAERT.

E3 = EF*HP*CF E4 = EF*AP*CF*(1ton/2000lb)

Table 4: Truck loading emissions

ΗP	max. hr. prod. (yd^3/hr)	100
AP	max. annual prod. (yd^3/yr)	30000
CF	control factor, table A	0.1
ËF	emmision factor (lb/yd^3)	0.04
E5	lb PM10/hr	0.4
E6	ton PM10/yr	0.06

E5 = EF*HP*CF

E6= EF*AP*CF*(1ton/2000lb)

Completed by Walter D. Scott III

 Table 5: Central baghouse calculations

ACFM	Actual air flow through baghouse (cfm/min)	0
GL	Outlet grain loading of filter (gr/dscf)	0.01
AH	Max. annual operating hrs. (hr/yr)	3744
E7	lb PM10/hr	0.00
E8	ton PM10/yr	0.00

E7 = ACFM*GL*(11b/7000gr)*(60min/1hr)

E8 = E7*AH*(1ton/2000lb)

NOTE: E7 & E8 do not apply because existing system uses vent type dust collectors only.

Please describe all batch and continuous drop points below and include specific control methods used at each point. Table 6: Batch & continuous drop points

	Description	Control Method
1	F.E.L. to charging hopper	0.50 Wet Mat'l
2	Charging hopper to ovhd.	
	agg. bin via conveyor	0.50 Wet Mat'l
3	Ovhd. agg. Bin to aggregate	
	weigh batcher	0.150 Partial Enclosure
4	Agg. Weigh batcher to truck	
	load out via conveyor	0.50 Wet Mat'l
5		
6		

Completed by: Walter D. Scott III

Table 7: Drop point emissions

		Drop #1	Drop #2	Drop #3	Drop #4	Drop #5	Drop #6	Totals
Туре	of material (sand, agg, etc.)	S&A	S&A	S&A	S&A			
ΗT	hr. materail throughput (ton/hr)	157	157	157	157	() 0	
AT	annual mat'l throughput (ton/yr)	47100	47100	47100	47100	() 0	
EF1	emission factor (lb TSP/ton)		-					
	see table B	0.035	0.0012	0.0012	0.0012	() 0	
EF2	emission factor (lb PM10/ton)							
	see table B	0.001	0.000048	0.000048	0.000048	() 0	
CF	control factor, see table A	0.5	0.5	0.15	0.5	() 0	
E9	lb TSP/hr	2.7475	0.0942	0.0283	0.0942	() 0	2.9642
E10	lb PM10/hr	0.0785	0.0038	0.0011	0.0038	() 0	0.0872
E11	ton TSP/yr	0.4121	0.0141	0.0042	0.0141	() 0	0.4446
E12	ton PM10/yr	0.011775	0.000565	0.000170	0.000565	() 0	0.013075
E9 =	HT*EF1*CF							

E10 = HT*EF2*CF

E11 = AT*EF1*CF*(1ton/2000lb)

E12 = AT*EF2*CF*(1ton/2000lb)

Completed by: Walter D. Scott III

Table 8: Stockpile Emissions

А	Stockpile area (acre)	0.183
D	# of active days/yr (day/yr)	312
CF	Control factor, Table A	0.5
E13	Inactive stockpile emmissions (ton TSP/yr)	0.008
E14	Inactive stockpile emmissions (ton PM10/yr)	0.0042
E15	Active stockpile emmissions (ton TSP/yr)	0.188
E16	Active stockpile emmissions (ton PM10/yr)	0.094
E13 = E14 =	(3.5lb TSP/acre day)*(365-D/year)*A*(1ton/2 0.5*E13	000lb)*CF

E15 = (13.2lb TSP/acre active-day)*D*A*CF*(1ton/2000lb)

E16 = 0.5*E15

Completed by: Walter D. Scott III

SUMMARY OF EMISSIONS

•

E1	lb PM10/hr	0.1046	E7	lb PM10/hr	0.0000	E13 ton TSP/yr	0.0085
E2	ton PM10/yr	0.1958	E8	ton PM10/yr	0.0000	E14 ton PM10/yr	0.0042
E3	lb PM10/hr	0.4330	E9	ton TSP/hr	2.9642	E15 ton TSP/yr	0.1884
E4	ton PM10/yr	0.0165	E10	ton PM10/hr	0.0872	E16 ton PM10/yr	0.0942
E5	lb PM10/hr	0.4000	E1	1 ton TSP/yr	0.4446	E17 ton TSP/yr	n/a
E6	ton PM10/yr	0.0600	E12	2 ton PM10/yr	0.0131	E18 ton PM10/yr	n/a

NOTE: Factors E7 & E8 do not apply since the current system uses vent type baghouses only.

Emission Calculations

Company: Alamo Concrete Products - Halletsville, CDS

Completed by: Walter D. Scott III

Table 1: Plant Capacity

ΗP max. hr. production (yd^3/hr) 100 30000

AP max. annual prod. (yd^3/yr)

AH max. annual operating hrs (hr/yr)

Note: Information in Table 1 will be used throughout the calculations

Table 2: Vent style baghouse emmissions from silo & weigh hopper (Outlet grain loading method)

X	i grain l	oading method)			Weigh	
			Silo #1	Silo #2	Hopper	Totals
	ACFM	Actual air flow through baghouse (cfm)	0	0	0	
	GL	Outlet grain loading of filter (gr/dscf)	0.01	0.01	0.01	_
	AH	max. annual operating hrs (hr/yr)	3744	3744	3744	_
						_
	E1	lb PM10/hr	0.0000	0.0000	0.0000	0.0000
	E2	lb PM10/yr	0.0000	0.0000	0.0000	0.0000

3744

E1 = ACFM*GL*(1/7000gr)*(60min/1hr)

E2 = E1*AH*(1ton/2000lb)

NOTE: Factors E1 & E2 do not apply since the current system uses central dust collector.

Completed by: Walter D. Scott III

Table 3: Vent Style baghouse emissions from silos & weigh hopper (Control device efficiency method) Weigh Hopper** Totals Silo* HP max. hr. prod. (yd^3/hr) 550 120 AP max. annual prod. (yd^3/yr) 30000 30000 CF control factor, table A 0 0 EF emision factor (lb/yd^3) 0.07 0.04 E3 lb PM10/hr 0 0 0 E4 ton PM10/yr 0 0 0

- * Calc. Should be used once regardless of number of silos since the emission factor has been calculated based on production of typ. concrete recipe.
- ** Calc. Determines emissions from weigh hopper usage. If weigh hopper has its own baghouse, this emission should be listed as a separate emission source on the Max. Allowable Rates Table (MAERT). If the weigh hopper is vented to silo, add the calculated emissions to that silo's emissions on the MAERT.

E3 = EF*HP*CF

E4 = EF*AP*CF*(1ton/2000lb)

NOTE: E3 & E4 does not apply since a central dust collection system is to be installed.

Table 4: Truck loading emissions

HP	max. hr. prod. (yd^3/hr)	100
AP	max. annual prod. (yd^3/yr)	30000
CF	control factor, table A	0.01
EF	emmision factor (lb/yd^3)	0.04
		·
E5	lb PM10/hr	0.04
E6	ton PM10/yr	0.006

E5 = EF*HP*CF

E6= EF*AP*CF*(1ton/2000lb)

DEGEUVE	M
AUG 2 3 1999	
PERMITS PROGRAM	ש

Completed by Walter D. Scott III

Table 5: Central baghouse calculations

ACFM	Actual air flow through baghouse (cfm/min) 550
GL	Outlet grain loading of filter (gr/dscf)	0.01
AH	Max. annual operating hrs. (hr/yr)	3744
E7	lb PM10/hr	0.05
E8	ton PM10/yr	0.09
E7 =	ACFM*GL*(11b/7000gr)*(60min/1hr)	

E8 = E7*AH*(1ton/2000lb)

Please describe all batch and continuous drop points below and include specific control methods used at each point. Table 6: Batch & continuous drop points

Description	Control Method
1 F.E.L. to charging hopper	0.50 Wet Mat'l
2 Charging hopper to ovhd.	
agg. bin via conveyor	0.50 Wet Mat'l
3 Ovhd. agg. Bin to aggregate	
weigh batcher	0.150 Partial Enclosure
4 Agg. Weigh batcher to truck	
load out via conveyor	0.50 Wet Mat'l
5	
6	

Completed by: Walter D. Scott III

Table 7: Drop point emissions

		Drop #1	Drop #2	Drop #3	Drop #4	Drop #5	Drop #6	Totals
Туре	of material (sand, agg, etc.)	S&A	S&A	S&A	S&A			
HT	hr. materail throughput (ton/hr)	157	157	157	157	0	0	
AT	annual mat'l throughput (ton/yr)	47100	47100	47100	47100	0	0	•
EF1	emission factor (lb TSP/ton)						<u> </u>	•
	see table B	0.035	0.0012	0.0012	0.0012	0	0	
EF2	emission factor (lb PM10/ton)		•					•
	see table B	0.001	0.000048	0.000048	0.000048	0) 0	
CF	control factor, see table A	0.5	0.5	0.15	0.5	0	0	
E9	lb TSP/hr	2.7475	0.0942	0.0283	0.0942	0	0	2.9642
E10	lb PM10/hr	0.0785	0.0038	0.0011	0.0038	0	0	0.0872
E11	ton TSP/yr	0.4121	0.0141	0.0042	0.0141	0	0	0.4446
E12	ton PM10/yr	0.011775	0.000565	0.000170	0.000565	0	0	0.013075
E9 =	HT*EF1*CF				· •			

E10 = HT*EF2*CF

E11 = AT*EF1*CF*(1ton/2000lb)

E12 = AT*EF2*CF*(1ton/2000lb)

Completed by: Walter D. Scott III

Table 8: Stockpile Emissions

А	Stockpile area (acre)	0.183
D	# of active days/yr (day/yr)	312
CF	Control factor, Table A	0.5
E13	Inactive stockpile emmissions (ton TSP/vr)	0.008
E14	Inactive stockpile emmissions (ton PM10/yr)	0.0042
E15	Active stockpile emmissions (ton TSP/yr)	0.188
E16	Active stockpile emmissions (ton PM10/yr)	0.094
E13 = E14 =	(3.5lb TSP/acre day)*(365-D/year)*A*(1ton/2 0.5*E13	000lb)*CF

E15 = (13.2lb TSP/acre active-day)*D*A*CF*(1ton/2000lb)

E16 = 0.5*E15

Completed by: Walter D. Scott III

SUMMARY OF EMISSIONS

E1	lb PM10/hr	0.0000	E7	lb PM10/hr	0.0471	E13 ton TSP/yr	0.0085
E2	ton PM10/yr	0.0000	E8	ton PM10/yr	0.0883	E14 ton PM10/yr	0.0042
E3	lb PM10/hr	0.0000	E9	ton TSP/hr	2.9642	E15 ton TSP/yr	0.1884
E4	ton PM10/yr	0.0000	E10	ton PM10/hr	0.0872	E16 ton PM10/yr	0.0942
E5	lb PM10/hr	0.0400	E11	ton TSP/yr	0.4446	E17 ton TSP/yr	n/a
E6	ton PM10/yr	0.0060	E12	ton PM10/yr	0.0131	E18 ton PM10/yr	n/a

NOTE: Factors E1to E4 do not apply since the current system uses a central dust collector.

PEHMITS PRUGHAM

TABLE 11 FABRIC FILTERS

Point Number(from Flo	ow Diagram)		Manuf Dust Con	acturer & Mo trol Systems	odel No. (i & Equipn	f available) tent Model i	No RA-1400	
Name of Abatement D Central Baghouse Coll	evice lection System		Type o Cement/F	of Particulate Iy Ash Dust	Controlle	d		
		GAS STREAM	I CHARAC	TERISTICS			· · · · · · · · · · · · · · · · · · ·	
Flow Rate	e (acfm)	C Ten	Gas Stream nperature (F)		Particulate (gra	Grain Loading ain/scf)	
Design Maximum 8000	Average Expected 6500		70 F			iniet 15	Outle 0.01	t
Pressure (in. H 6"	• Drop 2 ⁰)	Water of Ei (Ib w Ic	Vapor Cor filuent Strea ater/lb dry a deally zero	ntent am air)		Fan Rec (hp) 15	juirements (ft ³ /min) 6500	
	; ;	PARTICULA (B ⁻	TE DISTRI y Weight)	BUTION				
Micron R	ange		Inlet		ļ	Oi	utlet	<u>`</u>
0.0-0.	.5			%				%
0.5-1.	.0			%				%
1.0-5.	0			%				%
5-10)			%				%
10-20)		<u></u> .	%				%
over 2	0	. <u></u>		%	<u> </u>			%
	· · ·	FILTER CHA	ARACTERI	STICS			······································	
Filtering Velocity (acfm/ft ² of Cloth)	Bag Diameter (in.)	Bag Ler (ft)	igth	Number o	of Bags	Number ir	of Compartme Baghouse	ents
4.51	8"	9.5'		72		ļ	2	
Bag rows will be:			Walkwa	ays will be p	rovided be	tween banks	s of bags:	
Staggered	Straight X			Yes		No X		1
			······	<u></u>				
Describe Bag Cleaning N	Aethod and Cycle: Re	lease air via ac	djustable a	utomatic tim	er			
Capital Installed Cost \$			Annual	Operating C	Cost S			
		ADDITIONAL	INFORMA				<u> </u>	

On separate sheets attach the following:

A. Details regarding principle of operation

An assembly drawing (Front and Top View) of the abatement device dimensioned and to scale clearly showing the design, size and shape.

If the device has bypasses, safety valves, etc., include in drawing and specify when such bypasses are to be used and under what conditions.

OUST CONTROL SYSTEMS & EQUIPMENT A Division of Curtis Whitus, Inc.

12450 Rendon Road Burleson, TX 76028

Phone (817) 572-7878

SPECIFICATIONS FOR DCS-RA-1400 DUST COLLECTION SYSTEM

Model number - DCS-RA-1400 Number of bags - 72 Bag diameter - 8" Bag length - 114" Total filtration area - 1,400 sq. ft. Min. design - efficiency of dust collector - 99.8% Air to cloth ratio - 4.51 A.C.F.M./Ft.² Filtration velocity - 4.51 Ft./Min. Blower H.P. - 15H.P. Static pressure drop (inches of water) - 6" Air capacity - 7,000 C.F.M. Outlet area - 2.34 Ft.² Outlet velocity - 46.3 Ft./Sec. Outlet moisture content - ideally zero Cleaning mechanism - reverse air Frequency of cleaning - variable * Inlet dust concentration (GR/Min.) - 97,500 GR/Min. * Outlet emissions (GR/Min.) - 195 GR/Min.

* Outlet dust loading - .010 GR/C.F.M.

* These calculations based on inlet dust loading of 15 GR/Ft.³

	A010MATIO - TEVETO		loions	
SERIES	DCS-1200	DCS-1400	DCS-2000	DCS-2800
Bag Area (Dacron)	1000 sq. ft.	1400 sq. ft.	2000 sq. ft.	2800 sq. ft.
No. of 8" Snap-on Bags	48 Bags	72 Bags	108 Bags	144 Bags
Bag Length	9'6"	9'6"	9'6"	9'6"
Overall Height	22'	22'	22'	22'
Overall Width	6'	6'	ő	6'
Overall Length	8'0"	10'6"	15'6"	20'6"
proximate Weight (lbs.)	3500	5250	6800	7900
Type Blower	SQB 13 1/2"	SCB 20*	SQB 20"	SQB 22 1/4"
Blower Motor H.P.	10	15	20	25
Blower C.F.M.	4000	6500	9000	12000
No. of Compartments	2	2	3	4
Collected Dust Removal	Screw Conveyor	Screw Conveyor	Screw Conveyor	Screw Conveyor
Application	Small Single Allev	Sincle Alley Plant	Ecubie Alley Plant	Double Alley Plant

SPECIFICATIONS AUTOMATIC - REVERSE AIR DUST COLLECTORS

DUST CONTROL SYSTEMS & EQUIPMENT A DIVISION OF CURTIS WHITUS, INC.

P.O. Box 794 · Mansfield, Texas 76063 Phone (817) 572-7878 · FAX (817) 478-3786 Toll Free 1-888-DCS-4-HELP

Specializing In Dust Control

DCS-1400 STATIONARY DUST COLLECTOR SHOWN: DRY BATCH PLANT - FOUR(4) SERVICE POINTS (2-Shroud, 1-Cement batcher, & 1-Silo)

STANDARD FEATURES:

- Automatic control panel bag cleaning
- Magnahelic gauge for bag and system maintenance control
- OSHA-approved ladders, platforms, kick plates and handrails
- 65° Wedge hopper with 6" screw conveyor
- 10.5 oz. seamless polyester snap bottom band bags
- Entry doors 5 feet tall

OPTIONS:

- Cement recycle system
- Automatic recycle system (see other side)
- Custom shrouds (see other side)
- Portable collectors available
- Anti-overfill system
- Hopper level controller

Reverse Air Bag Cleaning - Fully Automatic

OUST CONTROL SYSTEMS & EQUIPMENT A Division of Curtis Whitus, Inc.

> 12450 Rendon Road Burleson, TX 76028

Phone (817) 572-7878

SPECIFICATIONS FOR DCS-RA-1400 DUST COLLECTION SYSTEM

Model number - DCS-RA-1400 Number of bags - 72 Bag diameter - 8" Bag length - 114" Total filtration area - 1,400 sq. ft. Min. design - efficiency of dust collector - 99.8% Air to cloth ratio - 4.51 A.C.F.M./Ft.² Filtration velocity - 4.51 Ft./Min. Blower H.P. - 15H.P. Static pressure drop (inches of water) - 6" Air capacity - 7,000 C.F.M. Outlet area - 2.34 Ft.² Outlet velocity - 46.3 Ft./Sec. Outlet moisture content - ideally zero Cleaning mechanism - reverse air Frequency of cleaning - variable * Inlet dust concentration (GR/Min.) - 97,500 GR/Min.

* Outlet emissions (GR/Min.) - 195 GR/Min.

* Outlet dust loading - .010 GR/C.F.M.

* These calculations based on inlet dust loading of 15 GR/Ft.³

- -

TABLE 11 FABRIC FILTERS

Point Number(from Flo	ow Diagram)		Manu Dust Cor	facturer & Mo trol Systems	odel No. (ii & Equipri	f available) tent Model	No RA-1400	
Name of Abatement D Central Baghouse Coll	evice lection System		Type o Cement/F	of Particulate Ty Ash Dust	Controlle	d		
		GAS STREAM	I CHARAC	TERISTICS			· ·	
Flow Rate	e (acfm)	(Ter	Gas Stream nperature (F)		Particulate (gra	Grain Loading ain/scf)	
Design Maximum 8000	Average Expected 6500		70 F		1	ipment Model No RA-1400 ipment Model No RA-1400 Diled Particulate Grain Loading (grain/scf) Inlet Outlet 15 0.01 Fan Requirements (hp) (ft ³ /min) 15 6500 Outlet 0utlet % % % % % % % % % % % % %		
Pressure (in. H 6"	• Drop 20)	Water of Ei (Ib w ic	r Vapor Co ffluent Stre rater/Ib dry deally zero	ntent am air)		Fan Rec (hp) 15	uirements (ft ³ /min) 6500	
	·	PARTICULA (B	TE DISTR y Weight)	BUTION				
Micron R	ange		Inlet			Ou	utlet	
0.0-0.	.5			%			مبد .	%
0.5-1.	.0			%				%
1.0-5.	0			%				%
5-10)			%			<u></u>	%
10-20)			%			<u></u>	%
over 2	0			%	- <u></u>			%
	•	FILTER CHA	ARACTERI	STICS			<u></u>	
Filtering Velocity (acfm/ft ² of Cloth)	Bag Diameter (in.)	Bag Ler (ft)	ngth	Number o	of Bags	Number ir	of Compartme Baghouse	ents
4.51	8"	9.5'	<u></u>	72		i 	2	
Bag rows will be:			Walkw	ays will be pr Maa	ovided bei	tween banks	s of bags:	
Staggered	Straight			105		X		
Filtering Material: 100%			<u></u>	<u> </u>				
Describe Bag Cleaning M	Aethod and Cycle: Re	lease air via ad	diustable a	utomatic time	 er			
Capital Installed Cost \$			Annual	Operating C		_		
		ADDITIONAL		TION				

On separate sheets attach the following:

A. Details regarding principle of operation

An assembly drawing (Front and Top View) of the abatement device dimensioned and to scale clearly showing the design, size and shape.

If the device has bypasses, safety valves, etc., include in drawing and specify when such bypasses are to be used and under what conditions.

SERIES	DCS-1200	DCS-1400	CCS-2000	DCS-2800
Bag Area (Dacron)	1000 sq. ft.	1400 sq. ft.	2000 sq. ft.	2800 sq. ft.
No. of 8" Snap-on Bags	48 Bags	72 Bags	! 108 Bags	144 Bags
Bag Length	9'6"	9'6"	9'6"	9'6"
Overall Height	22'	22'	22'	22'
Overall Width	6'	6'	0 [°]	6'
Overall Length	8'0"	10'6"	15'6"	20'6"
proximate Weight (ics.)	3500	5250	6800	7900
Type Blower	SQB 13 1/2"	SOB 20"	SQB 20"	SQB 22 1/4"
Blower Motor H.P.	10	15	20	25
Blower C.F.M.	4000	6500	9000	12000
No. of Compartments	2	2	3	4
Collected Dust Removal	Screw Conveyor	Screw Conveyor	Screw Conveyor	Screw Conveyor
•	Small Single Alley	Sincle Alley Plant	L Couble Alley Plant	Double Alley Plant

SPECIFICATIONS AUTOMATIC - REVERSE AIR DUST COLLECTORS

A DIVISION OF CURTIS WHITUS, INC.

P.O. Box 794 · Mansfield, Texas 76063 Phone (817) 572-7878 · FAX (817) 478-3786 Toll Free 1-888-DCS-4-HELP

Specializing In Dust Control

DCS-1400 STATIONARY DUST COLLECTOR SHOWN: DRY BATCH PLANT - FOUR(4) SERVICE POINTS (2-Shroud, 1-Cement batcher, & 1-Silo)

STANDARD FEATURES:

- Automatic control panel bag cleaning
- Magnahelic gauge for bag and system maintenance control
- OSHA-approved ladders, platforms, kick plates and handrails
- 65° Wedge hopper with 6" screw conveyor
- 10.5 oz. seamless polyester snap bottom band bags
- Entry doors 5 feet tall

OPTIONS:

- Cement recycle system
- Automatic recycle system (see other side)
- Custom shrouds (see other side)
- Portable collectors available
- Anti-overfill system
- Hopper level controller

* Reverse Air Bag Cleaning - Fully Automatic

Request for Comments --Senate Bill 1126 TNIC -- New Source Review Permits Diven Phone: (512)239-1000 Fax: (512)239-4500

Mailing Address: TNRCC, New Source Review Permits Division, P.O. Box 13087, Austin, TX 78711-3087

1

· · · · · · · · · · · · · · · · · ·	
REGIONAL OFFICES/LOCAL PROGRAM: NSR Pennits Division for the facility below. Please make comment, if necessary, regarding the return comments no later than the comments deadline which is 10 we	n has received a request for a Senate Bill 1126 permit action e referenced permit, as affected by the attached request. Please working days from the submitter fact of contact Engineer. If
comments are not received by deadline, then "no comments" is assume	led.
	AUG 2 4 1999
TO: Region: 14 City: Hallensville County: Lav	/aca
EJK	FIELD OPERATIONS REGION 14
Submitted by: <u>SANDY MOHLER</u> E-Mail Initials: <u>SMOHLI</u>	ER Phone: <u>512 239 1926</u>
Date Request Submitted: August 24, 1999	ENTERED 7
Comments Deadline: <u>9/7/99</u> Date Application Received by New	w Source Review: 8/23/99 8/30/9 3/2-
NSR RECORD NO.: 67934	8-30-99 -7 EJK
PERMIT NO.: M TNRCC ACCOUNT NO Company Name: Alamo Concrete Products, Ltd.): LE 0020 A While oten shed
Plant Name: HALLETTSVILLE #38	County: Lavaca to TEEC only.
Technical Contact: WALTER D. SCOTT III	Phone: 210 208 1561
	2. 2.
NOTES:	
Local Program Applicable?: Yes:_, No: X: LP1 _, LP2 _	•
Copy of Application Received by your Office:YESNO Date R	Leceived:
Investigator's/Compliance Officer's Name (Please Print): <u>ED</u> Phone: <u>361)</u> 980 3108	T.KASPRZYK
Date of Last Site Visit:	
GENERAL COMMENTS: No OBJECTED TO CONTRAC BAGRIATER DEVINE FOR ACCOSSIBILITY AND MATHRA	NEN MARCANENTE THE NEW
TASTLE LUL B.S. AN OVERALL	REPARTON IN 730 Chysup and
PERMIT ALTERATION APPROVAL:	й ,
L'No objection to alteration	
If you have any objections to approval, please note them here:	774 E 1 1 D 1 A 11 E-
THIS SONT BUL 1126 CHANGES	TO THE DUST CONTROL
BAGENTER ON THE SILOS AND	Think LADING OF THE
1	1/8/99 El Mayor

LCR 3

-	9/8/99_N	UMBER OF PAGES (including this cover sheet):
TO:	Name	SANDY MOHLER
	Organization	NSR AIR PSRMIT
	FAX Number	(512) 235 4500
FROM:	TEXAS NATURAL RESO	URCE CONSERVATION COMMISSION
	Name	ED KASPRZYIC
	Division/Region	Region 14
	Telephone Number	361/825-3100
	FAX Number	361-825-3101
	OK/DN TO PROVEMENTS MONT BATE	45 SB 1126 BAG FALTOR ON LE \$\$ \$27A - A PLANT #38/ALAMO CAM

.

Protecting Texas by Reducing and Preventing Pollution