### PERMIT 282443 PROJECT 150703 COPY OF RECORD

**PBR New Registration** 

Site Information (Regulated Entity)

What is the name of the site to be authorized?

MUNSON 1201 SWD

Does the site have a physical address?

No

Because there is no physical address, describe how to locate this site:

FROM THE INTERSECTION OF HWY 67 AND 163, TRAVEL EAST ON HWY 67 FOR 6.3 MILES. TURN LEFT, GO 0.6 MILES, AND TURN RIGHT. CONTINUE FOR 1.2 MILES, TURN LEFT AND GO STRAIGHT FOR 1.5 MILES. TURN LEFT AND TRAVEL 0.1 MILES TO FACILITY.

City

BARNHART

State

ТΧ

ZIP

76940

County

IRION

Latitude (N) (##.######)

31.19837

Longitude (W) (-###.######)

-101.05996

Primary SIC Code

1311

Secondary SIC Code

Primary NAICS Code

211120

Secondary NAICS Code

**Regulated Entity Site Information** 

What is the Regulated Entity's Number (RN)? RN110197134 What is the name of the Regulated Entity (RE)? MUNSON 1201 SWD Does the RE site have a physical address? No

Because there is no physical address, describe how to locate this site:

FROM THE INTERSECTION OF HWY 67 AND 163, TRAVEL EAST ON HWY 67 FOR 6.3 MILES. TURN LEFT, GO 0.6 MILES, AND TURN RIGHT. CONTINUE FOR 1.2 MILES, TURN LEFT AND GO STRAIGHT FOR 1.5 MILES. TURN LEFT AND TRAVEL 0.1 MILES TO FACILITY.

City

BARNHART

State

ТΧ

ZIP

76940

County

IRION

Latitude (N) (##.#####)

31.19837

Longitude (W) (-###.######)

-101.05996

What is the primary business of this entity?

Customer (Applicant) Information

How is this applicant associated with this site?

Owner Operator

What is the applicant's Customer Number (CN)?

CN605190081

Type of Customer

Corporation

Full legal name of the applicant:

Legal Name Sequitur Permian, LLC Texas SOS Filing Number 801882847 Federal Tax ID

State Franchise Tax ID 32052464842 DUNS Number

Number of Employees

0-20

Independently Owned and Operated?

Yes

I certify that the full legal name of the entity applying for this permit has been provided and is legally authorized to do business in Texas.

Yes

**Responsible Authority Contact** 

**Organization Name** 

Sequitur Permian, LLC

Prefix

First

Russ

Middle

R.

Last

Perry

Suffix

# Title

Health Safety & Environmental Manager Responsible Authority Mailing Address

Enter new address or copy one from list:

Address Type

Domestic

Mailing Address (include Suite or Bldg. here, if applicable)

2050 W SAM HOUSTON PKWY S STE 1850

Routing (such as Mail Code, Dept., or Attn:)

City

HOUSTON

State

ТΧ

ΖIΡ

77042 Phone (###-####) 7133953014

Extension

Alternate Phone (###-####-#####)

Fax (###-######)

E-mail

rperry@sequiturenergy.com Responsible Official Contact Person TCEQ should contact for questions about this application:

Same as another contact?

CN605190081, Sequitur Permian, LLC

**Organization Name** 

Sequitur Permian, LLC

Prefix

MR

First

Russ

Middle

R.

Last

Perry

Suffix

Title

Health Safety & Environmental Manager Enter new address or copy one from list:

Mailing Address

Address Type Domestic Mailing Address (include Suite or Bldg. here, if applicable) 2050 W SAM HOUSTON PKWY S STE 1850 Routing (such as Mail Code, Dept., or Attn:)

## City

HOUSTON

- State
  - ТΧ

# ZIP

77042 Phone (###-###-####) 7133953014

Extension

Alternate Phone (###-####)

Fax (###-###-####)

E-mail

rperry@sequiturenergy.com Technical Contact Person TCEQ should contact for questions about this application:

Same as another contact?

Organization Name Ramboll Prefix MR First Eric Middle Last Hodek Suffix

Title

Principal

Enter new address or copy one from list:

Mailing Address

Address Type Domestic Mailing Address (include Suite or Bldg. here, if applicable) 1560 BROADWAY STE 1905 Routing (such as Mail Code, Dept., or Attn:)

## City

DENVER

### State

CO

# ZIP

80202 Phone (###-###-####) 3033825467

Extension

Alternate Phone (###-####+)

Fax (###-######)

E-mail

ehodek@ramboll.com

PBR General Information - New Sites

1) To determine fee amount does this business qualify as a small business, non-profit organization, or small government entity?

Yes

2) Are there any other registered air authorizations at this site?

No

3) Is this project located at a major site?

No

4) Does this registration require certification or is certification being submitted voluntarily?

No

5) Is the facility in compliance with all PBRs claimed?

Yes

6) Is the facility in compliance with all other applicable state/federal rules and regulations?

Yes

7) Is the facility in compliance with all applicable distance requirements?

Yes

8) Will there be any confidential information submitted with this application?

No

Section 1 Rule Selection

Select the type of unit that is being registered.

ENGINES AND TURBINES

Select the rule(s) associated to the unit specified.

106.512

Section 1 106.512 Engines and Turbines

Please provide the horsepower (hp) of the engine(s) / turbine(s).

254

Please provide the horsepower (hp) of the engine(s) / turbine(s).

254

106.512(2) Rule Compliance

1) Is gas fuel limited to: sweet natural gas or liquid petroleum gas, fuel gas containing no more than ten grains total sulfur per 100 dry standard cubic feet, or field gas?

Yes

2) Has formaldehyde been included in the VOC short-term and annual emissions totals?

Yes

3) Will the engine(s) / turbine(s) meet any applicable NOx limits as stated in the rule?

Yes

4) Will the hourly and annual emissions meet any applicable NAAQs?

Yes

5) Will the engine(s) / turbine(s) be used to generate electricity?

Yes

5.1. Are the engine(s) / turbine(s) being used to generate electricity because it is not feasible to connect to the grid?

Yes

6) Please select any/all State or Federal Standards that apply to this site:

MACT ZZZZ | NSPS JJJJ

7) Is this facility being authorized at an oil and gas site that has previously used 106.352 (I) to claim, register, or certify their operation?

No

106.4 Rule Compliance

1) What are the annual VOC emissions in tons per year (tpy) for this registration?

3.82

2) What are the total annual SO2 emissions in tpy for this registration?

0.08

- 3) What are the total annual NOx emissions in tpy for this registration?4.91
- 4) What are the total annual CO emissions in tpy for this registration?9.81
- 5) What are the total annual PM10 emissions in tpy for this registration?0.37
- 6) What are the total annual PM2.5 emissions in tpy for this registration? 0.37
- 7) What are the total annual H2S emissions in tpy for this registration?0.01
- 8) What are the total annual HAP emissions in tpy for this registration?0.61

file\_section

Please attach one PDF with all required documents to complete the project.

file\_name

<a href=/ePermitsExternal/file?fileId=53336>Munson #1201 SWD\_PBR\_DRAFT.pdf</a> file hash

119154B6A5F994D627CD3BA1C0D472D613E1DD38D71D2BBDC814C62C54C4B1B5

mime-type

application/pdf

Please attach any other necessary information needed to complete the registration.

Signature

Signing Party: I am Russ R Perry, the owner of the STEERS account ER050808.

Authority Confirmation: I have the authority to sign this data on behalf of the applicant named above.

Information Accuracy: I have personally examined the foregoing and am familiar with its content and the content of any attachments, and based upon my personal knowledge and/or inquiry of any individual responsible for information contained herein, that this information is true, accurate, and complete.

Password Confirmation: I further certify that I have not violated any term in my TCEQ STEERS participation agreement and that I have no reason to believe that the confidentiality or use of my password has been compromised at any time.

Signing Action: I understand that use of my password constitutes an electronic signature legally equivalent to my written signature.

Attest Fact: I also understand that the attestations of fact contained herein pertain to the implementation, oversight and enforcement of a state and/or federal environmental program and must be true and complete to the best of my knowledge.

False Information: I am aware that criminal penalties may be imposed for statements or omissions that I know or have reason to believe are untrue or misleading.

Signing Intentionally: I am knowingly and intentionally signing PBR New Registration.

Information Agreement: My signature indicates that I am in agreement with the information on this form, and authorize its submittal to the TCEQ.

Customer Number: CN605190081 Legal Name: Seguitur Permian, LLC Signature: OWNER OPERATOR Signature: Russ R Perry OWNER OPERATOR Account Number: ER050808 Signature Ip Address: 76.247.104.104 Signature Date: 2018-03-01 Signature Hash: 44B459EB8C548F017A79EA62561F407417C9311A9911AC4BD43C6EAC8AD8508F Form Hash: 9DF9DBCE35414C8C0A39A15D43BB04B9E5203739CAB44DF3A1B5A676B31D79DE Transaction By: The application fee payment transaction was made by ER050808/Russ R Perry Paid By: The application fee was paid by RUSSELL PERRY Fee Amount: \$100.00 Paid Date: The application fee was paid on 2018-03-01 Transaction Number: The transaction number is 582EA000291062 and the voucher number is 357528 Reference Number: The application reference number is 220046 Submitted By: The application was submitted by ER050808/Russ R Perry Submitted Timestamp: The application was submitted on 2018-03-01 at 13:15:54 CST Submitted From: The application was submitted from IP address 76.247.104.104 Confirmation Number: The confirmation number is 197095 Steers Version: The STEERS version is 6.15 Form Hash: 9DF9DBCE35414C8C0A39A15D43BB04B9E5203739CAB44DF3A1B5A676B31D79DE Application Creator: This account was created by To-Nhu Nguyen



Texas Commission on Environmental Quality (TCEQ) Air Permits Initial Review Team (APIRT) P.O. Box 13087 Austin, Texas 78711-3087

### PERMIT BY RULE REGISTRATION SEQUITUR PERMIAN, LLC (CN605190081) MUNSON #1201 SALT WATER DISPOSAL FACILITY (RN110197134) IRION COUNTY, TEXAS

Dear APIRT:

On behalf of Sequitur Permian, LLC (SEM), Ramboll Environ is submitting this Permit By Rule (PBR) registration. This is a new facility. This application is being submitted to register the facility with the TCEQ for the installation and operation of the following equipment via Title 30 of the Texas Administrative Code (30 TAC) 30 TAC §106.512 – *Stationary Engines and Turbines.* 

Enclosed with this letter are the process description, process flow diagram, emission calculations, PI-7, Core Data Form, Table 1a, and other documentation supporting the PBR registration. The Form PI-7 was submitted through STEERS on February 21, 2018. If you have any questions regarding this submittal, please feel free to contact me at ehodek@ramboll.com or (303) 382-5467. February 28, 2018

Ramboll Environ 1560 Broadway Suite 1905 Denver, CO 80202 USA

T +1 303 382 5460 F +1 303 382 5499 www.ramboll-environ.com

Sincerely,

2 A Hody /

Eric S. Hodek Principal – Air Services D 303 382 5467 M 281 896 3648 EHodek@Ramboll.com

Cc: Russ Perry, PG – Sequitur Energy TCEQ Region 8 – San Angelo

(Page 1)

| ١.                | Registrant Information                                                  |                                         |                   |                                   |  |  |  |  |
|-------------------|-------------------------------------------------------------------------|-----------------------------------------|-------------------|-----------------------------------|--|--|--|--|
| А.                | Company or Other Legal Customer Name:                                   |                                         |                   |                                   |  |  |  |  |
|                   |                                                                         |                                         |                   |                                   |  |  |  |  |
| В.                | Company Official Contact Information ( Mr. Mrs. Mrs. Other:)            |                                         |                   |                                   |  |  |  |  |
| Nam               | le:                                                                     |                                         |                   |                                   |  |  |  |  |
| Title             |                                                                         |                                         |                   |                                   |  |  |  |  |
| Maili             | ng Address:                                                             |                                         |                   |                                   |  |  |  |  |
| City:             |                                                                         | State:                                  |                   | ZIP Code:                         |  |  |  |  |
| Phor              | าย:                                                                     |                                         | Fax:              |                                   |  |  |  |  |
| E-m               | ail Address:                                                            |                                         |                   |                                   |  |  |  |  |
| All F<br>com      | BR registration responses will be pany official must initial here if ha | sent via e-mail u<br>ard copy is reques | Inless a hard cop | by is specifically requested. The |  |  |  |  |
| <b>C</b> .        | Technical Contact Information (                                         | Mr Mrs                                  | ] Ms. 🗌 Other:)   |                                   |  |  |  |  |
| Nam               |                                                                         |                                         |                   |                                   |  |  |  |  |
| Title             |                                                                         |                                         |                   |                                   |  |  |  |  |
| Com               | pany Name:                                                              |                                         |                   |                                   |  |  |  |  |
| Maili             | ng Address:                                                             |                                         |                   |                                   |  |  |  |  |
| City:             |                                                                         | State:                                  |                   | ZIP Code:                         |  |  |  |  |
| Phor              | 16:                                                                     |                                         | Fax:              | L                                 |  |  |  |  |
| E-ma              | ail:                                                                    |                                         |                   |                                   |  |  |  |  |
| П.                | Facility and Site Information                                           |                                         |                   |                                   |  |  |  |  |
| Α.                | A. Name and Type of Facility                                            |                                         |                   |                                   |  |  |  |  |
| Faci              | Facility Name:                                                          |                                         |                   |                                   |  |  |  |  |
| Type of Facility: |                                                                         |                                         |                   |                                   |  |  |  |  |
| For p             | oortable units, please provide the                                      | serial number of                        | the equipment b   | being authorized below.           |  |  |  |  |
| Seria             | Serial No: Serial No:                                                   |                                         |                   |                                   |  |  |  |  |

# (Page 2)

| II.         | Facility and Site Information                                                                                                                                                                             | (continued)            |                     |                |     |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------|----------------|-----|--|--|--|--|
| В.          | Facility Location Information                                                                                                                                                                             |                        |                     |                |     |  |  |  |  |
| Stre        | Street Address:                                                                                                                                                                                           |                        |                     |                |     |  |  |  |  |
| If the cour | If there is no street address, provide written driving directions to the site and provide the closest city or town, county, and ZIP code for the site (attach description if additional space is needed). |                        |                     |                |     |  |  |  |  |
|             |                                                                                                                                                                                                           |                        |                     |                |     |  |  |  |  |
|             |                                                                                                                                                                                                           |                        |                     |                |     |  |  |  |  |
| City:       |                                                                                                                                                                                                           | County:                |                     | ZIP Code:      |     |  |  |  |  |
| C.          | TCEQ Core Data Form                                                                                                                                                                                       |                        |                     |                |     |  |  |  |  |
| Is th       | e Core Data Form (TCEQ Form                                                                                                                                                                               | Number 10400) atta     | ached?              |                |     |  |  |  |  |
| lf "N       | O," provide customer reference                                                                                                                                                                            | number (CN) and re     | egulated entity num | nber (RN) belo | ow. |  |  |  |  |
| Cust        | omer Reference Number (CN):                                                                                                                                                                               |                        |                     |                |     |  |  |  |  |
| Reg         | ulated Entity Number (RN):                                                                                                                                                                                |                        |                     |                |     |  |  |  |  |
| D.          | TCEQ Account Identification N                                                                                                                                                                             | lumber (if known):     |                     |                |     |  |  |  |  |
| Ε.          | E. Type of Action                                                                                                                                                                                         |                        |                     |                |     |  |  |  |  |
| 🗌 Ir        | nitial Application 🗌 Change to F                                                                                                                                                                          | Registration           |                     |                |     |  |  |  |  |
| For (       | Change to Registration provide                                                                                                                                                                            | the Registration Nur   | mber:               |                |     |  |  |  |  |
| F.          | PBR number(s) claimed under                                                                                                                                                                               | 30 TAC Chapter 10      | )6                  |                |     |  |  |  |  |
| (List       | all the individual rule number(s)                                                                                                                                                                         | ) that are being clain | ned.)               |                |     |  |  |  |  |
| 106.        |                                                                                                                                                                                                           |                        | 106.                |                |     |  |  |  |  |
| 106.        |                                                                                                                                                                                                           |                        | 106.                |                |     |  |  |  |  |
| 106.        |                                                                                                                                                                                                           |                        | 106.                |                |     |  |  |  |  |
| G.          | Historical Standard Exemption                                                                                                                                                                             | or PBR                 |                     |                |     |  |  |  |  |
| Are         | you claiming a historical standa                                                                                                                                                                          | rd exemption or PBF    | R?                  |                |     |  |  |  |  |
| lf "Y       | ES," enter rule number(s) and a                                                                                                                                                                           | ssociated effective of | date in the spaces  | provided belo  | w.  |  |  |  |  |
|             | Rule Number(s)                                                                                                                                                                                            |                        | Effective Da        | ate            |     |  |  |  |  |
|             |                                                                                                                                                                                                           |                        |                     |                |     |  |  |  |  |
|             |                                                                                                                                                                                                           |                        |                     |                |     |  |  |  |  |

# (Page 3)

| II. Facility and Site Information (continued)                                                               |                                                                                                                            |                    |                     |  |  |  |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|--|--|--|
| H. Previous Standard Exemption or PBR Registration Number                                                   |                                                                                                                            |                    |                     |  |  |  |
| Is this authorization for a change to an existing facility standard exemption or PBR?                       | s this authorization for a change to an existing facility previously authorized under a YES NO vitandard exemption or PBR? |                    |                     |  |  |  |
| If "YES," enter previous standard exemption number(s) effective date in the spaces provided below.          | ) and PBR registrat                                                                                                        | ion number(s), ar  | nd associated       |  |  |  |
| Standard Exemption and PBR Registration N                                                                   | umber(s)                                                                                                                   | Effect             | ive Date            |  |  |  |
|                                                                                                             |                                                                                                                            |                    |                     |  |  |  |
|                                                                                                             |                                                                                                                            |                    |                     |  |  |  |
| I. Other Facilities at this Site Authorized by Standa                                                       | rd Exemption, PBR                                                                                                          | , or Standard Per  | mit                 |  |  |  |
| Are there any other facilities at this site that are author PBR, or Standard Permit?                        | ized by an Air Stan                                                                                                        | dard Exemption,    | YES 🗌 NO            |  |  |  |
| If "YES," enter standard exemption number(s), PBR re number(s), and associated effective date in the spaces | gistration number(s<br>provided below.                                                                                     | s), and Standard F | Permit registration |  |  |  |
| Standard Exemption, PBR Registration, and Standard Registration Number(s)                                   | Permit                                                                                                                     | Effective Date     |                     |  |  |  |
|                                                                                                             |                                                                                                                            |                    |                     |  |  |  |
|                                                                                                             |                                                                                                                            |                    |                     |  |  |  |
| J. Other Air Preconstruction Permits                                                                        |                                                                                                                            |                    |                     |  |  |  |
| Are there any other air preconstruction permits at this s                                                   | site?                                                                                                                      |                    | 🗌 YES 🗌 NO          |  |  |  |
| If "YES," enter permit number(s) in the spaces provide                                                      | d below.                                                                                                                   |                    |                     |  |  |  |
|                                                                                                             |                                                                                                                            |                    |                     |  |  |  |
|                                                                                                             |                                                                                                                            |                    |                     |  |  |  |
| K. Affected Air Preconstruction Permits                                                                     |                                                                                                                            |                    |                     |  |  |  |
| Does the PBR being claimed directly affect any permitted facility?                                          |                                                                                                                            |                    |                     |  |  |  |
| If "YES," enter the permit number(s) in the spaces prov                                                     | vided below.                                                                                                               |                    |                     |  |  |  |
|                                                                                                             |                                                                                                                            |                    |                     |  |  |  |
|                                                                                                             |                                                                                                                            |                    |                     |  |  |  |

(Page 4)

| II. Facility and Site Information (continued)                                                                                                                         |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Federal Operating Permit (FOP) Requirements (30 TAC Chapter 122 Applicability)                                                                                        |  |  |  |  |  |  |  |  |
| is this facility located at a site that is required to obtain an FOP YES NO To Be Determined pursuant to 30 TAC Chapter 122?                                          |  |  |  |  |  |  |  |  |
| If the site currently has an existing FOP, enter the permit number:                                                                                                   |  |  |  |  |  |  |  |  |
| 1. Check the requirements of 30 TAC Chapter 122 that will be triggered if this claim is accepted (check all that apply).                                              |  |  |  |  |  |  |  |  |
| Initial Application for an FOP Significant Revision for an SOP Minor Revision for an SOP                                                                              |  |  |  |  |  |  |  |  |
| Operational Flexibility/Off Permit Notification for an SOP     Revision for a GOP                                                                                     |  |  |  |  |  |  |  |  |
| To be Determined None                                                                                                                                                 |  |  |  |  |  |  |  |  |
| <ol> <li>Identify the type(s) of FOP issued and/or FOP application(s) submitted/pending for the site.<br/>(check all that apply)</li> </ol>                           |  |  |  |  |  |  |  |  |
| SOP GOP GOP application/revision (submitted or under APD review)                                                                                                      |  |  |  |  |  |  |  |  |
| □ N/A □ SOP application/revision (submitted or under APD review)                                                                                                      |  |  |  |  |  |  |  |  |
| III. Fee Information (see Section VII. for address to send fee or go to www.tceq.texas.gov/epay to pay online)                                                        |  |  |  |  |  |  |  |  |
| A. Fee Requirements                                                                                                                                                   |  |  |  |  |  |  |  |  |
| Is a fee required per 30 TAC § 106.50?                                                                                                                                |  |  |  |  |  |  |  |  |
|                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| If "NO," specify the exception. There are three exceptions to paying a PBR fee. (check all that apply)                                                                |  |  |  |  |  |  |  |  |
| 1. Registration is solely to establish a federally enforceable emission limit.                                                                                        |  |  |  |  |  |  |  |  |
| <ol> <li>Registration is within six months of an initial PBR review, and is addressing<br/>deficiencies, administrative changes, or other allowed changes.</li> </ol> |  |  |  |  |  |  |  |  |
| 3. Registration is for a remediation project (30 TAC § 106.533).                                                                                                      |  |  |  |  |  |  |  |  |
| B. Fee Amount                                                                                                                                                         |  |  |  |  |  |  |  |  |
| 1. A \$100 fee is required if <i>any</i> of the answers in III.B.1 are "YES."                                                                                         |  |  |  |  |  |  |  |  |
| This business has less than 100 employees.                                                                                                                            |  |  |  |  |  |  |  |  |
| This business has less than 6 million dollars in annual gross receipts.                                                                                               |  |  |  |  |  |  |  |  |
| This registration is submitted by a governmental entity with a population of less than YES NO 10,000.                                                                 |  |  |  |  |  |  |  |  |
| This registration is submitted by a non-profit organization.                                                                                                          |  |  |  |  |  |  |  |  |
| 2. A \$450 fee is required for all other registrations.                                                                                                               |  |  |  |  |  |  |  |  |

# (Page 5)

| I. Fee Information (see Section VII. for address to send fee or go to www.tceq.texas.gov/epay to pay online) (continued)                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |                 |        |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|--|--|--|--|--|
| C. Payment Information                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                              |                 |        |  |  |  |  |  |
| Check/money order/transaction or                                                                                                                                                                                                                                                                                                                                                                                    | voucher number:                                                                                                                                              |                 |        |  |  |  |  |  |
| Individual or company name on cl                                                                                                                                                                                                                                                                                                                                                                                    | eck:                                                                                                                                                         |                 |        |  |  |  |  |  |
| Fee Amount: \$                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              |                 |        |  |  |  |  |  |
| Was fee paid online?                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |                 | YES NO |  |  |  |  |  |
| IV. Selected Facility Reviews                                                                                                                                                                                                                                                                                                                                                                                       | and Voluntary Registrations Only                                                                                                                             |                 |        |  |  |  |  |  |
| Note: If registering any of the PB<br>section, then skip to Section VI. b                                                                                                                                                                                                                                                                                                                                           | Note: If registering any of the PBRs listed in IV.B., or if voluntarily registering any other PBR(s), complete this section, then skip to Section VI. below: |                 |        |  |  |  |  |  |
| A. List any PBRs that are being                                                                                                                                                                                                                                                                                                                                                                                     | A. List any PBRs that are being voluntarily registered.                                                                                                      |                 |        |  |  |  |  |  |
| 106.         106.         106.                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              |                 |        |  |  |  |  |  |
| 106. 106. 106.                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              |                 |        |  |  |  |  |  |
| B. PBR Checklists                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                            |                 |        |  |  |  |  |  |
| If you are registering any of the following PBRs, did you attach the applicable PBR<br>checklists that shows your facility meets all general and specific requirements?<br>• Animal Feeding Operations § 106.161, Livestock Auction Facilities § 106.162, Saw<br>Mills § 106.223, Grain Handling, Storage and Drying § 106.283, Auto Body<br>Refinishing Facilities § 106.436, or Air Curtain Incinerator § 106.496 |                                                                                                                                                              |                 |        |  |  |  |  |  |
| (If "NO" then you <i>must</i> provide <i>all</i> technical information outlined in Section V.)                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              |                 |        |  |  |  |  |  |
| <b>C.</b> Distances to Property Line a                                                                                                                                                                                                                                                                                                                                                                              | C. Distances to Property Line and Nearest Off-Property Structure                                                                                             |                 |        |  |  |  |  |  |
| Distance from this facility's emission release point to the nearest property line: feet                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                              |                 |        |  |  |  |  |  |
| Distance from this facility's emissi                                                                                                                                                                                                                                                                                                                                                                                | on release point to the nearest off-prop                                                                                                                     | erty structure: | feet   |  |  |  |  |  |

# (Page 6)

| V.                                                                                                                                                                                                                                                                                                                                                                     | V. Technical Information Including State and Federal Regulatory Requirements                                                                                                                                                                      |                |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|--|
| Check the appropriate box to indicate what is included in your submittal.                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                |  |  |  |  |  |  |
| NO<br>of th<br>void                                                                                                                                                                                                                                                                                                                                                    | <b>NOTE:</b> Any technical or essential information needed to confirm that facilities are meeting the requirements of the PBR must be provided. Not providing key information could result in an automatic deficiency and voiding of the project. |                |  |  |  |  |  |  |
| Α.                                                                                                                                                                                                                                                                                                                                                                     | A. PBR requirements (Checklists are optional; however, your review will go faster if you provide applicable checklists.)                                                                                                                          |                |  |  |  |  |  |  |
| Did y                                                                                                                                                                                                                                                                                                                                                                  | you demonstrate that the general requirements in 30 TAC § 106.4 are met?                                                                                                                                                                          | 🗌 YES 🗌 NO     |  |  |  |  |  |  |
| Did y                                                                                                                                                                                                                                                                                                                                                                  | you demonstrate that the individual requirements of the specific PBR are met?                                                                                                                                                                     | 🗌 YES 🗌 NO     |  |  |  |  |  |  |
| В.                                                                                                                                                                                                                                                                                                                                                                     | Confidential Information Included (If confidential information is submitted with this registration, all confidential pages must be properly marked "CONFIDENTIAL.")                                                                               | 🗌 YES 🗌 NO     |  |  |  |  |  |  |
| C.                                                                                                                                                                                                                                                                                                                                                                     | Process Flow Diagram                                                                                                                                                                                                                              | 🗌 YES 🗌 NO     |  |  |  |  |  |  |
| D.                                                                                                                                                                                                                                                                                                                                                                     | Process Description                                                                                                                                                                                                                               | YES NO         |  |  |  |  |  |  |
| E.                                                                                                                                                                                                                                                                                                                                                                     | Maximum Emissions Data and Calculations                                                                                                                                                                                                           | YES NO         |  |  |  |  |  |  |
| <b>Note:</b> If the facilities listed in this registration are subject to the Mass Emissions Cap & Trade program under <b>30 TAC Chapter 101</b> , <b>Subchapter H, Division 3</b> , the owner/operator of these facilities must possess $NO_x$ allowances equivalent to the actual $NO_x$ emissions from these facilities.                                            |                                                                                                                                                                                                                                                   |                |  |  |  |  |  |  |
| F.                                                                                                                                                                                                                                                                                                                                                                     | F. Distance from Property Line and Nearest Off-Property Structure                                                                                                                                                                                 |                |  |  |  |  |  |  |
| Dista                                                                                                                                                                                                                                                                                                                                                                  | ance from this facility's emission release point to the nearest property line:                                                                                                                                                                    | feet           |  |  |  |  |  |  |
| Dista                                                                                                                                                                                                                                                                                                                                                                  | ance from this facility's emission release point to the nearest off-property structure:                                                                                                                                                           | feet           |  |  |  |  |  |  |
| G.                                                                                                                                                                                                                                                                                                                                                                     | Project Status                                                                                                                                                                                                                                    |                |  |  |  |  |  |  |
| Has<br>TCE                                                                                                                                                                                                                                                                                                                                                             | the company implemented the project or waiting on a response from<br>Q?                                                                                                                                                                           | nted 🗌 Waiting |  |  |  |  |  |  |
| Н.                                                                                                                                                                                                                                                                                                                                                                     | Projected Start of Construction and Projected Start of Operation Dates:                                                                                                                                                                           |                |  |  |  |  |  |  |
| Proje                                                                                                                                                                                                                                                                                                                                                                  | ected Start of Construction (provide date):                                                                                                                                                                                                       |                |  |  |  |  |  |  |
| Proje                                                                                                                                                                                                                                                                                                                                                                  | Project Start of Operation (provide date):                                                                                                                                                                                                        |                |  |  |  |  |  |  |
| VI.                                                                                                                                                                                                                                                                                                                                                                    | VI. Delinquent Fees and Penalties                                                                                                                                                                                                                 |                |  |  |  |  |  |  |
| This form <b>will not be processed</b> until all delinquent fees and/or penalties owed to the TCEQ or the Office of the Attorney General on behalf of the TCEQ is paid in accordance with the Delinquent Fee and Penalty Protocol. For more information regarding Delinquent Fees and Penalties, go to the TCEQ website at www.tceq.texas.gov/agency/delin/index.html. |                                                                                                                                                                                                                                                   |                |  |  |  |  |  |  |

٦

# (Page 7)

| VII. Copies of the Re                                                                             | egistration                                                                                                                                                                                           |                                                                                                                                          |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Processing delays may occur if copies are not sent as noted. Copies must be sent as listed below: |                                                                                                                                                                                                       |                                                                                                                                          |  |  |  |  |  |  |  |
| Who                                                                                               | Who Where                                                                                                                                                                                             |                                                                                                                                          |  |  |  |  |  |  |  |
| Air Permits Initial<br>Review Team (APIRT)                                                        | Regular, Certified, Priority Mail<br>MC 161, P.O. Box 13087 Austin, Texas 78711-3087<br>Hand Delivery, Overnight Mail<br>MC 161, 12100 Park 35 Circle, Building C, Third Floor<br>Austin, Texas 78753 | Originals of Form PI-7,<br>Core Data Form, and all<br>attachments. Not<br>required if using<br>ePermits <sup>1</sup>                     |  |  |  |  |  |  |  |
| Revenue Section,<br>TCEQ                                                                          | Regular, Certified, Priority Mail<br>MC 214, P.O. Box 13088 Austin, Texas 78711-3088<br>Hand Delivery, Overnight Mail<br>MC 214, 12100 Park 35 Circle, Building A, Third Floor<br>Austin, Texas 78753 | Original Money Order or<br>Check, Copy of Form<br>PI-7, and Core Data<br>Form. Not required if fee<br>was paid using ePay <sup>2</sup> . |  |  |  |  |  |  |  |
| Appropriate TCEQ<br>Regional Office                                                               | To find your Regional Office address, go to the TCEQ website at www.tceq.texas.gov/publications/gi/gi-002.html or call (512) 239-1250.                                                                | Copy of Form PI-7, Core<br>Data Form, and all<br>attachments. Not<br>required if using<br>ePermits <sup>1</sup> .                        |  |  |  |  |  |  |  |
| Appropriate Local Air<br>Pollution Control<br>Program(s)                                          | To Find your local or Regional Air Pollution Control<br>Programs go to the TCEQ, APD website at<br>www.tceq.texas.gov/permitting/air/local_programs.html<br>or call (512) 239-1250                    | Copy of Form PI-7, Core<br>Data Form, and all<br>attachments                                                                             |  |  |  |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> ePermits located at www3.tceq.texas.gov/steers/ <sup>2</sup> ePay located at www.tceq.texas.gov/epay/

# **Directions to Facility**

From Barnhart, TX, travel northeast on HWY 67 for 6.4 miles, turn left on lease road and continue 0.6 miles. Turn right and continue straight for 1.2 miles. Turn left and go 1.5 miles. Turn left and go 0.1 miles to facility.

Prepared for: Sequitur Permian, LLC

Submitted to: Texas Commission on Environmental Quality (TCEQ) Air Permits Division

Prepared by: Ramboll Environ US Corporation

Date: February 2018

Project Number: 31-38160A

# PERMIT BY RULE REGISTRATION

# MUNSON #1201 SALT WATER DISPOSAL FACILITY

# RN110197134

Ramboll Environ 1560 Broadway Suite 1905 Denver, CO 80202 USA T +1 303 382 5460 F +1 303 382 5459 www.ramboll-environ.com



# CONTENTS

| ACRON | YMS AND ABBREVIATIONS                                    | 3 |
|-------|----------------------------------------------------------|---|
| 1.    | INTRODUCTION                                             | 4 |
| 2.    | PROCESS DESCRIPTION AND PROCESS FLOW DIAGRAM             | 4 |
| 3.    | EMISSIONS SUMMARY                                        | 6 |
| 3.1   | Emissions Calculations                                   | 6 |
| 3.1.1 | Internal Combustion Units                                | 6 |
| 4.    | COMPLIANCE WITH FEDERAL AND STANDARD PERMIT REQUIREMENTS | 8 |

# **TABLES**

| Table 2-1. | Summary of Equipment                        |  |
|------------|---------------------------------------------|--|
| T-1-1- 0 1 | Duran and Manimum Air Dall start Fusia is a |  |

- Table 3-1. Proposed Maximum Air Pollutant Emission Rates
- Table 5-1. Permit By Rule Compliance Summary
- Table 5-2. Federal Standard Applicability

# **FIGURES**

Figure 2-1. Process Flow Diagram

# **APPENDICES**

- Appendix A Emission Calculations Appendix B - TCEQ Forms Appendix C - Area Map
- Appendix D Manufacturer Specifications

### **ACRONYMS AND ABBREVIATIONS**

| 40 CFR       Title 40 of the United States Code of Federal Regulations         AOS       Alternate Operating Scenario         AP-42       EPA's AP-42, Compilation of Air Pollutant Emission Factors, Fifth Edition         API       American Petroleum Institute         bbl       Barrel         BOPD       Barrels of Oil per Day         BRE       Bryan Research & Engineering         C1       VOCs with Three Carbons         C3       VOCs with Three Carbons         C0       Carbon Monoxide         CFR       Code of Federal Regulations         DRE       Destruction and Removal Efficiency         EPA       United States Environmental Protection Agency         EPN       Emission Point Number         FCAA       Federal Clean Air Act         FIN       Facility Identification Number         H2S       Hydrogen Sulfide         HAP       Hazardous Air Pollutant         hp       Horsepower         HHS       Horizontal Heated Separator         ICE       Internal Combustion Engine         lb       Pound         lb-mol       Pound-Mole         LDAR       Leak Detection and Repair         MACT       Maxinum Achievable Control Technology         <                          | 30 TAC           | Title 30 of the Texas Administrative Code                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------|
| AOSAlternate Operating ScenarioAP-42EPA's AP-42, Compilation of Air Pollutant Emission Factors, Fifth EditionAPIAmerican Petroleum InstitutebblBarrelBOPDBarrels of Oil per DayBREBryan Research & EngineeringC1VOCs with One CarbonC3VOCs with Four or More CarbonsC4+VOCs with There CarbonsC4+VOCs with There CarbonsC6Carbon MonoxideC7RCode of Federal RegulationsDREDestruction and Removal EfficiencyEPAUnited States Environmental Protection AgencyEPAUnited States Environmental Protection AgencyEPNEmission Point NumberFCAAFederal Clean Air ActFINFacility Identification NumberH <sub>2</sub> SHydrogen SulfideHAPHazardous Air PollutanthpHorsepowerHHSHorizontal Heated SeparatorICEInternal Combustion EnginelbPoundIb-molPound-MoleLDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMBTU/hrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNOxNitrogen DixideNSPSNew Source Performance StandardsNSPSNew Source Performance StandardsNSPSNew Source ReviewNppmvPerts per Millino by Volume </td <td>40 CFR</td> <td>Title 40 of the United States Code of Federal Regulations</td> | 40 CFR           | Title 40 of the United States Code of Federal Regulations                 |
| AP-42EPA's AP-42, Compilation of Air Pollutant Emission Factors, Fifth EditionAPIAmerican Petroleum InstitutebblBarrelBOPDBarrels of Oil per DayBREBryan Research & EngineeringC1VOCs with One CarbonsC3VOCs with Three CarbonsC0Carbon MonoxideC7RCode of Federal RegulationsDREDestruction and Removal EfficiencyEPAEntited States Environmental Protection AgencyEPNEmission Point NumberFCAAFederal Clean Air ActFINFacility Identification NumberHAPHazondus Ar PollutanthpHorsepowerHHSHorizontal Heated SeparatorICEInternal Combustion EnginelbPoundIb-Pound-MoleLDARLake Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 galionsMMSTU/hrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNOxNitrogen DixideNSRNew Source ReviewPpmPrevention of Significant DeteriorationppaiPounds per Square Inch (absolute)RAutional Emission StandardsNSRNew Source ReviewPpmvPressure ReviewPpmvPressure ReviewPpmvPressure ReviewPpmvPresser RaskineRICEReciprocating Internal Combustion Engine                                                                                                                        | AOS              | Alternate Operating Scenario                                              |
| APIAmerican Petroleum InstitutebblBarrelbVDBarrels of Oil per DayBREBryan Research & EngineeringC1VOCs with One CarbonC3VOCs with Four or More CarbonsC4+VOCs with Four or More CarbonsC0Carbon MonoxideCFRCode of Federal RegulationsDREDestruction and Removal EfficiencyEPAUnited States Environmental Protection AgencyEPNEmission Point NumberFCAAFederal Clean Air ActFINFacility Identification NumberH <sub>2</sub> SHydrogen SulfideHAPHazardous Air PollutanthpHorsepowerHHSHorizontal Heated SeparatorICEInternal Combustion EngineIbPoundIbPoundIbPound-MoleLDARLeak Detection and RepairMMSTU/HMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNSSNainenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNSPSNew Source Performance StandardsNSRNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pr                                                                                                             | AP-42            | EPA's AP-42, Compilation of Air Pollutant Emission Factors, Fifth Edition |
| bblBarrelBOPDBarrels of Oil per DayBREBryan Research & EngineeringC1VOCs with One CarbonC3VOCs with Three CarbonsC4+VOCs with Tour or More CarbonsC0Carbon MonoxideC7RCode of Federal RegulationsDREDestruction and Removal EfficiencyEPAUnited States Environmental Protection AgencyEPAUnited States Environmental Protection AgencyEPAEmission Point NumberFCAAFederal Clean Air ActFINFacility Identification NumberH <sub>2</sub> SHydrogen SulfideHAPHazardous Air PollutanthpHorsepowerHHSHorizontal Heated SeparatorICEInternal Combustion EnginelbPoundIb-molPound-MoleLDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMBTU/hrMillion Striath Thermal Units per HourMMSCf/yrMillion Stradard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNSRNew Source Performance                                                                                  | API              | American Petroleum Institute                                              |
| BOPDBarrels of Oil per DayBREBryan Research & EngineeringC1VOCs with One CarbonC3VOCs with Three CarbonsC4+VOCs with Four or More CarbonsC0Carbon MonoxideCFRCode of Federal RegulationsDREDestruction and Removal EfficiencyEPAUnited States Environmental Protection AgencyEPNEmission Point NumberFCAAFederal Clean Air ActFINFacility Identification NumberH_2SHydrogen SulfideHAPHazardous Air PollutanthpHorizontal Heated SeparatorICEInternal Combustion EngineIbPoundIb-molPound-MoleLDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMBsc/fyrrMillion British Thermal Units per HourMMsc/fyrrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNOxNitrogen OxidesNO2Nitrogen DioxideNSRNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPound Sper Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor PressureSof/hrStandard Cubic Feet per HourSSRSequitur Permian, LLC                                                                                                           | bbl              | Barrel                                                                    |
| BREBryan Research & EngineeringC1VOCs with One CarbonC3VOCs with Four or More CarbonsC4+VOCs with Four or More CarbonsC0Carbon MonoxideCFRCode of Federal RegulationsDREDestruction and Removal EfficiencyEPAUnited States Environmental Protection AgencyEPAEmission Point NumberFCAAFederal Clean Air ActFINFacility Identification NumberH <sub>2</sub> SHydrogen SulfideHAPHazardous Air PollutanthpHorsepowerHHSHorizontal Heated SeparatorICEInternal Combustion EngineIbPoundIb-molPound-MoleLDARLeak Detection and SepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMBTU/hrMillion Stitish Thermal Units per HourMAAQSNational Ambient Air Quality StandardsNO <sub>4</sub> National Ambient Air Quality StandardsNO <sub>2</sub> Nitrogen DixideNSSNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationPSDPrevention of Significant DeteriorationSSRNed saper Ench (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor PressureSof/hrStandard Cubic Feet per HourSSRSequitur DixideTCATe                                                                                       | BOPD             | Barrels of Oil per Day                                                    |
| C1VOCs with One CarbonC3VOCs with Three CarbonsC4+VOCs with Three CarbonsC0Carbon MonoxideC7RCode of Federal RegulationsDREDestruction and Removal EfficiencyEPAUnited States Environmental Protection AgencyEPNEmission Point NumberFCAAFederal Clean Air ActFINFacility Identification NumberH <sub>2</sub> SHydrogen SulfideHAPHazardous Air PollutanthpHorsepowerHHSHorizontal Heated SeparatorICEInternal Combustion EngineIbPoundIb-molPound-MoleLDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMBTU/hrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Emission Standards for Hazardous Air PollutantsNO2Nitrogen DioxideNSPSNew Source Performance StandardsNSPSNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSSMSequitur PersiunSSMSequitur PersiunSSMProvention of Significant DeteriorationpsiaPounds                                                                                                             | BRE              | Bryan Research & Engineering                                              |
| C3VOCs with Three CarbonsC4+VOCs with Four or More CarbonsC0Carbon MonoxideCFRCode of Federal RegulationsDREDestruction and Removal EfficiencyEPAUnited States Environmental Protection AgencyEPNEmission Point NumberFCAAFederal Clean Air ActFINFacility Identification NumberH <sub>2</sub> SHydrogen SulfideHAPHazardous Air PollutanthpHorsepowerHHSHorizontal Heated SeparatorICEInternal Combustion EnginelbPoundlb-molPound-MoleLDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMStf/yrMillion British Thermal Units per HourMMscf/yrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNESHAPNational Emission Standards for Hazardous Air PollutantsNOxNitrogen OxidesNSRNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICERecid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Suffur DioxideTCAATexas Clean Air Act <td>C1</td> <td>VOCs with One Carbon</td>                                                               | C1               | VOCs with One Carbon                                                      |
| C4+VOCs with Four or More CarbonsC0Carbon MonoxideCFRCode of Federal RegulationsDREDestruction and Removal EfficiencyEPAUnited States Environmental Protection AgencyEPAEmission Point NumberFCAAFederal Clean Air ActFINFacility Identification NumberH <sub>2</sub> SHydrogen SulfideHAPHazardous Air PollutanthpHorsepowerHHSHorizontal Heated SeparatorICEInternal Combustion EngineIbPoundIb-Nound-MoleLDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMBTU/hrMillion British Thermal Units per HourMMSC/yrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNOxNitrogen OxidesNO2Nitrogen OxidesNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCATexas Clean Air Act                                                                                                                                                                            | C3               | VOCs with Three Carbons                                                   |
| COCarbon MonoxideCFRCode of Federal RegulationsDREDestruction and Removal EfficiencyEPAUnited States Environmental Protection AgencyEPNEmission Point NumberFCAAFederal Clean Air ActFINFacility Identification NumberH <sub>2</sub> SHydrogen SulfideHAPHazardous Air PollutanthpHorizontal Heated SeparatorICEInternal Combustion EngineIbPoundIb-molPound-MoleLDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMBTU/hrMillion British Thermal Units per HourMASC/yrMillion British Thermal Units per HourMASSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNAAQSNational Emission Standards for Hazardous Air PollutantsNOxNitrogen DixideNSRNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DixideTCEATexas Clean Air Act                                                                                                                                      | C4+              | VOCs with Four or More Carbons                                            |
| CFRCode of Federal RegulationsDREDestruction and Removal EfficiencyEPAUnited States Environmental Protection AgencyEPNEmission Point NumberFCAAFederal Clean Air ActFINFacility Identification NumberH <sub>2</sub> SHydrogen SulfideHAPHazardous Air PollutanthpHorsepowerHHSHorizontal Heated SeparatorICEInternal Combustion EngineIbPoundIbPoundIbPound-IDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMBTU/hrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Emission Standards for Hazardous Air PollutantsNOxNitrogen OxidesNOxNitrogen DixideNSFSNew Source Performance StandardsNSRNew Source ReviewppmvParts per Millin by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DixideTCEATexas Clean Air Act                                                                                                                                                                                                                     | CO               | Carbon Monoxide                                                           |
| DREDestruction and Removal EfficiencyEPAUnited States Environmental Protection AgencyEPNEmission Point NumberFCAAFederal Clean Air ActFINFacility Identification NumberH <sub>3</sub> SHydrogen SulfideHAPHazardous Air PollutanthpHorsepowerHHSHorizontal Heated SeparatorICEInternal Combustion EnginelbPoundlb-molPound-MoleLDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMBTU/hrMillion British Thermal Units per HourMMscf/yrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNOxNitrogen OxidesNOxNitrogen DioxideNSRNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                   | CFR              | Code of Federal Regulations                                               |
| EPAUnited States Environmental Protection AgencyEPNEmission Point NumberFCAAFederal Clean Air ActFINFacility Identification NumberH <sub>2</sub> SHydrogen SulfideHAPHazardous Air PollutanthpHorizontal Heated SeparatorICEInternal Combustion EnginelbPoundlb-molPound-MoleLDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMBTU/hrMillion Sritish Thermal Units per HourMMSCf/yrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNO2Nitrogen OxidesNO2Nitrogen DixideNSRNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                      | DRE              | Destruction and Removal Efficiency                                        |
| EPNEmission Point NumberFCAAFederal Clean Air ActFINFacility Identification NumberH <sub>2</sub> SHydrogen SulfideHAPHazardous Air PollutanthpHorsepowerHHSHorizontal Heated SeparatorICEInternal Combustion EnginelbPoundlb-molPound-MoleLDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMBTU/hrMillion British Thermal Units per HourMMscf/yrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNESHAPNational Emission Standards for Hazardous Air PollutantsNOxNitrogen OxidesNO2Nitrogen DioxideNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressuresc/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                              | EPA              | United States Environmental Protection Agency                             |
| FCAAFederal Clean Air ActFINFacility Identification NumberH <sub>2</sub> SHydrogen SulfideHAPHazardous Air PollutanthpHorsepowerHHSHorizontal Heated SeparatorICEInternal Combustion EngineIbPoundIb-molPound-MoleLDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMBTU/hrMillion British Thermal Units per HourMMscf/yrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNC2Nitrogen OxidesNO2Nitrogen DioxideNSRNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressuresc/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCEAFexas Clean Air Act                                                                                                                                                                                                                                                                                                                                 | FPN              | Emission Point Number                                                     |
| FINFacility Identification NumberH2SHydrogen SulfideHAPHazardous Air PollutanthpHorsepowerHHSHorizontal Heated SeparatorICEInternal Combustion EnginelbPoundlb-molPound-MoleLDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMBTU/hrMillion British Thermal Units per HourMMscf/yrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNO2Nitrogen OxidesNO2Nitrogen DioxideNSRNew Source Performance StandardsNSRNew Source ReviewpmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCEATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                       | FCAA             | Federal Clean Air Act                                                     |
| Hydrogen SulfideHAPHazardous Air PollutanthpHorsepowerHHSHorizontal Heated SeparatorICEInternal Combustion EnginelbPoundlb-molPound-MoleLDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMBTU/hrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNOxNitrogen OxidesNO2Nitrogen OxidesNO2Nitrogen OxidesNSRNew Source Performance StandardsNSRNew Source ReviewpmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                        | FIN              | Facility Identification Number                                            |
| HAPHazardous Air PollutanthpHorsepowerHHSHorizontal Heated SeparatorICEInternal Combustion EnginelbPoundlb-molPound-MoleLDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMBTU/hrMillion British Thermal Units per HourMMScf/yrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNOxNitrogen DioxideNSPSNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                           | H <sub>2</sub> S | Hydrogen Sulfide                                                          |
| hpHorsepowerHHSHorsepowerHHSHorizontal Heated SeparatorICEInternal Combustion EngineIbPoundIb-molPound-MoleLDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMBTU/hrMillion British Thermal Units per HourMScf/yrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNESHAPNational Emission Standards for Hazardous Air PollutantsNOxNitrogen OxidesNO2Nitrogen DioxideNSRNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                          | НАР              | Hazardous Air Pollutant                                                   |
| HHSHorizontal Heated SeparatorICEInternal Combustion EngineIbPoundIb-molPound-MoleLDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMBTU/hrMillion British Thermal Units per HourMMscf/yrMillion Standard Cubic Feet per YearMSSMaitenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNESHAPNational Emission Standards for Hazardous Air PollutantsNOxNitrogen OxidesNSRNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                      | hp               | Horsenower                                                                |
| Internal Combustion EngineIDEInternal Combustion EngineIbPoundIb-molPound-MoleLDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMBTU/hrMillion British Thermal Units per HourMMscf/yrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNESHAPNational Emission Standards for Hazardous Air PollutantsNOxNitrogen OxidesNO2Nitrogen DioxideNSRNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                      | HHS              | Horizontal Heated Separator                                               |
| IbPoundIbPound-MoleLDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMBTU/hrMillion British Thermal Units per HourMMscf/yrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNESHAPNational Emission Standards for Hazardous Air PollutantsNOxNitrogen OxidesNO2Nitrogen DioxideNSRNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ICF              | Internal Combustion Engine                                                |
| Ib-molPound-MoleLDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMBTU/hrMillion British Thermal Units per HourMMscf/yrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNESHAPNational Emission Standards for Hazardous Air PollutantsNO2Nitrogen OxidesNO2Nitrogen DixideNSRNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lb               | Pound                                                                     |
| IDARLeak Detection and RepairMACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMBTU/hrMillion British Thermal Units per HourMMscf/yrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNESHAPNational Emission Standards for Hazardous Air PollutantsNOxNitrogen OxidesNO2Nitrogen DioxideNSRNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lb-mol           | Pound-Mole                                                                |
| MACTMaximum Achievable Control TechnologyMgal1,000 gallonsMMBTU/hrMillion British Thermal Units per HourMMscf/yrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNESHAPNational Emission Standards for Hazardous Air PollutantsNOxNitrogen OxidesNO2Nitrogen DioxideNSRNew Source Performance StandardsNSRNew Source ReviewpmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IDAR             | Leak Detection and Repair                                                 |
| Mgal1,000 gallonsMgal1,000 gallonsMMBTU/hrMillion British Thermal Units per HourMMscf/yrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNESHAPNational Emission Standards for Hazardous Air PollutantsNOxNitrogen OxidesNO2Nitrogen DioxideNSRNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MACT             | Maximum Achievable Control Technology                                     |
| MMBTU/hrMillion British Thermal Units per HourMMscf/yrMillion British Thermal Units per HourMMSMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNESHAPNational Emission Standards for Hazardous Air PollutantsNOxNitrogen OxidesNO2Nitrogen DioxideNSPSNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mgal             | 1.000 gallons                                                             |
| MMscf/yrMillion Standard Cubic Feet per YearMSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNESHAPNational Emission Standards for Hazardous Air PollutantsNOxNitrogen OxidesNO2Nitrogen DioxideNSPSNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MMBTU/hr         | Million British Thermal Units per Hour                                    |
| MSSMaintenance, Startup, and ShutdownNAAQSNational Ambient Air Quality StandardsNESHAPNational Emission Standards for Hazardous Air PollutantsNOxNitrogen OxidesNO2Nitrogen DioxideNSPSNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MMscf/vr         | Million Standard Cubic Feet per Year                                      |
| NAAQSNational Ambient Air Quality StandardsNAAQSNational Ambient Air Quality StandardsNESHAPNational Emission Standards for Hazardous Air PollutantsNOxNitrogen OxidesNO2Nitrogen DioxideNSPSNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MSS              | Maintenance, Startup, and Shutdown                                        |
| NESHAPNational Emission Standards for Hazardous Air PollutantsNOxNitrogen OxidesNO2Nitrogen DioxideNSPSNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NAAOS            | National Ambient Air Quality Standards                                    |
| NOxNitrogen OxidesNO2Nitrogen DioxideNSPSNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NESHAP           | National Emission Standards for Hazardous Air Pollutants                  |
| NOxNitrogen DioxideNO2Nitrogen DioxideNSPSNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NOv              | Nitrogen Oxides                                                           |
| NSPSNew Source Performance StandardsNSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NO <sub>2</sub>  | Nitrogen Dioxide                                                          |
| NSRNew Source ReviewppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NSPS             | New Source Performance Standards                                          |
| ppmvParts per Million by VolumePSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NSR              | New Source Review                                                         |
| PSDPrevention of Significant DeteriorationpsiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nomy             | Parts per Million by Volume                                               |
| psiaPounds per Square Inch (absolute)RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PSD              | Prevention of Significant Deterioration                                   |
| RDegrees RankineRICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nsia             | Pounds per Square Inch (absolute)                                         |
| RICEReciprocating Internal Combustion EngineRVPReid Vapor Pressurescf/hrStandard Cubic Feet per HourSEMSequitur Permian, LLCSO2Sulfur DioxideTCAATexas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R                | Degrees Rankine                                                           |
| RVP     Reid Vapor Pressure       scf/hr     Standard Cubic Feet per Hour       SEM     Sequitur Permian, LLC       SO2     Sulfur Dioxide       TCAA     Texas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RICE             | Reciprocating Internal Combustion Engine                                  |
| scf/hr     Standard Cubic Feet per Hour       SEM     Sequitur Permian, LLC       SO2     Sulfur Dioxide       TCAA     Texas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RVP              | Reid Vanor Pressure                                                       |
| SEM     Sequitur Permian, LLC       SO2     Sulfur Dioxide       TCAA     Texas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | scf/hr           | Standard Cubic Feet per Hour                                              |
| SO <sub>2</sub> Sulfur Dioxide<br>TCAA Texas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SEM              | Sequitur Permian 11C                                                      |
| TCA Texas Clean Air Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SO <sub>2</sub>  | Sulfur Dioxide                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TCAA             | Texas Clean Air Act                                                       |
| ICEO Texas Commission on Environmental Quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TCEO             | Texas Commission on Environmental Quality                                 |
| thy Tons ner Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tnv              | Tons per Year                                                             |
| VOC Volatile Organic Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VOC              | Volatile Organic Compound                                                 |

Permit by Rule Registration Munson #1201 Salt Water Disposal Facility

# **1. INTRODUCTION**

Sequitur Permian, LLC (SEM) owns and operates the Munson #1201 Salt Water Disposal Facility in Irion County, Texas. The facility does not require registration under 30 TAC §106.6; however, the site operates two generator engines of 240 horsepower or greater. Therefore, SEM has included the referenced PI-7 to register the facility for operation of the following equipment via Title 30 of the Texas Administrative code (30 TAC) §106.512 – *Stationary Engines and Turbines.* 

The site includes two generator engines. The facility is a minor source with respect to both Prevention of Significant Deterioration (PSD) review (under 30 TAC §116.110) as well as the Federal Operating Permits Program (Title V) (under 30 TAC §122). Irion County is in attainment for all criteria air pollutants.

Enclosed are the required application materials consisting of the following: a process description, process flow diagram, emission calculations, PI-7, Core Data Form, Table 1a, and other documentation supporting the PBR claim.

# 2. PROCESS DESCRIPTION AND PROCESS FLOW DIAGRAM

The Munson #1201 Salt Water Disposal Facility is salt water disposal facility handling aqueous liquid wastes from oil and gas production operations. Two natural gas generators are located at the facility to provide electricity for facility operations, as the electric grid is not readily available at this site. A summary of the equipment at the facility is presented in Table 2-1, and a process flow diagram is presented as Figure 2-1.

| Table 2-1. Summary of Equipment |                       |             |  |  |  |  |
|---------------------------------|-----------------------|-------------|--|--|--|--|
| FIN                             | Equipment Description |             |  |  |  |  |
| GEN-1                           | GEN-1                 | Generator 1 |  |  |  |  |
| GEN-2                           | GEN-2                 | Generator 2 |  |  |  |  |





Permit by Rule Registration Munson #1201 Salt Water Disposal Facility

# 3. EMISSIONS SUMMARY

The maximum air pollutant emission rates proposed for the facility are presented in Table 3-1. Detailed emission calculations for the proposed equipment and operations are presented in Appendix A.

### 3.1 Emissions Calculations

### 3.1.1 Internal Combustion Units

Emissions from the generator engines (EPNs GEN-1 and GEN-2) of nitrogen oxides ( $NO_X$ ), carbon monoxide (CO), and VOCs, including formaldehyde were estimated using NSPS JJJJ limits. All other emission factors were taken from AP-42 Section 3.2 for the appropriate engine type (AP-42, Section 3.2, July 2000). Total VOC emissions include formaldehyde emissions.

| Table 3-1. Proposed Maximum Air Pollutant Emission Rates |       |      |       |      |       |      |                  |      |                   |      |
|----------------------------------------------------------|-------|------|-------|------|-------|------|------------------|------|-------------------|------|
| EPN/Emission Source                                      | VOC   |      | NOx   |      | СО    |      | PM <sub>10</sub> |      | PM <sub>2.5</sub> |      |
|                                                          | lb/hr | TPY  | lb/hr | TPY  | lb/hr | TPY  | lb/hr            | TPY  | lb/hr             | TPY  |
| GEN-1/Generator                                          | 0.44  | 1.91 | 0.56  | 2.45 | 1.12  | 4.91 | 0.04             | 0.18 | 0.04              | 0.18 |
| GEN-2/Generator                                          | 0.44  | 1.91 | 0.56  | 2.45 | 1.12  | 4.91 | 0.04             | 0.18 | 0.04              | 0.18 |
| TOTAL EMISSIONS:                                         | 0.87  | 3.82 | 1.12  | 4.91 | 2.24  | 9.81 | 0.08             | 0.37 | 0.08              | 0.37 |

| Table 3-1. Proposed Maximum Air Pollutant Emission Rates (cont'd) |                 |      |                  |          |          |      |              |      |       |      |
|-------------------------------------------------------------------|-----------------|------|------------------|----------|----------|------|--------------|------|-------|------|
| EPN/Emission Source                                               | SO <sub>2</sub> |      | H <sub>2</sub> S |          | Benzene  |      | Formaldehyde |      | НАР   |      |
|                                                                   | lb/hr           | TPY  | lb/hr            | TPY      | lb/hr    | TPY  | lb/hr        | TPY  | lb/hr | TPY  |
| GEN-1/Generator                                                   | 0.01            | 0.04 | 9.50E-05         | 4.16E-04 | 3.41E-03 | 0.01 | 0.04         | 0.19 | 0.07  | 0.31 |
| GEN-2/Generator                                                   | 0.01            | 0.04 | 9.50E-05         | 4.16E-04 | 3.41E-03 | 0.01 | 0.04         | 0.19 | 0.07  | 0.31 |
| TOTAL EMISSIONS:                                                  | 0.02            | 0.08 | <0.01            | <0.01    | 0.01     | 0.03 | 0.09         | 0.39 | 0.14  | 0.61 |

# 4. COMPLIANCE WITH FEDERAL AND STANDARD PERMIT REQUIREMENTS

A summary of compliance with applicable state and federal requirements is provided in Appendix B and Tables 5-1 and 5-2. Appendix B contains TCEQ checklists demonstrating compliance with 30 TAC §106.4 and §106.512. Table 5-1 demonstrates compliance with the PBR requirements of 30 TAC §106.4 and §106.512. Table 5-2 outlines federal requirements including applicable NSPS and Maximum Achievable Control Technology (MACT) regulations.

| Table 5-1 - P | Table 5-1 - PERMIT BY RULE COMPLIANCE SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                           |  |  |  |  |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Citation      | Summary of Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Demonstration of Compliance                                                                                                                               |  |  |  |  |  |  |
| §106.4(a)(1)  | Total actual emissions authorized under permit by rule from the facility shall<br>not exceed 250 tons per year (tpy) of carbon monoxide (CO) or nitrogen oxides<br>(NOx); or 25 tpy of volatile organic compounds (VOC) or sulfur dioxide (SO2) or<br>inhalable particulate matter (PM); or 15 tpy of particulate matter with<br>diameters of 10 microns or less (PM10); or 10 tpy of particulate matter with<br>diameters of 2.5 microns or less (PM2.5); or 25 tpy of any other air<br>contaminant except carbon dioxide, water, nitrogen, methane, ethane,<br>hydrogen, and oxygen.                                                                                                                                                                                                                                                                                                                                                                                                                        | All emissions from the facilities authorized under 30 TAC §106<br>will not exceed the listed limits. Please see Appendix A for<br>emissions calculations. |  |  |  |  |  |  |
| §106.4(a)(2)  | Any facility or group of facilities, which constitutes a new major stationary<br>source, as defined in §116.12 of this title (relating to Nonattainment and<br>Prevention of Significant Deterioration Review Definitions), or any modification<br>which constitutes a major modification, as defined in §116.12 of this title, under<br>the new source review requirements of the Federal Clean Air Act (FCAA), Part D<br>(Nonattainment) as amended by the FCAA Amendments of 1990, and<br>regulations promulgated thereunder, must meet the permitting requirements<br>of Chapter 116, Subchapter B of this title (relating to New Source Review<br>Permits) and cannot qualify for a permit by rule under this chapter. Persons<br>claiming a permit by rule under this chapter should see the requirements of<br>§116.150 of this title (relating to New Major Source or Major Modification in<br>Ozone Nonattainment Areas) to ensure that any applicable netting<br>requirements have been satisfied." | The proposed project does not constitute a new major stationary source or a major modification as defined under TAC §116.12.                              |  |  |  |  |  |  |
| §106.4(a)(3)  | Any facility or group of facilities, which constitutes a new major stationary source, as defined in 40 Code of Federal Regulations (CFR) §52.21, or any change which constitutes a major modification, as defined in 40 CFR §52.21, under the new source review requirements of the FCAA, Part C (Prevention of Significant Deterioration) as amended by the FCAA Amendments of 1990, and regulations promulgated thereunder, must meet the permitting requirements of Chapter 116, Subchapter B of this title and cannot qualify for a permit by rule under this chapter.                                                                                                                                                                                                                                                                                                                                                                                                                                    | The proposed project does not constitute a new major stationary source or a major modification as defined in 40 CFR §52.21.                               |  |  |  |  |  |  |

| Table 5-1 - P | Table 5-1 - PERMIT BY RULE COMPLIANCE SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Citation      | Summary of Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Demonstration of Compliance                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
| §106.4(a)(4)  | Unless at least one facility at an account has been subject to public notification<br>and comment as required in Chapter 116, Subchapter B or Subchapter D of this<br>title (relating to New Source Review Permits or Permit Renewals), total actual<br>emissions from all facilities permitted by rule at an account shall not exceed 250<br>tpy of CO or NOX ; or 25 tpy of VOC or SO2 or PM; or 15 tpy of PM10 ; or 10 tpy<br>of PM2.5 ; or 25 tpy of any other air contaminant except carbon dioxide, water,<br>nitrogen, methane, ethane, hydrogen, and oxygen." | The facility has not been subject public notification as required in 30 TAC §116, Subchapters B or D. Total actual emissions from all facilities permitted by rule at the site are subject to the limits specified by TAC §106.4(a)(4).                                      |  |  |  |  |  |  |  |  |
| §106.4(a)(5)  | Construction or modification of a facility commenced on or after the effective date of a revision of this section or the effective date of a revision to a specific permit by rule in this chapter must meet the revised requirements to qualify for a permit by rule.                                                                                                                                                                                                                                                                                                | Proposed constructions or modifications will meet the requirements in effect as of the date of construction or modification.                                                                                                                                                 |  |  |  |  |  |  |  |  |
| §106.4(a)(6)  | A facility shall comply with all applicable provisions of the FCAA, §111 (Federal<br>New Source Performance Standards) and §112 (Hazardous Air Pollutants), and<br>the new source review requirements of the FCAA, Part C and Part D and<br>regulations promulgated thereunder.                                                                                                                                                                                                                                                                                       | The facility will comply with all applicable NSPS, NESHAP, and NSR requirements of FCAA Part C and Part D as described herein.                                                                                                                                               |  |  |  |  |  |  |  |  |
| §106.4(a)(7)  | There are no permits under the same commission account number that contain<br>a condition or conditions precluding the use of a permit by rule under this<br>chapter.                                                                                                                                                                                                                                                                                                                                                                                                 | There are no permits under the same commission account<br>number that contain a condition or conditions precluding the use<br>of a permit by rule under this chapter.                                                                                                        |  |  |  |  |  |  |  |  |
| §106.4(a)(8)  | The proposed facility or group of facilities shall obtain allowances for NOX if<br>they are subject to Chapter 101, Subchapter H, Division 3 of this title (relating to<br>Mass Emissions Cap and Trade Program).                                                                                                                                                                                                                                                                                                                                                     | The facility emits less than 10 tpy of NO <sub>X</sub> and is not located in the<br>Houston-Galveston-Brazoria non-attainment area. Therefore,<br>the requirements of the Mass Emissions Cap and Trade Program<br>under 30 TAC §101, Subchapter H, Division 3, do not apply. |  |  |  |  |  |  |  |  |
| §106.4(b)     | No person shall circumvent by artificial limitations the requirements of §116.110 of this title (relating to Applicability).                                                                                                                                                                                                                                                                                                                                                                                                                                          | The requirements of TAC §116.110 will not be circumvented by artificial limitations.                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| §106.4(c)     | The emissions from the facility shall comply with all rules and regulations of the commission and with the intent of the Texas Clean Air Act (TCAA), including protection of health and property of the public, and all emissions control equipment shall be maintained in good condition and operated properly during operation of the facility.                                                                                                                                                                                                                     | The emissions from the proposed facilities will comply with all<br>rules and regulations of the commission and with the intent of<br>the Texas Clean Air Act.                                                                                                                |  |  |  |  |  |  |  |  |

| Citation       | Summary of Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Demonstration of Compliance                                                                                                                                                                                                                                                                       |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| §106.4(d)      | Facilities permitted by rule under this chapter are not exempted from any permits or registrations required by local air pollution control agencies. Any such requirements must be in accordance with TCAA, §382.113 and any other applicable law.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The permitted by rule facilities will comply with local air pollution control agency requirements.                                                                                                                                                                                                |
| §106.512(1)    | Each engine or turbine with a manufacturer maximum rated horsepower greater than or equal to 240 hp shall be registered by submitting a Form PI-7, Table 29 for each proposed reciprocating engine with 10 days after construction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The facility includes two engines with manufacturer maximum<br>rated horsepower greater than or equal to 240 hp. This<br>application meets the requirements for registering the engine(s)<br>within 10 days after construction. Please see Appendix B for<br>Table 29 for each applicable engine. |
| §106.512(2)(A) | <ul> <li>For any engine rated 500 hp or greater, emissions shall not exceed: <ul> <li>(i) 2.0 g/hp-hr for any gas-fired rich burn engine;</li> <li>(ii) 2.0 g/hp-hr at full load; 5.0 g/hp-hr under reduced load (80-100% torque),</li> <li>for any gas-fired lean burn engine, or any compression-ignited dual-fired engine manufactured after June 18, 1992;</li> <li>(iii) 5.0 g/hp-hr for any spark-ignited; gas-fired lean-burn or compression ignited dual-fired engine rated 825 hp or greater manufactured after</li> <li>September 23, 1982, but prior to June 18, 1992;</li> <li>(iv) 5.0 g/hp-hr at full load; 8.0 g/hp-hr under reduced load (80% -100% torque), for any spark-ignited, gas fired, lean burn 4 stroke engine or compression ignition dual-fired unit that:</li> <li>(I) was manufactured prior to June 18, 1992, and is rated less than 825 hp; or</li> <li>(II) was manufactured prior to June 18, 1992, and is rated less than 825 hp; or</li> <li>(II) was manufactured prior to June 18, 1992, and is rated less than 825 hp; or</li> <li>(II) was manufactured prior to June 18, 1992, and is rated less than 825 hp; or</li> <li>(II) was manufactured prior to June 18, 1992, and is rated less than 825 hp; or</li> <li>(II) was manufactured prior to June 18, 1992, and is rated less than 825 hp; or</li> <li>(II) was manufactured prior to June 18, 1992, and is rated less than 825 hp; or</li> </ul> </li> </ul> | There are no engines rated 500 hp or greater at the site;<br>therefore, this provision is not applicable.                                                                                                                                                                                         |
| §106.512(2)(B) | For spark-ignited gas-fired or compression ignition dual-fired engines equipped with an NSCR or the fuel heating value is more exceeds +/- 50 Btu of the design lower heating value of the fuel, the engine shall be equipped with an air-fuel ratio (AFR) controller which maintains the AFR in the required range as specified in §106.512(2)(A).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | There are no applicable engines at the facility; therefore, this provision is not applicable.                                                                                                                                                                                                     |
| §106.512(2)(C) | Records shall be maintained by the owner or operator for a period of at least 2 years and made available upon request.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The owner/operator will comply with the recordkeeping provisions of the rule.                                                                                                                                                                                                                     |
| §106.512(3)(A) | For any gas turbine rated 500 hp or more, the emissions of NOx shall not exceed 3.0 g/hp-hr for gas-firing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | There are no gas turbines rated 500 hp or more at the facility.                                                                                                                                                                                                                                   |

| Table 5-1 - PERMIT BY RULE COMPLIANCE SUMMARY |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Citation                                      | Summary of Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Demonstration of Compliance                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| §106.512(3)(B)                                | For any gas turbine rated 500 hp or more, the turbine shall meet all applicable NOx and sulfur dioxide (SO2) (or fuel sulfur) emissions limitations, monitoring requirements, and reporting requirements of EPA New Source Performance Standards Subpart GGStandards of Performance for Stationary Gas Turbines. Turbine hp rating shall be based on turbine base load, fuel lower heating value, and International Standards Organization Standard Day Conditions of 59 degrees Fahrenheit, 1.0 atmosphere and 60% relative humidity.                                                                                                                                                                                                                           | There are no gas turbines rated 500 hp or more at the facility.                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| §106.512(4)                                   | Any engine or turbine rated less than 500 hp or used for temporary replacement purposes shall be exempt from the emission limitations of paragraphs (2) and (3) of this section. Temporary replacement engines or turbines shall be limited to a maximum of 90 days of operation after which they shall be removed or rendered physically inoperable.                                                                                                                                                                                                                                                                                                                                                                                                            | Engines or turbines rated less than 500 hp will comply with all applicable parts of this rule.                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| §106.512(5)                                   | Gas fuel shall be limited to: sweet natural gas or liquid petroleum gas, fuel gas<br>containing no more than ten grains total sulfur per 100 dry standard cubic feet,<br>or field gas. If field gas contains more than 1.5 grains hydrogen sulfide or 30<br>grains total sulfur compounds per 100 standard cubic feet (sour gas), the engine<br>owner or operator shall maintain records, including at least quarterly<br>measurements of fuel hydrogen sulfide and total sulfur content, which<br>demonstrate that the annual SO 2 emissions from the facility do not exceed 25<br>tons per year (tpy). Liquid fuel shall be petroleum distillate oil that is not a<br>blend containing waste oils or solvents and contains less than 0.3% by weight<br>sulfur. | The facility will comply with the gas fuel requirements of §106.512(5) and will maintain records if applicable.                                                                                                                                                                                                                          |  |  |  |  |  |  |
| §106.512(6)                                   | There will be no violations of any National Ambient Air Quality Standard (NAAQS) in the area of the proposed facility.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | There are no violations of any NAAQS in the area of the proposed facility. The facility is less than the annual $NO_2$ emissions per 30 TAC §106.512 (6)(C).                                                                                                                                                                             |  |  |  |  |  |  |
| §106.512(7)                                   | <ul> <li>Upon issuance of a standard permit for electric generating units, registrations under this section for engines or turbines used to generate electricity will no longer be accepted, except for:</li> <li>(A) engines or turbines used to provide power for the operation of facilities registered under the Air Quality Standard Permit for Concrete Batch Plants;</li> <li>(B) engines or turbines satisfying the conditions for facilities permitted by rule under Subchapter E of this title (relating to Aggregate and Pavement); or</li> <li>(C) engines or turbines used exclusively to provide power to electric pumps</li> </ul>                                                                                                                | The facility includes two engines used to generate electricity<br>being registered under 30 TAC §106.512. A standard permit for<br>electric generating units has not been issued for this facility;<br>therefore, registration of the engines used to generate electricity<br>at this facility is being requested under 30 TAC §106.512. |  |  |  |  |  |  |

| Table 5-2.          | Table 5-2. Federal Standard Applicability                                                                                   |                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Federal<br>Standard | Name                                                                                                                        | Applicability                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|                     |                                                                                                                             | New Source Performance Standards                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| NSPS IIII           | Standards of Performance for<br>Stationary Compression Ignition<br>Internal Combustion Engines                              | Subpart IIII applies to manufacturers, owners, and operators of compression ignition ICE.<br>The facility does not include compression ignited internal combustion engines; therefore, this<br>subpart does not apply.                                                                                                                          |  |  |  |  |  |  |  |
| NSPS JJJJ           | Standards of Performance for<br>Stationary Spark Ignition<br>Internal Combustion Engines                                    | Subpart JJJJ applies to manufacturers, owners, and operators of spark ignition ICE.<br>The facility will include two spark ignition, field gas-fueled ICE (EPNs GEN-1 and GEN-2) that<br>commenced construction after June 12, 2006. The engines are subject to the requirements of<br>NSPS JJJJ, and will comply with NSPS JJJJ as applicable. |  |  |  |  |  |  |  |
|                     |                                                                                                                             | Maximum Achievable Control Technology                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| MACT ZZZZ           | National Emissions Standards<br>for Hazardous Air Pollutants for<br>Stationary Reciprocating<br>Internal Combustion Engines | This subpart applies to all spark and compression ignition ICE.<br>The generator engines are considered new stationary RICE located at an area source and therefore<br>are subject to Subpart ZZZZ. In accordance with §63.6590(c) and (c)(1), the generator engines<br>must comply with the requirements of NSPS JJJJ.                         |  |  |  |  |  |  |  |

Permit by Rule Registration Munson #1201 Salt Water Disposal Facility

# APPENDIX A EMISSION CALCULATIONS

| Table 3-1. Proposed Maximum Air Pollutant Emission Rates |       |      |       |                |       |      |       |                 |       |      |       |        |          |          |          |      |        |        |       |      |
|----------------------------------------------------------|-------|------|-------|----------------|-------|------|-------|-----------------|-------|------|-------|--------|----------|----------|----------|------|--------|--------|-------|------|
| EPN/Emission Source                                      | VC    | C    | N     | 0 <sub>x</sub> | C     | 0    | PM    | 1 <sub>10</sub> | PM    | 2.5  | S     | 02     | H        | $_2S$    | Benz     | ene  | Formal | dehyde | HA    | ٩P   |
|                                                          | lb/hr | TPY  | lb/hr | TPY            | lb/hr | TPY  | lb/hr | TPY             | lb/hr | TPY  | lb/hr | TPY    | lb/hr    | TPY      | lb/hr    | TPY  | lb/hr  | TPY    | lb/hr | TPY  |
| GEN-1/Generator                                          | 0.40  | 1.77 | 0.56  | 2.45           | 1.12  | 4.91 | 0.04  | 0.18            | 0.04  | 0.18 | 0.01  | 0.04   | 9.50E-05 | 4.16E-04 | 3.41E-03 | 0.01 | 0.04   | 0.19   | 0.07  | 0.31 |
| GEN-2/Generator                                          | 0.40  | 1.77 | 0.56  | 2.45           | 1.12  | 4.91 | 0.04  | 0.18            | 0.04  | 0.18 | 0.01  | 0.04   | 9.50E-05 | 4.16E-04 | 3.41E-03 | 0.01 | 0.04   | 0.19   | 0.07  | 0.31 |
| TOTAL EMISSIONS:                                         | 0.81  | 3.53 | 1.12  | 4.91           | 2.24  | 9.81 | 0.08  | 0.37            | 0.08  | 0.37 | 0.02  | 0.08   | < 0.01   | <0.01    | 0.01     | 0.03 | 0.09   | 0.39   | 0.14  | 0.61 |
| MAXIMUM OPERATING SCHEDULE:                              |       |      | Hours | s/Day          | 24    |      | Days/ | 'Week           | 7     |      | Weeks | s/Year | 52       |          |          |      | Hours  | s/Year | 8760  |      |

#### Sequitur Permian, LLC Munson #1201 SWD Facility Gas Generator

#### EPN: GEN-1 FIN: GEN-1

| Engine Data                   |                     |
|-------------------------------|---------------------|
| Name                          | Generator 1         |
| Manufacturer                  | PSI                 |
| Model Number                  | Doosan 11.1L        |
| Horsepower:                   | 254                 |
| Fuel consumption (Btu/hp-hr): | 8,493               |
| Hours of operation per year:  | 8,760               |
| Engine Type:                  | 4 Stroke, Rich-Burn |

| Fuel Data                      |           |
|--------------------------------|-----------|
| Fuel Type                      | field gas |
| Fuel Consumption (BTU/bhp-hr)  | 8,493     |
| Heat Value (HHV)               | 1,020     |
| Heat Value (LHV)               | 1,020     |
| Sulfur Content (grains/100scf) | 1.5727    |

| Method of Emission Control | Yes/No |
|----------------------------|--------|
| NSCR Catalyst              | No     |
| SCR Catalyst               | No     |
| JLCC Catalyst              | No     |
| Parameter Adjustment       | No     |
| Stratified Charge          | No     |
| Other (Specify)            | No     |

| Emission Calculations |                                                 |                                                                                      | Generator 1                                                 |                         |          |                      |                    |  |
|-----------------------|-------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------|----------|----------------------|--------------------|--|
|                       | Manufacturer's<br>emission factors<br>(g/hp-hr) | AP-42 Table 3.2-3<br>4 Stroke, Rich<br>Burn engine<br>emission factors<br>(Ib/MMBtu) | Controlled<br>Emission<br>Factors <sup>b</sup><br>(g/hp-hr) | Emission<br>Factor Used | Units    | Emissions<br>(lb/hr) | Emissions<br>(tpy) |  |
| VOC <sup>a</sup>      | 0.70                                            | 0.0296                                                                               | 0.72                                                        | 0.7205                  | g/hp-hr  | 0.40                 | 1.77               |  |
| NOx                   | 1.00                                            | 2.21                                                                                 | 1.00                                                        | 1                       | g/hp-hr  | 0.56                 | 2.45               |  |
| CO                    | 2.00                                            | 3.72                                                                                 | 2.00                                                        | 2                       | g/hp-hr  | 1.12                 | 4.91               |  |
| PM <sub>10</sub>      |                                                 | 0.01941                                                                              |                                                             | 0.01941                 | lb/MMBtu | 0.04                 | 0.18               |  |
| PM <sub>2.5</sub>     |                                                 | 0.01941                                                                              |                                                             | 0.01941                 | lb/MMBtu | 0.04                 | 0.18               |  |
| SO <sub>2</sub>       |                                                 | 0.000588                                                                             |                                                             | 0.000588                | lb/MMBtu | 0.01                 | 0.04               |  |
| Formaldehyde          |                                                 | 0.0205                                                                               |                                                             | 0.0205                  | lb/MMBtu | 0.04                 | 0.19               |  |
| Benzene               |                                                 | 0.00158                                                                              |                                                             | 0.00158                 | lb/MMBtu | 3.41E-03             | 0.01               |  |
| H <sub>2</sub> S      |                                                 | N/A                                                                                  |                                                             | 98% DRE                 | N/A      | 9.50E-05             | 4.16E-04           |  |

 $^{\rm a}$  VOC emissions based on the sum of NMNEHC and Formaldehyde

<sup>b</sup> Controlled emissions based on NSPS JJJJ limits. Total VOC emissions includes Formaldehyde as calculated using AP-42 Formaldehyde emission factor

# Sequitur Permian, LLC Munson #1201 SWD Facility **Gas Generator**

#### EPN: GEN-1 FIN: GEN-1

#### Calculation:

Calculation: For emission factors in terms of g/hp-hr: (Emission factor) \* (Horsepower) / (Conversion factor) (g/hp-hr) \* (hp) / (453.59 g/lb) For emission factors in terms of lb/MMBtu: (Emission factor) \* (Fuel Consumption) \* (Horsepower) \* (Conversion factor) (lb/MMBtu) \* (Btu/hp-hr) \* (hp) \* (1 MMBtu/1,000,000 Btu)

| HAP Emission Calculations |                                                    |                    |                  |  |  |  |  |  |
|---------------------------|----------------------------------------------------|--------------------|------------------|--|--|--|--|--|
|                           | 4 Stroke, Rich-<br>Burn                            | Genera             | tor 1            |  |  |  |  |  |
| Pollutant                 | AP-42 Table 3.2-3<br>Emission Factor<br>(Ib/MMBtu) | Emissions<br>lb/hr | Emissions<br>tpy |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane | 2.53E-05                                           | 5.46E-05           | 2.39E-04         |  |  |  |  |  |
| 1,1,2-Trichloroethane     | 1.53E-05                                           | 3.30E-05           | 1.45E-04         |  |  |  |  |  |
| 1,3-Butadiene             | 6.63E-04                                           | 1.43E-03           | 0.01             |  |  |  |  |  |
| 1,3-Dichloropropene       | 1.27E-05                                           | 2.74E-05           | 1.20E-04         |  |  |  |  |  |
| 2-Methylnaphthalene       |                                                    |                    |                  |  |  |  |  |  |
| 2,2,4-Trimethylpentane    |                                                    |                    |                  |  |  |  |  |  |
| Acenaphthene              |                                                    |                    |                  |  |  |  |  |  |
| Acenaphthylene            |                                                    |                    |                  |  |  |  |  |  |
| Acetaldehyde              | 2.79E-03                                           | 0.01               | 0.03             |  |  |  |  |  |
| Acrolein                  | 2.63E-03                                           | 0.01               | 0.02             |  |  |  |  |  |
| Benzene                   | 1.58E-03                                           | 3.41E-03           | 0.01             |  |  |  |  |  |
| Benzo(b)flouanthene       |                                                    |                    |                  |  |  |  |  |  |
| Benzo(e)pyrene            |                                                    |                    |                  |  |  |  |  |  |
| Benzo(g,h,i)perylene      |                                                    |                    |                  |  |  |  |  |  |
| Biphenyl                  |                                                    |                    |                  |  |  |  |  |  |
| Carbon Tetrachloride      | 1.77E-05                                           | 3.82E-05           | 1.67E-04         |  |  |  |  |  |
| Chlorobenzene             | 1.29E-05                                           | 2.78E-05           | 1.22E-04         |  |  |  |  |  |
| Chloroform                | 1.37E-05                                           | 2.96E-05           | 1.29E-04         |  |  |  |  |  |
| Chrysene                  |                                                    |                    |                  |  |  |  |  |  |
| Ethylbenzene              | 2.48E-05                                           | 5.35E-05           | 2.34E-04         |  |  |  |  |  |
| Ethylene Dibromide        | 2.13E-05                                           | 4.60E-05           | 2.01E-04         |  |  |  |  |  |
| Flouranthene              |                                                    |                    |                  |  |  |  |  |  |
| Flourene                  |                                                    |                    |                  |  |  |  |  |  |
| Formaldehyde              | 0.02                                               | 0.04               | 0.19             |  |  |  |  |  |
| Methanol                  | 3.06E-03                                           | 0.01               | 0.03             |  |  |  |  |  |
| Methylene Chloride        | 4.12E-05                                           | 8.89E-05           | 3.89E-04         |  |  |  |  |  |
| n-Hexane                  |                                                    |                    |                  |  |  |  |  |  |
| Napthalene                | 9.71E-05                                           | 2.09E-04           | 9.17E-04         |  |  |  |  |  |
| PAH                       | 1.41E-04                                           | 3.04E-04           | 1.33E-03         |  |  |  |  |  |
| Phenanthrene              |                                                    |                    |                  |  |  |  |  |  |
| Phenol                    |                                                    |                    |                  |  |  |  |  |  |
| Pyrene                    |                                                    |                    |                  |  |  |  |  |  |
| Styrene                   | 1.19E-05                                           | 2.57E-05           | 1.12E-04         |  |  |  |  |  |
| Tetrachloroethane         |                                                    |                    |                  |  |  |  |  |  |
| Toluene                   | 5.58E-04                                           | 1.20E-03           | 0.01             |  |  |  |  |  |
| Vinyl Chloride            | 7.18E-06                                           | 1.55E-05           | 6.78E-05         |  |  |  |  |  |
| Xylene                    | 1.95E-04                                           | 4.21E-04           | 1.84E-03         |  |  |  |  |  |
| Total HAPs                |                                                    | 0.07               | 0.31             |  |  |  |  |  |

Sequitur Permian, LLC Munson #1201 SWD Facility Gas Generator (cont'd)

#### EPN: GEN-2 FIN: GEN-2

| Engine Data                   |                     |
|-------------------------------|---------------------|
| Name                          | Generator 2         |
| Manufacturer                  | PSI                 |
| Model Number                  | Doosan 11.1L        |
| Horsepower:                   | 254                 |
| Fuel consumption (Btu/hp-hr): | 8,493               |
| Hours of operation per year:  | 8,760               |
| Engine Type:                  | 4 Stroke, Rich-Burn |

| Fuel Data                      |           |
|--------------------------------|-----------|
| Fuel Type                      | field gas |
| Fuel Consumption (BTU/bhp-hr)  | 8,493     |
| Heat Value (HHV)               | 1,020     |
| Heat Value (LHV)               | 1,020     |
| Sulfur Content (grains/100scf) | 1 5727    |

| Method of Emission Control | Yes/No |
|----------------------------|--------|
| NSCR Catalyst              | No     |
| SCR Catalyst               | No     |
| JLCC Catalyst              | No     |
| Parameter Adjustment       | No     |
| Stratified Charge          | No     |
| Other (Specify)            | No     |

| Emission Calculations |                                                    | Generator 2                                                                              |                                                             |                         |          |                      |                    |
|-----------------------|----------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------|----------|----------------------|--------------------|
|                       | Manufacturer's<br>emission<br>factors<br>(g/hp-hr) | AP-42 Table 3.2-<br>3<br>4 stroke, rich<br>burn engine<br>emission factors<br>(Ib/MMBtu) | Controlled<br>Emission<br>Factors <sup>b</sup><br>(g/hp-hr) | Emission Factor<br>Used | Units    | Emissions<br>(lb/hr) | Emissions<br>(tpy) |
| VOC <sup>a</sup>      | 0.70                                               | 0.0296                                                                                   | 0.72                                                        | 0.7205                  | g/hp-hr  | 0.40                 | 1.77               |
| NOx                   | 1.00                                               | 2.21                                                                                     | 1.00                                                        | 1                       | g/hp-hr  | 0.56                 | 2.45               |
| CO                    | 2.00                                               | 3.72                                                                                     | 2.00                                                        | 2                       | g/hp-hr  | 1.12                 | 4.91               |
| PM <sub>10</sub>      |                                                    | 0.01941                                                                                  |                                                             | 0.01941                 | lb/MMBtu | 0.04                 | 0.18               |
| PM <sub>2.5</sub>     |                                                    | 0.01941                                                                                  |                                                             | 0.01941                 | lb/MMBtu | 0.04                 | 0.18               |
| SO <sub>2</sub>       |                                                    | 0.000588                                                                                 |                                                             | 0.000588                | lb/MMBtu | 0.01                 | 0.04               |
| Formaldehyde          |                                                    | 0.0205                                                                                   |                                                             | 0.0205                  | lb/MMBtu | 0.04                 | 0.19               |
| Benzene               |                                                    | 0.00158                                                                                  |                                                             | 0.00158                 | lb/MMBtu | 3.41E-03             | 0.01               |
| H <sub>2</sub> S      |                                                    | N/A                                                                                      |                                                             | 98% DRE                 | N/A      | 9.50E-05             | 4.16E-04           |

 $^{\rm a}$  VOC emissions based on the sum of NMNEHC and Formaldehyde

<sup>b</sup> Controlled emissions based on NSPS JJJJ limits. Total VOC emissions includes Formaldehyde as calculated using AP-42 Formaldehyde emission factor.

# Sequitur Permian, LLC Munson #1201 SWD Facility Gas Generator (cont'd)

#### EPN: GEN-2 FIN: GEN-2

#### Calculation:

Calculation: For emission factors in terms of g/hp-hr: (Emission factor) \* (Horsepower) / (Conversion factor) (g/hp-hr) \* (hp) / (453.59 g/lb) For emission factors in terms of lb/MMBtu: (Emission factor) \* (Fuel Consumption) \* (Horsepower) \* (Conversion factor) (lb/MMBtu) \* (Btu/hp-hr) \* (hp) \* (1 MMBtu/1,000,000 Btu)

| HAP Emission Calculations |                         |             |           |  |  |  |
|---------------------------|-------------------------|-------------|-----------|--|--|--|
|                           | 4 Stroke, Rich-<br>Burn | Generator 2 |           |  |  |  |
| Pollutant                 | AP-42 Table 3.2-        |             |           |  |  |  |
| Polititant                | 3 Emission              | Emissions   | Emissions |  |  |  |
|                           | Factor                  | lb/hr       | tpy       |  |  |  |
|                           | (lb/MMBtu)              |             |           |  |  |  |
| 1,1,2,2-Tetrachloroethane | 2.53E-05                | 5.46E-05    | 2.39E-04  |  |  |  |
| 1,1,2-Trichloroethane     | 1.53E-05                | 3.30E-05    | 1.45E-04  |  |  |  |
| 1,3-Butadiene             | 6.63E-04                | 1.43E-03    | 0.01      |  |  |  |
| 1,3-Dichloropropene       | 1.27E-05                | 2.74E-05    | 1.20E-04  |  |  |  |
| 2-Methylnaphthalene       |                         |             |           |  |  |  |
| 2,2,4-Trimethylpentane    |                         |             |           |  |  |  |
| Acenaphthene              |                         |             |           |  |  |  |
| Acenaphthylene            |                         |             |           |  |  |  |
| Acetaldehyde              | 2.79E-03                | 0.01        | 0.03      |  |  |  |
| Acrolein                  | 2.63E-03                | 0.01        | 0.02      |  |  |  |
| Benzene                   | 1.58E-03                | 3.41E-03    | 0.01      |  |  |  |
| Benzo(b)flouanthene       |                         |             |           |  |  |  |
| Benzo(e)pyrene            |                         |             |           |  |  |  |
| Benzo(g,h,i)perylene      |                         |             |           |  |  |  |
| Biphenyl                  |                         |             |           |  |  |  |
| Carbon Tetrachloride      | 1.77E-05                | 3.82E-05    | 1.67E-04  |  |  |  |
| Chlorobenzene             | 1.29E-05                | 2.78E-05    | 1.22E-04  |  |  |  |
| Chloroform                | 1.37E-05                | 2.96E-05    | 1.29E-04  |  |  |  |
| Chrysene                  |                         |             |           |  |  |  |
| Ethylbenzene              | 2.48E-05                | 5.35E-05    | 2.34E-04  |  |  |  |
| Ethylene Dibromide        | 2.13E-05                | 4.60E-05    | 2.01E-04  |  |  |  |
| Flouranthene              |                         |             |           |  |  |  |
| Flourene                  |                         |             |           |  |  |  |
| Formaldehyde              | 0.02                    | 0.04        | 0.19      |  |  |  |
| Methanol                  | 3.06E-03                | 0.01        | 0.03      |  |  |  |
| Methylene Chloride        | 4.12E-05                | 8.89E-05    | 3.89E-04  |  |  |  |
| n-Hexane                  |                         |             |           |  |  |  |
| Napthalene                | 9.71E-05                | 2.09E-04    | 9.17E-04  |  |  |  |
| РАН                       | 1.41E-04                | 3.04E-04    | 1.33E-03  |  |  |  |
| Phenanthrene              |                         |             |           |  |  |  |
| Phenol                    |                         |             |           |  |  |  |
| Pyrene                    |                         |             |           |  |  |  |
| Styrene                   | 1.19E-05                | 2.57E-05    | 1.12E-04  |  |  |  |
| Tetrachloroethane         |                         |             |           |  |  |  |
| Toluene                   | 5.58E-04                | 1.20E-03    | 0.01      |  |  |  |
| Vinyl Chloride            | 7.18E-06                | 1.55E-05    | 6.78E-05  |  |  |  |
| Xylene                    | 1.95E-04                | 4.21E-04    | 1.84E-03  |  |  |  |
| Total HAPs                |                         | 0.07        | 0.31      |  |  |  |

Permit by Rule Registration Munson #1201 Salt Water Disposal Facility

# APPENDIX B TCEQ FORMS

| Date:              | February 2018                |                                          | Permit Number N/A                       | Regulated Entity No:    | RN110197134      |
|--------------------|------------------------------|------------------------------------------|-----------------------------------------|-------------------------|------------------|
| Area Name:         | Munson #1201 SWD Facilit     | ΞΥ                                       |                                         | Customer Reference No.: | CN605190081      |
| Review of applicat | tions and issuance of permit | s will be expedited by supplying all nee | cessary information requested on this   | Table.                  |                  |
|                    |                              | AIR CONT                                 | AMINANT DATA                            |                         |                  |
|                    | 1. Emissio                   | n Point                                  |                                         | 3. Air Contamina        | nt Emission Rate |
| EPN                | FIN                          | NAME                                     | 2. Component of Air<br>Contaminant Name | Pounds per Hour         | ТРҮ              |
| (A)                | (B)                          | (C)                                      |                                         | (A)                     | (B)              |
|                    |                              |                                          | VOC                                     | 0.40                    | 1.77             |
|                    |                              |                                          | NO <sub>x</sub>                         | 0.56                    | 2.45             |
|                    | GEN-1                        | Generator 1                              | CO                                      | 1.12                    | 4.91             |
|                    |                              |                                          | PM <sub>10</sub>                        | 0.04                    | 0.18             |
| GEN-1              |                              |                                          | PM <sub>2.5</sub>                       | 0.04                    | 0.18             |
|                    |                              |                                          | SO <sub>2</sub>                         | 0.01                    | 0.04             |
|                    |                              |                                          | H <sub>2</sub> S                        | < 0.01                  | < 0.01           |
|                    |                              |                                          | Benzene                                 | < 0.01                  | 0.01             |
|                    |                              |                                          | HAP                                     | 0.07                    | 0.31             |
|                    |                              |                                          | VOC                                     | 0.40                    | 1.77             |
|                    |                              |                                          | NO <sub>x</sub>                         | 0.56                    | 2.45             |
|                    |                              |                                          | CO                                      | 1.12                    | 4.91             |
|                    |                              |                                          | PM <sub>10</sub>                        | 0.04                    | 0.18             |
| GEN-2              | GEN-2                        | Generator 2                              | PM <sub>2.5</sub>                       | 0.04                    | 0.18             |
|                    |                              |                                          | SO <sub>2</sub>                         | 0.01                    | 0.04             |
|                    |                              |                                          | H <sub>2</sub> S                        | < 0.01                  | < 0.01           |
|                    |                              |                                          | Benzene                                 | < 0.01                  | 0.01             |
|                    |                              |                                          | HAP                                     | 0.07                    | 0.31             |

| Date:      | February 2018             | Permit Number: | N/A | Regulated Entity No:    | RN110197134 |
|------------|---------------------------|----------------|-----|-------------------------|-------------|
| Area Name: | Munson #1201 SWD Facility | -              |     | Customer Reference No.: | CN605190081 |

Review of applications and issuance of permits will be expedited by supplying all necessary information requested on this Table.

| AIR CONTAMINANT DATA |       |                                | EMISSION POINT DISCHARGE PARAMETERS |                                 |                   |                    |        |          |              |             |        |       |      |      |      |      |            |        |       |        |       |      |      |      |         |
|----------------------|-------|--------------------------------|-------------------------------------|---------------------------------|-------------------|--------------------|--------|----------|--------------|-------------|--------|-------|------|------|------|------|------------|--------|-------|--------|-------|------|------|------|---------|
| 1. Emission Point    |       | 4. UTM Coordinates of Emission |                                     | Source                          |                   |                    |        |          |              |             |        |       |      |      |      |      |            |        |       |        |       |      |      |      |         |
|                      |       | Point                          |                                     | 5.                              | 6.                | 7. Stack Exit Data |        |          | 8. Fugitives |             |        |       |      |      |      |      |            |        |       |        |       |      |      |      |         |
| EPN                  | FIN   | NAME                           |                                     |                                 |                   | Building           | Height | Diameter | Velocity     | Temperature | Length | Width | Axis |      |      |      |            |        |       |        |       |      |      |      |         |
| (A)                  | (B)   | (C)                            | Zone                                | East North<br>(Meters) (Meters) | East              | East               | East   | East     | East         | East        | East   | East  | East | East | East | East | East North | Height | Above | (Feet) | (fps) | (°F) | (ft) | (ft) | Degrees |
|                      |       |                                |                                     |                                 | (Meters) (Meters) | (Feet)             | (Feet) | (A)      | (B)          | (C)         | (A)    | (B)   | (C)  |      |      |      |            |        |       |        |       |      |      |      |         |
| GEN-1                | GEN-1 | Generator 1                    | 14                                  | 303732                          | 3453415           |                    | 7      | 1.00     | 30.25        | 1382        |        |       |      |      |      |      |            |        |       |        |       |      |      |      |         |
| GEN-2                | GEN-2 | Generator 2                    | 14                                  | 303732                          | 3453415           |                    | 7      | 1.00     | 30.25        | 1382        |        |       |      |      |      |      |            |        |       |        |       |      |      |      |         |

## Texas Commission on Environmental Quality Permit by Rule Applicability Checklist Title 30 Texas Administrative Code § 106.4

The following checklist was developed by the Texas Commission on Environmental Quality (TCEQ), **Air Permits Division**, to assist applicants in determining whether or not a facility meets all of the applicable requirements. Before claiming a specific Permit by Rule (PBR), a facility must first meet all of the requirements of **Title 30 Texas Administrative Code § 106.4** (30 TAC § 106.4), "Requirements for Permitting by Rule." Only then can the applicant proceed with addressing requirements of the specific Permit by Rule being claimed.

The use of this checklist is not mandatory; however, it is the responsibility of each applicant to show how a facility being claimed under a PBR meets the general requirements of 30 TAC § 106.4 and also the specific requirements of the PBR being claimed. If all PBR requirements cannot be met, a facility will not be allowed to operate under the PBR and an application for a construction permit may be required under 30 TAC § 116.110(a).

Registration of a facility under a PBR can be performed by completing **Form PI-7** (Registration for Permits by Rule) or **Form PI-7-CERT** (Certification and Registration for Permits by Rule). The appropriate checklist should accompany the registration form. Check the most appropriate answer and include any additional information in the spaces provided. If additional space is needed, please include an extra page and reference the question number. The PBR forms, tables, checklists, and guidance documents are available from the TCEQ, Air Permits Division Web site at: www.tceq.texas.gov/permitting/air/nav/air\_pbr.html.

| 1.              | 30 TAC § 106.4(a)(1) and (4): Emission limits                                                                                                                                                                                                                                                                   |                            |  |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--|
|                 | List emissions in tpy for <b>each</b> facility (add additional pages or table if needed):                                                                                                                                                                                                                       |                            |  |  |  |  |
| •               | Are the SO <sub>2</sub> , $PM_{10}$ , VOC, or other air contaminant emissions claimed for <b>each</b> facility in this PBR submittal less than 25 tpy?                                                                                                                                                          | X YES 🗌 NO                 |  |  |  |  |
| •               | Are the NO $_{\rm x}$ and CO emissions claimed for each facility in this PBR submittal less than 250 tpy?                                                                                                                                                                                                       | YES 🗌 NO                   |  |  |  |  |
| If t<br>ca      | he answer to both is "Yes," continue to the question below. If the answer to either quest<br><b>nnot be claimed</b> .                                                                                                                                                                                           | tion is "No," a <b>PBR</b> |  |  |  |  |
|                 | Has any facility at the property had public notice and opportunity for comment<br>under 30 TAC Section 116 for a regular permit or permit renewal? (This does not<br>include public notice for voluntary emission reduction permits, grandfathered<br>existing facility permits, or federal operating permits.) | 🗌 YES 🛛 NO                 |  |  |  |  |
| If <sup>•</sup> | 'Yes," skip to Section 2. If "No," continue to the questions below.                                                                                                                                                                                                                                             |                            |  |  |  |  |
| If t            | he site has had no public notice, please answer the following:                                                                                                                                                                                                                                                  |                            |  |  |  |  |
| •               | Are the SO <sub>2</sub> , PM <sub>10</sub> , VOC, or other emissions claimed for <b>all</b> facilities in this PBR submittal less than 25 tpy?                                                                                                                                                                  | X YES 🗌 NO                 |  |  |  |  |
| •               | Are the NO $_{\rm x}$ and CO emissions claimed for all facilities in this PBR submittal less than 250 tpy?                                                                                                                                                                                                      | YES 🗌 NO                   |  |  |  |  |
| If t            | If the answer to both questions is "Yes," continue to Section 2.                                                                                                                                                                                                                                                |                            |  |  |  |  |
| If i<br>Ch      | If the answer to either question is "No," <b>a PBR cannot be claimed</b> . A permit will be required under<br>Chapter 116.                                                                                                                                                                                      |                            |  |  |  |  |

# Permit by Rule Applicability Checklist Title 30 Texas Administrative Code § 106

| 2. 30 TAC § 106.4(a)(2): Nonattainment check                                                                                                                                                                                                                                                                                                                     |                                         |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|
| • Are the facilities to be claimed under this PBR located in a designated ozone nonattainment county?                                                                                                                                                                                                                                                            | YES 🛛 NO                                |  |  |  |  |
| <i>If "Yes," please indicate which county by checking the appropriate box to the right.</i>                                                                                                                                                                                                                                                                      |                                         |  |  |  |  |
| (Moderate) - Brazoria, Chambers, Fort Bend, Galveston, Harris, Liberty, Montgomery,<br>and Waller counties:                                                                                                                                                                                                                                                      | HGB                                     |  |  |  |  |
| (Moderate) - Collin, Dallas, Denton, Ellis, Johnson, Kaufman, Parker, Rockwall, Tarrant, and Wise counties:                                                                                                                                                                                                                                                      | DFW                                     |  |  |  |  |
| <i>If "Yes," to any of the above, continue to the next question. If "No," continue to Section 3.</i>                                                                                                                                                                                                                                                             |                                         |  |  |  |  |
| • Does this project trigger a nonattainment review?                                                                                                                                                                                                                                                                                                              | 🗌 YES 🗌 NO                              |  |  |  |  |
| • Is the project's potential to emit (PTE) for emissions of VOC or NO <sub>x</sub> increasing by 100 tpy or more?<br><i>PTE is the maximum capacity of a stationary source to emit any air pollutant under its worst-case physical and operational design unless limited by a permit, rules, or made federally enforceable by a certification.</i>               | ☐ YES ☐ NO                              |  |  |  |  |
| • Is the site an existing major nonattainment site and are the emissions of VOC or NO_ increasing by 40 tpy or more?                                                                                                                                                                                                                                             | U YES INO                               |  |  |  |  |
| If needed, attach contemporaneous netting calculations per nonattainment guidance.                                                                                                                                                                                                                                                                               |                                         |  |  |  |  |
| Additional information can be found at:<br>www.tceq.texas.gov/permitting/air/forms/newsourcereview/tables/nsr_table8.html and<br>www.tceq.texas.gov/permitting/air/nav/air_docs_newsource.html                                                                                                                                                                   | 1                                       |  |  |  |  |
| <i>If "Yes," to any of the above, the project is a major source or a major modification and a</i> <b>used</b> <i>. A Nonattainment Permit review must be completed to authorize this project. If "No Section 3.</i>                                                                                                                                              | <b>PBR may not be</b><br>," continue to |  |  |  |  |
| 3. 30 TAC § 106.4(a)(3): Prevention of Significant Deterioration (PSD) check                                                                                                                                                                                                                                                                                     |                                         |  |  |  |  |
| Does this project trigger a review under PSD rules?                                                                                                                                                                                                                                                                                                              |                                         |  |  |  |  |
| To determine the answer, review the information below:                                                                                                                                                                                                                                                                                                           |                                         |  |  |  |  |
| • Are emissions of any regulated criteria pollutant increasing by 100 tpy of any criteria pollutant at a named source?                                                                                                                                                                                                                                           | TYES X NO                               |  |  |  |  |
| • Are emissions of any criteria pollutant increasing by 250 tpy of any criteria<br>pollutant at an unnamed source?                                                                                                                                                                                                                                               |                                         |  |  |  |  |
| • Are emissions increasing above significance levels at an existing major site?                                                                                                                                                                                                                                                                                  |                                         |  |  |  |  |
| PSD information can be found at:<br>www.tceq.texas.gov/assets/public/permitting/air/Forms/NewSourceReview/Tables/10173tbl.pdf and<br>www.tceq.texas.gov/permitting/air/nav/air_docs_newsource.html<br>If "Yes," to any of the above, a PBR may not be used. A PSD Permit review must be completed to authorize the<br>project.<br>If "No." continue to Section 4 |                                         |  |  |  |  |

# Permit by Rule Applicability Checklist Title 30 Texas Administrative Code § 106

| 4. 30 TAC § 106.4(a(6): Federal                                                                                                                                                                 | Requirements                                                                                                                                                       |                       |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|
| • Will all facilities under this PBR me<br>Federal Regulations (40 CFR) Part (                                                                                                                  | Will all facilities under this PBR meet applicable requirements of Title 40 Code of Federal Regulations (40 CFR) Part 60, New Source Performance Standards (NSPS)? |                       |  |  |  |
| <i>If "Yes," which Subparts are applicable?</i>                                                                                                                                                 | NSPS JJJJ                                                                                                                                                          |                       |  |  |  |
| <ul> <li>Will all facilities under this PBR meet applicable requirements of 40 CFR Part 63,<br/>Hazardous Air Pollutants Maximum Achievable Control Technology (MACT)<br/>standards?</li> </ul> |                                                                                                                                                                    |                       |  |  |  |
| If "Yes," which Subparts are applicable?                                                                                                                                                        | MACT ZZZZ                                                                                                                                                          |                       |  |  |  |
| <ul> <li>Will all facilities under this PBR me<br/>National Emissions Standards for I</li> </ul>                                                                                                | eet applicable requirements of 40 CFR Part 61,<br>Hazardous Air Pollutants (NESHAPs)?                                                                              | 🗌 YES 🗌 NO 🔀 NA       |  |  |  |
| If "Yes," which Subparts are applicable?                                                                                                                                                        |                                                                                                                                                                    |                       |  |  |  |
| If "Yes" to any of the above, please atto                                                                                                                                                       | ach a discussion of how the facilities will meet any                                                                                                               | applicable standards. |  |  |  |
| 5. 30 TAC § 106.4(a)(7): PBR pro                                                                                                                                                                | hibition check                                                                                                                                                     |                       |  |  |  |
| • Are there any air permits at the sit restrict the use of PBRs?                                                                                                                                | e containing conditions which prohibit or                                                                                                                          | 🗌 YES 🔀 NO            |  |  |  |
| If "Yes," PBRs may not be used or their amendment may be required.                                                                                                                              | use must meet the restrictions of the permit. A ne                                                                                                                 | ew permit or permit   |  |  |  |
| List permit number(s):                                                                                                                                                                          |                                                                                                                                                                    |                       |  |  |  |
| 6. 30 TAC § 106.4(a)(8): NO Ca                                                                                                                                                                  | o and Trade                                                                                                                                                        |                       |  |  |  |
| Is the facility located in Harris, Brazoria, Chambers, Fort Bend, Galveston, Liberty, UES 🛛 NO Montgomery, or Waller County?                                                                    |                                                                                                                                                                    |                       |  |  |  |
| If "Yes," answer the question below                                                                                                                                                             | r. If "No," continue to Section 7.                                                                                                                                 |                       |  |  |  |
| • Will the proposed facility or group<br>if they are subject to 30 TAC Chap<br>Mass Emissions Cap and Trade Pro                                                                                 | of facilities obtain required allowances for NO ter 101, Subchapter H, Division 3 (relating to the ogram)?                                                         | ☐ YES ☐ NO            |  |  |  |

# Permit by Rule Applicability Checklist Title 30 Texas Administrative Code § 106

| . Highly Reactive Volatile Organic Compounds (HRVOC) check                                       |                                                                                                 |            |  |  |  |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------|--|--|--|
| • Is the facility located in Harris County?                                                      |                                                                                                 | YES X NO   |  |  |  |
| If "Yes," answer the next question. If "No," skip to the box belo                                | <i>)W</i> .                                                                                     |            |  |  |  |
| • Will the project be constructed after June 1, 2006?                                            |                                                                                                 | I YES I NO |  |  |  |
| If "Yes," answer the next question. If "No," skip to the box belo                                | <i><i>w</i>.</i>                                                                                |            |  |  |  |
| <ul> <li>Will one or more of the following HRVOC be emitted as a project?</li> </ul>             | part of this                                                                                    | 🗌 YES 🔀 NO |  |  |  |
| If "Yes," complete the information below:                                                        |                                                                                                 |            |  |  |  |
|                                                                                                  | lb/hr                                                                                           | tpy        |  |  |  |
| ▶ 1,3-butadiene                                                                                  |                                                                                                 |            |  |  |  |
| <ul> <li>all isomers of butene (e.g., isobutene [2-methylpropene<br/>or isobutylene])</li> </ul> |                                                                                                 |            |  |  |  |
| <ul> <li>alpha-butylene (ethylethylene)</li> </ul>                                               |                                                                                                 |            |  |  |  |
| <ul> <li>beta-butylene (dimethylethylene, including both cis- and<br/>trans-isomers)</li> </ul>  | <ul> <li>beta-butylene (dimethylethylene, including both cis- and<br/>trans-isomers)</li> </ul> |            |  |  |  |
| ▶ ethylene                                                                                       |                                                                                                 |            |  |  |  |
| ▶ propylene                                                                                      |                                                                                                 |            |  |  |  |
| • Is the facility located in Brazoria, Chambers, Fort Bend, G<br>Montgomery, or Waller County?   | alveston, Liberty,                                                                              | 🗌 YES 🔀 NO |  |  |  |
| If "Yes," answer the next question. If "No," the checklist is con                                | ıplete.                                                                                         |            |  |  |  |
| • Will the project be constructed after June 1, 2006?                                            |                                                                                                 | TYES NO    |  |  |  |
| If "Yes," answer the next question. If "No," the checklist is con                                | ıplete.                                                                                         |            |  |  |  |
| • Will one or more of the following HRVOC be emitted as a part of this YES NO project?           |                                                                                                 |            |  |  |  |
| If "Yes," complete the information below:                                                        |                                                                                                 |            |  |  |  |
|                                                                                                  | lb//hr                                                                                          | tpy        |  |  |  |
| ▶ ethylene                                                                                       |                                                                                                 |            |  |  |  |
| ▶ propylene                                                                                      |                                                                                                 |            |  |  |  |



## **EPNs GEN-1 and GEN-2**

Check the most appropriate answer and include any additional information in the spaces provided. If additional space is needed, please include an extra page and reference the question number. The permit by rule (PBR) forms, tables, checklists, and guidance documents are available from the Texas Commission on Environmental Quality (TCEQ), Air Permits Division Web site at: www.tceq.texas.gov/permitting/air/nav/air\_pbr.html.

This PBR (§ 106.512) requires registration with the commission's Office of Air in Austin before construction if the horsepower (hp) of the facility is greater than 240 hp. Registration of the facility can be performed by completing a Form PI-7, "Registration for Permits by Rule," or Form PI-7-CERT, "Registration and Certification for Permits by Rule." This checklist should accompany the registration form.

For additional assistance with your application, including resources to help calculate your emissions, please visit the Small Business and Local Government Assistance (SBLGA) webpage at the following link: www.TexasEnviroHelp.org

### Definitions:

The following words and terms, when used in this section, shall have the following meanings, unless the context clearly indicates otherwise.

- A. Rich-burn Engine: A rich-burn engine is a gas-fired, spark-ignited engine that is operated with an exhaust oxygen content less than four percent by volume.
- B. Lean-burn Engine: A lean-burn engine is a gas-fired, spark-ignited engine that is operated with an exhaust oxygen content of four percent by volume, or greater.
- C. Rated Engine Horsepower: Engine rated horsepower shall be based on the engine manufacturer's maximum continuous load rating at the lesser of the engine or driven equipment's maximum published continuous speed.
- D. Turbine Horsepower: Turbine rated horsepower shall be based on turbine base load, fuel power heating value, and International Standards Organization Standard Day Conditions of 59 degrees Fahrenheit, 1.0 atmosphere pressure, and 60 percent relative humidity.

| Questions/Descr                                                   | iption and Response                                                                                                                                                                                                                                                                                                                                                                          |                                              |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Will the engine or to<br>meet all the require<br>Turbine Componen | urbine be used as a replacement at an oil and gas site and does it ments of the policy memo entitled, "Replacement of All Engine and ts for Oil and Gas Production?"                                                                                                                                                                                                                         | 🗌 YES 🛛 NO                                   |
| If "YES," registration                                            | on is not required for like-kind replacements of engine or turbine co                                                                                                                                                                                                                                                                                                                        | omponents.                                   |
| If "NO," please cont                                              | finue.                                                                                                                                                                                                                                                                                                                                                                                       |                                              |
| Rule                                                              | Introduction                                                                                                                                                                                                                                                                                                                                                                                 |                                              |
| (1)                                                               | Is the engine or turbine rated less than 240 hp?                                                                                                                                                                                                                                                                                                                                             | 🗌 YES 🗶 NO                                   |
| If "YES," then regis<br>rule.                                     | tration is not required, but the facility must comply with condition                                                                                                                                                                                                                                                                                                                         | s (5) and (6) of this                        |
| Form PI-7 and Tab                                                 | le 29 or Table 31, as applicable, within 10 days after construction b                                                                                                                                                                                                                                                                                                                        | pegins.                                      |
| Indicate the type of                                              | equipment (pick one):                                                                                                                                                                                                                                                                                                                                                                        |                                              |
| Engine                                                            | Turbine                                                                                                                                                                                                                                                                                                                                                                                      |                                              |
| If an engine, contin                                              | ue to the questions regarding "Engines."                                                                                                                                                                                                                                                                                                                                                     |                                              |
| If a turbine, skip to                                             | the questions regarding "Gas Turbines."                                                                                                                                                                                                                                                                                                                                                      |                                              |
| Rule                                                              | Engines                                                                                                                                                                                                                                                                                                                                                                                      |                                              |
| (2)                                                               | Is the engine rated at 500 hp or greater?                                                                                                                                                                                                                                                                                                                                                    | YES 🗙 NO                                     |
| If "NO," the engine<br>Form PI-7 and a Ta<br>§§ 106.512(5) and (  | is between 240 hp and 500 hp. The engine must be registered by suble 29 within 10 days after construction begins and must comply v<br>6). Skip to the questions regarding § 106.512(4).                                                                                                                                                                                                      | ubmitting a completed with the conditions in |
| If "YES," in addition<br>(NO <sub>x</sub> ) emission lim          | n to registration, the engine must operate in compliance with the fo<br>it(s). Check the limit(s) applicable to this engine by answering the f                                                                                                                                                                                                                                               | ollowing nitrogen<br>following:              |
| (2)(A)(i)                                                         | The engine is a gas-fired, rich-burn engine and will not exceed 2.0 grams per horsepower hour (g/hp-hr) under all operating conditions.                                                                                                                                                                                                                                                      | 🗌 YES 🗌 NO                                   |
| Indicate grams per                                                | horsepower hour NO <sub>x</sub> :                                                                                                                                                                                                                                                                                                                                                            | (g/hp-hr)                                    |
| (2)(A)(ii)                                                        | The engine is a spark-ignited, gas-fired, lean-burn engine or any compression-ignited, dual fuel-fired engine manufactured new after June 18, 1992, and will not exceed 2.0 g/hp-hr NO <sub>x</sub> at manufacturer's rated full load and speed at all times; except, the engine will not exceed 5.0 g/hp-hr NO <sub>x</sub> under reduced speed and 80% and 100% of full torque conditions. | YES NO                                       |
| Indicate grams per                                                | horsepower hour NO <sub>x</sub> :                                                                                                                                                                                                                                                                                                                                                            | (g/hp-hr)                                    |

| Questions/Descr    | iption and Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Rule               | Engines ( <i>continued</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| (2)(A)(iii)        | The engine is any spark-ignited, lean-burn two-cycle or four-cycle engine or any compression-ignited, dual fuel-fired engine rated 825 hp or greater and manufactured between September 23, 1982 and June 18, 1992, and will not exceed 5.0 g/hp-hr NO <sub>x</sub> under all operating conditions.                                                                                                                                                                                        | YES NO     |
| Indicate grams per | horsepower hour NO <sub>x</sub> :                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/hp-hr    |
| (2)(A)(iv)         | The engine is any spark-ignited, gas-fired, lean-burn, four-cycle engine or compression-ignited, dual-fuel-fired engine that was manufactured before June 18, 1992, and is rated less than 825 hp, or was manufactured before September 23, 1982, and will not exceed 5.0 g/hp-hr NO <sub>x</sub> at manufacturer's rated full load and speed at all times; except, the engine will not exceed 8.0 g/hp-hr NO <sub>x</sub> under reduced speed and 80% and 100% of full torque conditions. | YES NO     |
| Indicate grams per | horsepower hour NO <sub>x</sub> :                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/hp-hr    |
| (2)(A)(v)          | The engine is any spark-ignited, gas-fired, two-cycle, lean-burn<br>engine that was manufactured before June 18, 1992, and is rated<br>less than 825 hp, or was manufactured before<br>September 23, 1982, and will not exceed 8.0 g/hp-hr NO <sub>x</sub> under<br>all operating conditions.                                                                                                                                                                                              | YES NO     |
| Indicate grams per | horsepower hour NO <sub>x</sub> :                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/hp-hr    |
| (2)(A)(vi)         | The engine is any compression-ignited, liquid-fired engine and will not exceed 11.0 g/hp-hr NO <sub>x</sub> under all operating conditions.                                                                                                                                                                                                                                                                                                                                                | YES NO     |
| Indicate grams per | horsepower hour NO <sub>x</sub> :                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/hp-hr    |
| (2)(B)             | Does the engine require an automatic air-fuel ratio controller to meet the $NO_x$ limit(s) above?                                                                                                                                                                                                                                                                                                                                                                                          | 🗌 YES 🗌 NO |
| (2)(B)             | For spark-ignited gas-fired or compression-ignited dual fuel-fired<br>engines, is the engine required to have an automatic air-fuel ratio<br>controller under condition (2)(B) of the PBR?                                                                                                                                                                                                                                                                                                 | YES NO     |
| (2)(C)             | Are you aware of and accept responsibility for the record and testing requirements as specified in (2)(C) of the PBR?                                                                                                                                                                                                                                                                                                                                                                      | YES NO     |

| Questions/Descr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iption and Response                                                                                                                                                                                    |                            |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--|--|--|
| Rule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gas Turbines                                                                                                                                                                                           |                            |  |  |  |  |  |  |
| (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Is the turbine rated 500 hp or more?                                                                                                                                                                   | YES NO                     |  |  |  |  |  |  |
| If "NO," the turbine is between 240 hp and 500 hp. The engine only needs to be registered by submitting a completed Form PI-7 and a Table 31 within 10 days after construction begins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                        |                            |  |  |  |  |  |  |
| If "YES," in addition to registration, the turbine must operate in compliance with the following emission<br>limit(s) and must comply with the conditions in §§ 106.512(5)(6). Skip to questions regarding "Additional<br>Requirements."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                        |                            |  |  |  |  |  |  |
| (3)(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Will the emissions of NO <sub>x</sub> exceed 3.0 g/hp-hr for gas firing?                                                                                                                               | YES NO                     |  |  |  |  |  |  |
| (3)(B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Will the turbine meet all applicable NO <sub>x</sub> and sulfur dioxide (or fuel sulfur) emission limitations, monitoring requirements, and reporting requirements of 40 CFR Part 60, NSPS Subpart GG? | YES NO                     |  |  |  |  |  |  |
| Rule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Additional Requirements                                                                                                                                                                                |                            |  |  |  |  |  |  |
| (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Is the engine or turbine rated less than 500 hp or used for temporary replacement purposes?                                                                                                            | 🛛 YES 🗌 NO                 |  |  |  |  |  |  |
| If "NO," continue to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | next question.                                                                                                                                                                                         |                            |  |  |  |  |  |  |
| If "YES," the equipm<br>temporary replace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nent does not have to meet the emission limits of §§ 106.512(2) and<br>ment equipment can only remain in service for a maximum of 90 o                                                                 | (3). However, the<br>lays. |  |  |  |  |  |  |
| (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | What type of fuel will be used and will the fuel meet the requirements of the PBR?                                                                                                                     | X YES 🗌 NO                 |  |  |  |  |  |  |
| Indicate the fuel(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | used.                                                                                                                                                                                                  |                            |  |  |  |  |  |  |
| 🗵 Natural gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Liquid Petroleum gas Field gas                                                                                                                                                                         | Liquid fuel                |  |  |  |  |  |  |
| (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Does the installation comply with the National Ambient Air<br>Quality Standards (NAAQS)?                                                                                                               | 🗙 YES 🗌 NO                 |  |  |  |  |  |  |
| Indicate which meth<br>the selected methoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nod is used and attach the modeling report and/or calculations and I.                                                                                                                                  | diagrams to support        |  |  |  |  |  |  |
| Modeling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stack height 🛛 🗴 Facility emissions and property                                                                                                                                                       | line distance              |  |  |  |  |  |  |
| (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Have you included a modeling report and/or calculations and diagrams to support the selected NAAQS compliance determination method?                                                                    | X YES 🗌 NO                 |  |  |  |  |  |  |
| Rule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Other Applicable Rules and Regulations                                                                                                                                                                 |                            |  |  |  |  |  |  |
| For the following fo from October 2006.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ur questions, please refer to the Electric Generators under Permit b                                                                                                                                   | y Rule policy memo         |  |  |  |  |  |  |
| Is the engine or turk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pine used to generate electricity?                                                                                                                                                                     | X YES 🗌 NO                 |  |  |  |  |  |  |
| If "NO," the following the second sec | ng do not apply.                                                                                                                                                                                       |                            |  |  |  |  |  |  |

| Questions/Descr                                | iption and Response                                                                                                                 |                         |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Rule                                           | Other Applicable Rules and Regulations (continued)                                                                                  |                         |
| Will the engine or t<br>authorized by a Nev    | urbine be used to generate electricity to operate facilities<br>w Source Review Permit?                                             | YES 🛛 NO                |
| If "YES," the engine permit amendmen           | e or turbine does not qualify for this PBR and authorization must be<br>t.                                                          | e obtained through a    |
| If the engine or tur<br>use at locations wh    | bine is used to generate electricity, will it be exclusively for on-site ich cannot be connected to an electric grid?               | 🛛 YES 🗌 NO              |
| If "YES," describe v                           | vhy access to the electric grid is not available.                                                                                   |                         |
| If "NO," the engine                            | or turbine does not qualify for this PBR.                                                                                           |                         |
| Has an Electric Ger<br>activities for which    | nerating Unit Standard Permit been issued for one of the following the engine or turbine will only be used to generate electricity? | 🗌 YES 🗵 NO              |
| Engines or tu<br>Standard Peri                 | rbines used to provide power for the operation of facilities registerec<br>mit for Concrete Batch Plants.                           | l under the Air Quality |
| Engines or tu<br>Subchapter E                  | rbines satisfying the conditions for facilities permitted by rule under (relating to Aggregate and Pavement).                       | 30 TAC Chapter 106,     |
| Engines or tu                                  | rbines used exclusively to provide power to electric pumps used for i                                                               | rrigating crops         |
| If "NO," the engine                            | or turbine does not qualify for this PBR.                                                                                           |                         |
| If the engine or turk<br>site subject to the N | bine is located in the Houston/Galveston nonattainment area, is the<br>Mass Emission Cap and Trade Program?                         | 🗌 YES 🗌 NO              |
| Why or Why Not:                                |                                                                                                                                     |                         |
| N/a                                            |                                                                                                                                     |                         |
| Is the facility subject                        | ct to 30 TAC Chapter 115?                                                                                                           | YES 🗙 NO                |
| Why or Why Not:                                |                                                                                                                                     |                         |
| Irion County not subj                          | ect to 30 TAC Chapter 115                                                                                                           |                         |
| Is the facility subject                        | ct to 30 TAC Chapter 117?                                                                                                           | YES 🗙 NO                |
| Why or Why Not:                                |                                                                                                                                     |                         |
| Irion County not subj                          | ect to 30 TAC Chapter 117                                                                                                           |                         |

| Other Applicable Rules and Regulations (continued)                                       |            |
|------------------------------------------------------------------------------------------|------------|
| Is the facility subject to 40 CFR Part 60, NSPS Subpart D?                               | 🗌 YES 🗵 NO |
| Why or Why Not:                                                                          |            |
| Facility does not include fossil fuel steam generators                                   |            |
| Is the facility subject to 40 CFR Part 60, NSPS Subpart Da?                              | YES 🛛 NO   |
| Why or Why Not:                                                                          |            |
| Facility does not include electric utility steam generators                              |            |
| Is the facility subject to 40 CFR Part 60, NSPS Subpart Db?                              | 🗌 YES 🗵 NO |
| Why or Why Not:                                                                          |            |
| Facility does not include electric utility steam generators                              |            |
| Is the facility subject to 40 CFR Part 60, NSPS Subpart Dc?                              | 🗌 YES 🔀 NO |
| Why or Why Not:                                                                          |            |
| Facility does not include industrial-commercial- institutional steam generators          |            |
| Is the facility subject to 40 CFR Part 60, NSPS Subpart GG?                              | 🗌 YES 🔀 NO |
| Why or Why Not:                                                                          |            |
| Facility does not include small industrial-commercial-institutional steam generators.    |            |
| Is the facility subject to 40 CFR Part 63, MACT Subpart YYYY?                            | 🗌 YES 🔀 NO |
| Why or Why Not:                                                                          |            |
| Facility does not include stationary combustion turbines.                                |            |
| Is the facility subject to 40 CFR Part 63, MACT Subpart ZZZZ                             | 🗙 YES 🗌 NO |
| Why or Why Not:                                                                          |            |
| RICE located at an area source. Will meet MACT Subpart ZZZZ by complying with NSPS JJJJ. |            |
| Is the facility subject to 40 CFR Part 63, MACT Subpart PPPPP?                           | 🗌 YES 🗙 NO |
| Why or Why Not:                                                                          |            |
| RICE is not located at a major source of HAPs                                            |            |

4

Record Keeping: In order to demonstrate compliance with the general and specific requirements of this PBR, sufficient records must be maintained to demonstrate that all requirements are met at all times. If the engine or turbine is rated greater than 500 horsepower, all records must be maintained as required by 30 TAC § 106.512(2)(C). The registrant should also become familiar with the additional record keeping requirements in 30 TAC § 106.8. The records must be made available immediately upon request to the commission or any air pollution control program having jurisdiction. If you have any questions about the type of records that should be maintained or testing requirements, contact the Air Program in the TCEQ Regional Office for the region in which the site is located.

Recommended Calculation Method: In order to demonstrate compliance with this PBR, emission factors for each air contaminant from the EPA Compilation of Air Pollutant Emission Factors (AP-42), Fifth Edition, Volume 1, Section 3.1: Stationary Gas Turbines for Electricity Generation at: www.epa.gov/ttn/chief/ap42/index.html should be used, including, the specific air contaminant's emission limit listed on the table below.

# PRINT FORM

**RESET FORM** 

|            |                        |                 |               | 0              | %              |               |              |             |         |             |             |           |                   |                |
|------------|------------------------|-----------------|---------------|----------------|----------------|---------------|--------------|-------------|---------|-------------|-------------|-----------|-------------------|----------------|
|            | 06/18/92               | 200*            | Reduce        | 80-100%        |                | 2.0           | 5.0          | 5.0         | 5.0     | 11.0        | 3.0         | Yes       | Biennia           |                |
|            |                        | After 06        | X >5          | Full           | N/A            |               | 2.0          | 2.0         | 2.0     | 2.0         | 11.0        | 3.0       | Yes               | Biennial       |
|            |                        | 8/92            | X >825        | N/A            | N/A            |               | 2.0          | 5.0         | 5.0     | 5.0         | 11.0        | 3.0       | Yes               | Biennial       |
| iidelines  |                        | 3/82 to 06/1    | i ≤824*       | Reduced        | 80-100%        | Design        | 2.0          | 8.0         | 8.0     | 8.0         | 11.0        | 3.0       | Yes               | Biennial       |
| General Gu | _imits                 | 09/2:           | 500 ≤ X       | Full           | N/A            | Combustion    | 2.0          | 5.0         | 8.0     | 5.0         | 11.0        | 3.0       | Yes               | Biennial       |
| 3106.512 0 | ir Emission L          | 9/23/82         | 200*          | Reduced        | 80-100%        | Engine        | 2.0          | 8.0         | 8.0     | 8.0         | 11.0        | 3.0       | Yes               | Biennial       |
| ion 30 TAC | NO <sub>X</sub> g/hp-h | Before 0        | i< X          | Full           | N/A            |               | 2.0          | 5.0         | 8.0     | 5.0         | 11.0        | 3.0       | Yes               | Biennial       |
| CEQ Exempt |                        | NA              | 240< X<500    | N/A            | N/A            |               | N/A          | N/A         | N/A     | N/A         | N/A         | NA        | Yes               | No             |
| 1<br>T     |                        | N/A             | X < 240       | N/A            | N/A            |               | A/N          | A/N         | A/N     | N/A         | N/A         | NA        | No                | No             |
|            |                        | Manufacture     | rsepower      | pe             | ank            |               | Rich Burn †† | Lean Burn** | 2-Cycle | Dual Fuel   | Liquid Fuel |           | on                | bu             |
|            |                        | Date Original N | Mfg. Rated Ho | Operating Spee | Operating Torc | Ignition Type | Spark        | Spark       | Spark   | Compression | Compression | Turbinest | PI-7 Registration | Emission Testi |

Notes:

\* Lower emission rates apply to lean-burn engine operating: Full Speed & Any Torque or Any Speed & <80% or >100% Torque  $\dagger$  Turbine emissions are also regulated by EPA NSPS Standards for NO<sub>X</sub> and SO<sub>2</sub>

\*\* Lean Burn > 4% exhaust  $O_2$ 

t† Rich Burn = ≤ 4% exhaust  $0_2$ 

# Texas Commission on Environmental Quality Table 29 Reciprocating Engines

| I. Eng                                                                                                                                                                                                                                                      | gine Data                                                                                                                                                                | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                               |                                                                                                                                          |                                                                                                                                     |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manufact                                                                                                                                                                                                                                                    | urer:                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Model N                                                                                                                                    | ío.                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Serial No.                                                                                                                                        |                                                               |                                                                                                                                          | Manufac                                                                                                                             | ture Date:                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PSI                                                                                                                                                                                                                                                         |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Doosan '                                                                                                                                   | 11.1L                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                               |                                                                                                                                          |                                                                                                                                     |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Rebuilds                                                                                                                                                                                                                                                    | Date:                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No. of C                                                                                                                                   | ylinders:                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Compress                                                                                                                                          | ion Ratio                                                     | ):                                                                                                                                       | EPN:                                                                                                                                |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.5                                                                                                                                              |                                                               |                                                                                                                                          | GEN-1                                                                                                                               |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Applicati                                                                                                                                                                                                                                                   | on:                                                                                                                                                                      | Gas Compr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ression                                                                                                                                    | × Electric                                                                                                                                                      | Generati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on Re                                                                                                                                             | frigeratio                                                    | n 🗌 En                                                                                                                                   | hergency/                                                                                                                           | Stand by                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| × 4 Stro                                                                                                                                                                                                                                                    | ke Cycle                                                                                                                                                                 | 2 Stro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ke Cycle                                                                                                                                   | Carb                                                                                                                                                            | oureted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 🗌 Spark Ig                                                                                                                                        | gnited                                                        | Dual Fue                                                                                                                                 | el 🗌 Fi                                                                                                                             | uel Injected                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Diesel                                                                                                                                                                                                                                                      | 🗌 🗌 Na                                                                                                                                                                   | turally Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | irated                                                                                                                                     | Blower                                                                                                                                                          | /Pump So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cavenged                                                                                                                                          | Turbo                                                         | Charged a                                                                                                                                | nd I.C.                                                                                                                             | 🗌 Turbo C                                                                                | Charged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Intercooled I.C. Water Temperature Lean Burn Kich Burn                                                                                                                                                                                                      |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                               |                                                                                                                                          |                                                                                                                                     |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ignition/                                                                                                                                                                                                                                                   | njection                                                                                                                                                                 | <b>Timing:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fixed:                                                                                                                                     |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   | Vari                                                          | able:                                                                                                                                    |                                                                                                                                     |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Manufact                                                                                                                                                                                                                                                    | ure Horse                                                                                                                                                                | epower Rati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ing: 254                                                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Proposed                                                                                                                                          | Horsepo                                                       | wer Rating                                                                                                                               | : 254                                                                                                                               |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                            | D                                                                                                                                                               | ischarge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Parameter                                                                                                                                         | S                                                             |                                                                                                                                          | 1                                                                                                                                   |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Stack                                                                                                                                                                                                                                                       | Height (                                                                                                                                                                 | Feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stack                                                                                                                                      | Diameter                                                                                                                                                        | (Feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stack T                                                                                                                                           | 'emperat                                                      | ure (°F)                                                                                                                                 | Exit                                                                                                                                | Velocity (                                                                               | FPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                               |                                                                                                                                          |                                                                                                                                     |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| II. Fue                                                                                                                                                                                                                                                     | el Data                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                            | 1611.0                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                               |                                                                                                                                          |                                                                                                                                     | <u> </u>                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Type of F                                                                                                                                                                                                                                                   | uel: X                                                                                                                                                                   | Field Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                            | andfill Gas                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{1}{1}$ $\frac{1}{1}$                                                                                                                       | Natural                                                       | Gas L I                                                                                                                                  | Digester C                                                                                                                          | as 🗌 Dies                                                                                | sel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fuel Cons                                                                                                                                                                                                                                                   | sumption                                                                                                                                                                 | (BTU/bhp-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hr):                                                                                                                                       |                                                                                                                                                                 | eat ing V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | alue: 1020                                                                                                                                        |                                                               | Lowe                                                                                                                                     | er Heating                                                                                                                          | g Value: 10                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sulfur Co                                                                                                                                                                                                                                                   | ntent (gra                                                                                                                                                               | $\frac{100 \text{ sci}}{100 \text{ sci}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t - weight                                                                                                                                 | t %): 1.572                                                                                                                                                     | r grains/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TUUSCT                                                                                                                                            |                                                               |                                                                                                                                          |                                                                                                                                     |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| III. Em                                                                                                                                                                                                                                                     | ission Fa                                                                                                                                                                | actors (Bef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ore Cont                                                                                                                                   | rol)                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   | <u>a</u>                                                      |                                                                                                                                          |                                                                                                                                     |                                                                                          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                             | NOxCOSO2VOCFormaldehydePM10                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                               |                                                                                                                                          |                                                                                                                                     |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>)</b>                                                                                                                                   |                                                                                                                                                                 | <b>D</b> <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                   |                                                               | rorman                                                                                                                                   | lenyue                                                                                                                              |                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| g/hp-hr                                                                                                                                                                                                                                                     | y<br>ppmv                                                                                                                                                                | g/hp-hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ppmv                                                                                                                                       | g/hp-hr                                                                                                                                                         | ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g/hp-hr                                                                                                                                           | c<br>ppmv                                                     | g/hp-hr                                                                                                                                  | ppmv                                                                                                                                | g/hp-hr                                                                                  | ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>g/hp-hr</b><br>1.00                                                                                                                                                                                                                                      | ppmv                                                                                                                                                                     | g/hp-hr<br>2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppmv                                                                                                                                       | g/hp-hr                                                                                                                                                         | ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>g/hp-hr</b><br>0.7                                                                                                                             | ppmv                                                          | g/hp-hr                                                                                                                                  | ppmv                                                                                                                                | g/hp-hr                                                                                  | ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| g/hp-hr<br>1.00<br>Source of                                                                                                                                                                                                                                | ppmv<br>Emission                                                                                                                                                         | g/hp-hr<br>2.00<br>n Factors:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ppmv                                                                                                                                       | g/hp-hr<br>ufacturer D                                                                                                                                          | ppmv<br>ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>g/hp-hr</b><br>0.7<br>AP-42                                                                                                                    | <b>ppmv</b><br>Other (sp                                      | g/hp-hr<br>ecify):                                                                                                                       | ppmv                                                                                                                                | g/hp-hr                                                                                  | ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| g/hp-hr<br>1.00<br>Source of<br>IV. Em                                                                                                                                                                                                                      | ppmv<br>Emission<br>ission Fa                                                                                                                                            | g/hp-hr<br>2.00<br>n Factors:<br>actors (Pos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ppmv                                                                                                                                       | g/hp-hr<br>ufacturer D                                                                                                                                          | ppmv<br>ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>g/hp-hr</b><br>0.7<br>AP-42                                                                                                                    | C<br>ppmv<br>Other (sp                                        | g/hp-hr<br>ecify):                                                                                                                       | ppmv                                                                                                                                | g/hp-hr                                                                                  | ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| g/hp-hr<br>1.00<br>Source of<br>IV. Em<br>NO                                                                                                                                                                                                                | x<br>ppmv<br>Emission<br>ission Fa                                                                                                                                       | g/hp-hr<br>2.00<br>n Factors:<br>actors (Pos<br>C(<br>g/hp-hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ppmv<br>Manu<br>t Contro                                                                                                                   | g/hp-hr<br>ufacturer D<br>l)<br>g/hn-hr                                                                                                                         | ppmv ata A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g/hp-hr<br>0.7<br>AP-42<br>VO<br>g/hp-hr                                                                                                          | C<br>ppmv<br>Other (sp<br>C                                   | g/hp-hr<br>ecify):<br>Formald                                                                                                            | ppmv<br>lehyde                                                                                                                      | g/hp-hr<br>PM<br>g/hn-hr                                                                 | 10<br>ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| g/hp-hr<br>1.00<br>Source of<br>IV. Em<br>NO<br>g/hp-hr                                                                                                                                                                                                     | x<br>ppmv<br>Emission<br>ission Fa                                                                                                                                       | g/hp-hr<br>2.00<br>n Factors:<br>actors (Pos<br>C(<br>g/hp-hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ppmv       ppmv       X       Manu       t       Contro       ppmv                                                                         | g/hp-hr<br>ufacturer D<br>l)<br>g/hp-hr                                                                                                                         | ppmv ata A ppmv p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g/hp-hr<br>0.7<br>AP-42<br>VO<br>g/hp-hr                                                                                                          | C<br>ppmv<br>Other (sp<br>C<br>ppmv                           | g/hp-hr<br>ecify):<br>Formalo<br>g/hp-hr                                                                                                 | ppmv<br>lehyde<br>ppmv                                                                                                              | g/hp-hr<br>PM<br>g/hp-hr                                                                 | 110<br>ppmv<br>[10<br>[10<br>[10<br>ppmv]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| g/hp-hr<br>1.00<br>Source of<br>IV. Em<br>NO<br>g/hp-hr<br>Method o                                                                                                                                                                                         | x<br>ppmv<br>Emission<br>ission Fa<br>x<br>ppmv<br>f Emissio                                                                                                             | g/hp-hr<br>2.00<br>n Factors:<br>actors (Pos<br>CC<br>g/hp-hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ppmv<br>⊠ Mant<br>t Contro<br>ppmv<br>□ NSC                                                                                                | g/hp-hr<br>ufacturer D<br>I)<br>SC<br>g/hp-hr                                                                                                                   | $\begin{array}{c c} \mathbf{ppmv} \\ \hline \mathbf{ppmv} \\ \hline \\ ata \\ \hline \\ \mathbf{p}_2 \\ \hline \\ \mathbf{ppmv} \\ t \\ \hline \\ Le \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | g/hp-hr<br>0.7<br>AP-42<br>VO<br>g/hp-hr<br>an Operatio                                                                                           | C<br>Other (sp<br>C<br>ppmv                                   | g/hp-hr<br>ecify):<br>Formald<br>g/hp-hr                                                                                                 | ppmv<br>lehyde<br>ppmv                                                                                                              | g/hp-hr<br>PM<br>g/hp-hr                                                                 | 10<br>ppmv<br>(10<br>(10<br>(10)<br>ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| g/hp-hr<br>1.00<br>Source of<br>IV. Em<br>NO<br>g/hp-hr<br>Method o                                                                                                                                                                                         | x<br>ppmv<br>Emission<br>ission Fa<br>x<br>ppmv<br>f Emissic                                                                                                             | g/hp-hr<br>2.00<br>n Factors:<br>actors (Pos<br>CC<br>g/hp-hr<br>on Control:<br>ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ppmv<br>X Manu<br>t Contro<br>ppmv<br>□ NSC<br>□ JLC                                                                                       | g/hp-hr<br>ufacturer D<br>l)<br>g/hp-hr<br>CR Catalyst                                                                                                          | 2<br>ppmv<br>ata ☐ A<br>2<br>ppmv<br>t ☐ Le<br>☐ Oti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g/hp-hr<br>0.7<br>AP-42<br>g/hp-hr<br>an Operatio<br>her (Specify                                                                                 | C<br>Other (sp<br>C<br>ppmv<br>n _ F<br>r):                   | g/hp-hr<br>ecify):<br>Formald<br>g/hp-hr<br>Parameter A                                                                                  | lehyde<br>ppmv<br>lehyde<br>ppmv                                                                                                    | g/hp-hr<br>PM<br>g/hp-hr                                                                 | 10<br>ppmv<br>[10<br>[10<br>[10<br>[10<br>[10<br>[10<br>[10<br>[10]]<br>[10]]<br>[10][10][10][10][10][10][10][10][10][10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| g/hp-hr           1.00           Source of           IV. Em           NO           g/hp-hr           Method o           Stratif           Note: Mu                                                                                                          | x<br>ppmv<br>Emission<br>ission Fa<br>x<br>ppmv<br>f Emissic<br>ied Charg                                                                                                | g/hp-hr<br>2.00<br>n Factors:<br>actors (Pos<br>CC<br>g/hp-hr<br>on Control:<br>ge<br>t a copy of o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ppmv<br>Manu<br>t Contro<br>ppmv<br>NSC<br>JLC<br>any manu                                                                                 | g/hp-hr<br>ufacturer D<br>l)<br>g/hp-hr<br>CR Catalyst<br>CC Catalyst<br>ufacturer co                                                                           | ppmv       ata     p       p     ppmv       p     ppmv       t     Le       Otiontrol info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | yo<br>g/hp-hr<br>0.7<br>AP-42<br>yor vo<br>g/hp-hr<br>an Operation<br>her (Specify<br>pormation that                                              | C Other (sp C ppmv n I f i f i f i f f f f f f f f f f f f f  | g/hp-hr<br>becify):<br>Formald<br>g/hp-hr<br>Parameter A                                                                                 | lehyde<br>ppmv<br>lehyde<br>ppmv<br>Adjustmer                                                                                       | g/hp-hr<br>PM<br>g/hp-hr<br>at                                                           | 10<br>ppmv<br>[10<br>[10<br>ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| g/hp-hr<br>1.00<br>Source of<br>IV. Em<br>NO<br>g/hp-hr<br>Method o<br>☐ Stratif<br>Note: Mu<br>Is Formal                                                                                                                                                   | x<br>ppmv<br>Emission<br>ission Fa<br>x<br>ppmv<br>f Emission<br>ied Charg<br>ust submited                                                                               | g/hp-hr<br>2.00<br>n Factors:<br>actors (Pos<br>CC<br>g/hp-hr<br>on Control:<br>ge<br>t a copy of a<br>ncluded in t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ppmv<br>X Manu<br>t Contro<br>ppmv<br>D NSC<br>J JLC<br>any manu<br>he VOCs                                                                | g/hp-hr<br>ufacturer D<br>l)<br>g/hp-hr<br>CR Catalyst<br>CC Catalyst<br>ufacturer co                                                                           | 2           ppmv           ata         A           02           ppmv           t         Le           Otto           pntrol info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | yo<br>g/hp-hr<br>0.7<br>AP-42<br>yo<br>g/hp-hr<br>an Operatio<br>her (Specify<br>prmation that                                                    | C ppmv Other (sp C ppmv n   H ):                              | g/hp-hr<br>ecify):<br>Formald<br>g/hp-hr<br>Parameter A                                                                                  | lehyde<br>ppmv<br>dehyde<br>ppmv<br>adjustmer                                                                                       | pM<br>g/hp-hr<br>g/hp-hr<br>at                                                           | 110<br>ppmv<br>[10<br>[10<br>[10<br>ppmv<br>No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| g/hp-hr<br>1.00<br>Source of<br>IV. Em<br>NO<br>g/hp-hr<br>Method o<br>☐ Stratif<br>Note: Mu<br>Is Formal<br>V. F                                                                                                                                           | x<br>ppmv<br>Emission<br>ission Fa<br>x<br>ppmv<br>f Emissic<br>ied Charg<br>ust submit<br>dehyde in<br>ederal an                                                        | g/hp-hr<br>2.00<br>n Factors:<br>actors (Pos<br>CC<br>g/hp-hr<br>on Control:<br>ge<br>t a copy of a<br>ncluded in t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ppmv<br>X Manu<br>t Contro<br>ppmv<br>□ NSC<br>□ JLC<br>any manu<br>he VOCs<br>andards                                                     | g/hp-hr<br>ufacturer D<br>l)<br>g/hp-hr<br>CR Catalyst<br>CC Catalyst<br>tfacturer co<br>s?<br>(Check all                                                       | 2         ppmv         ata       A         02       ppmv         t       Le         Otto       Otto         pontrol info       that app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | yo<br>g/hp-hr<br>0.7<br>AP-42<br>yvO<br>g/hp-hr<br>an Operatio<br>her (Specify<br>prmation that                                                   | C Other (sp C ppmv n ): at demon:                             | g/hp-hr<br>ecify):<br>Formald<br>g/hp-hr<br>Parameter A                                                                                  | lehyde<br>ppmv<br>djustmer                                                                                                          | g/hp-hr           g/hp-hr           g/hp-hr           at                                 | IIO<br>ppmv<br>IIO<br>Ppmv<br>NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| g/hp-hr         1.00         Source of         IV. Em         NO         g/hp-hr         Method o         Stratif         Note: Mu         Is Formal         V. F         ⊠ NSPS                                                                            | x<br>ppmv<br>Emission<br>ission Fa<br>x<br>ppmv<br>f Emissic<br>ied Charg<br>ust submit<br>dehyde in<br>ederal an<br>JJJJ                                                | g/hp-hr<br>2.00<br>a Factors:<br>actors (Pos<br>CC<br>g/hp-hr<br>on Control:<br>ge<br>t a copy of a<br>acluded in t<br>ad State St<br>MACT ZZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ppmv<br>X Manu<br>t Contro<br>ppmv<br>NSC<br>JLC<br>any manu<br>he VOCs<br>andards<br>ZZZ                                                  | g/hp-hr<br>ufacturer D<br>l)<br>g/hp-hr<br>CR Catalyst<br>CC Catalyst<br>tfacturer co<br>s?<br>(Check all<br>NSPS IIII                                          | ppmv   ata   p2   ata   p2   ppmv   t   Lee   Otto   ontrol info   that app   Titl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | yo<br>g/hp-hr<br>0.7<br>AP-42<br>g/hp-hr<br>an Operation<br>her (Specify<br>prmation that<br>bly)<br>e 30 Chapte                                  | C Other (sp C Ppmv n ): at demon:                             | g/hp-hr<br>ecify):<br>Formald<br>g/hp-hr<br>Parameter A<br>strates cont                                                                  | lehyde<br>ppmv<br>dehyde<br>ppmv<br>adjustmer                                                                                       | g/hp-hr           g/hp-hr           g/hp-hr           nt                                 | 110<br>ppmv<br>[1]<br>[1]<br>[1]<br>[1]<br>[1]<br>[1]<br>[1]<br>[1]<br>[1]<br>[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| g/hp-hr<br>1.00<br>Source of<br>IV. Em<br>NO<br>g/hp-hr<br>Method o<br>Stratif<br>Note: Mu<br>Is Formald<br>V. F<br>⊠ NSPS<br>VI. A                                                                                                                         | x ppmv Emission ission Fa x ppmv fEmissio ied Charg ust submi dehyde in dehyde in JJJJJ X dditiona                                                                       | g/hp-hr<br>2.00<br>a Factors:<br>actors (Pos<br>CC<br>g/hp-hr<br>on Control:<br>ge<br>t a copy of a<br>ncluded in t<br>ad State St<br>MACT ZZ<br>I Informat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ppmv<br>X Manu<br>t Contro<br>ppmv<br>□ NSC<br>□ JLC<br>any manu<br>he VOCs<br>andards<br>ZZZ □<br>ion                                     | g/hp-hr<br>ufacturer D<br>l)<br>g/hp-hr<br>CR Catalyst<br>CC Catalyst<br><i>ufacturer co</i><br>s?<br>(Check all<br>NSPS IIII                                   | P2 ppmv ata  A P2 ata A P2 ata A P2 ata A P2 D2 Ppmv Let A D2 D3 D4 <pd4< p=""> D4 <pd4< p=""> <pd4<< td=""><td>yo<br/>g/hp-hr<br/>0.7<br/>AP-42<br/>g/hp-hr<br/>an Operation<br/>her (Specify<br/>prmation the<br/>bly)<br/>e 30 Chapte</td><td>C ppmv Other (sp C ppmv n f): at demons er 117 - L</td><td>g/hp-hr<br/>ecify):<br/>Formald<br/>g/hp-hr<br/>Parameter A<br/>strates cont<br/>ist County:</td><td>dehyde<br/>ppmv<br/>djustmer<br/>rol efficie</td><td>g/hp-hr           g/hp-hr           g/hp-hr           at           ency.           Yes ×</td><td>110<br/>ppmv<br/>[10<br/>[10<br/>[10<br/>ppmv<br/>]<br/>No</td></pd4<<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<></pd4<> | yo<br>g/hp-hr<br>0.7<br>AP-42<br>g/hp-hr<br>an Operation<br>her (Specify<br>prmation the<br>bly)<br>e 30 Chapte                                   | C ppmv Other (sp C ppmv n f): at demons er 117 - L            | g/hp-hr<br>ecify):<br>Formald<br>g/hp-hr<br>Parameter A<br>strates cont<br>ist County:                                                   | dehyde<br>ppmv<br>djustmer<br>rol efficie                                                                                           | g/hp-hr           g/hp-hr           g/hp-hr           at           ency.           Yes × | 110<br>ppmv<br>[10<br>[10<br>[10<br>ppmv<br>]<br>No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| g/hp-hr         1.00         Source of         IV. Em         NO         g/hp-hr         Method o         Stratif         Note: Mu         Is Formal         V. F         NSPS         VI. A         1. Subm                                                | x<br>ppmv<br>Emission Fa<br>x<br>ppmv<br>f Emissica<br>ied Charş<br>ied Charş<br>dehyde in<br>ederal an<br>JJJJ X<br>dditiona<br>it a copy                               | g/hp-hr<br>2.00<br>n Factors:<br>actors (Pos<br>CC<br>g/hp-hr<br>on Control:<br>ge<br>t a copy of a<br>ncluded in t<br>nd State St<br>MACT ZZ<br>I Informat<br>of the engin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ppmv<br>Manu<br>t Contro<br>ppmv<br>NSC<br>JLC<br>any manu<br>he VOCs<br>andards<br>ZZZ<br>ion<br>ne manuf                                 | g/hp-hr<br>ufacturer D<br>l)<br>g/hp-hr<br>CR Catalyst<br>CR Catalyst<br>ufacturer co<br>s?<br>(Check all<br>NSPS IIII                                          | ppmv         ata       p         ata       p         02       ppmv         t       Le         Otil       Otil         ontrol info         I       that app         Titl         ite rating of the set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | yo<br>g/hp-hr<br>0.7<br>AP-42<br>g/hp-hr<br>an Operation<br>her (Specify<br>prmation the<br>obly)<br>e 30 Chapte                                  | C Other (sp C ppmv n f t t t t t t t t t t t t t t t t t t    | g/hp-hr<br>ecify):<br>Formald<br>g/hp-hr<br>Parameter A<br>strates cont<br>ist County:                                                   | lehyde<br>ppmv<br>djustmer<br>rol efficie                                                                                           | g/hp-hr<br>pM<br>g/hp-hr<br>at<br>ency.                                                  | 110<br>ppmv<br>[10<br>[10<br>ppmv<br>No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| g/hp-hr         1.00         Source of         IV. Em         NO         g/hp-hr         Method o         Stratif         Note: Mu         Is Formal         V. F         ⊠ NSPS         VI. A         1. Subm         2. Subm                              | x<br>ppmv<br>Emission Fa<br>ission Fa<br>x<br>ppmv<br>f Emissic<br>ied Charş<br>at submi.<br>dehyde in<br>ederal an<br>JJJJ X<br>dditiona<br>it a copy<br>it a typic     | g/hp-hr<br>2.00<br>a Factors:<br>actors (Pos<br>CC<br>g/hp-hr<br>on Control:<br>ge<br>t a copy of a<br>actuded in t<br>actuded in t<br>a | ppmv<br>X Manu<br>t Contro<br>ppmv<br>□ NSC<br>□ JLC<br>any manu<br>he VOCs<br>andards<br>ZZZ □<br>ion<br>ne manufa                        | g/hp-hr<br>ufacturer D<br>l)<br>g/hp-hr<br>CR Catalyst<br>CC Catalyst<br><i>tfacturer co</i><br>s?<br>(Check all<br>NSPS IIII<br>facturer's si<br>including s   | ppmv         ata       A         ata       A         02       ppmv         t       Le         Oth       Oth         ontrol info       Ithat app         ite rating a       ulfur cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | yo<br>g/hp-hr<br>0.7<br>AP-42<br>g/hp-hr<br>an Operation<br>ther (Specify<br>prmation that<br>bly)<br>e 30 Chapte<br>or general rate              | C ppmv Other (sp C ppmv n f): at demon: er 117 - L ating spec | g/hp-hr<br>ecify):<br>Formald<br>g/hp-hr<br>Parameter A<br>Parameter A<br>strates cont<br>ist County:<br>cification date<br>e. For gased | Ienyde         ppmv         dehyde         ppmv         adjustmer         rol efficie         ata.         pous fuels,              | provide mo                                                                               | 110<br>ppmv<br>(10<br>ppmv<br>(10<br>ppmv<br>No<br>Dle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| g/hp-hr         1.00         Source of         IV. Em         NO         g/hp-hr         Method o         Stratif         Note: Mu         Is Formal         V. F         NSPS         VI. A         1. Subm         2. Subm         percer         3. Subm | x<br>ppmv<br>Emission Fa<br>x<br>ppmv<br>f Emissic<br>ied Charş<br>dehyde in<br>ederal an<br>JJJJJ X<br>dditiona<br>it a copy<br>it a typic<br>nt of cons<br>it descript | g/hp-hr<br>2.00<br>n Factors:<br>actors (Pos<br>CC<br>g/hp-hr<br>on Control:<br>ge<br>t a copy of a<br>ncluded in t<br>nd State St<br>I Informat<br>of the engi-<br>al fuel gas a<br>stituents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ppmv<br>Manu<br>t Contro<br>ppmv<br>D NSC<br>D JLCC<br>any manu<br>he VOCs<br>andards<br>ZZZ<br>ion<br>ne manuf<br>analysis,<br>fuel ratio | g/hp-hr<br>ufacturer D<br>l)<br>g/hp-hr<br>CR Catalyst<br>CR Catalyst<br><i>ufacturer co</i><br>s?<br>(Check all<br>NSPS IIII<br>Facturer's si<br>including sys | 2         ppmv         ata       A         02       ppmv         b       C         02       ppmv         t       Le         Ottl       Ottl         ontrol info       Ithat app         Ithat app       Titl         ite rating outfur contestem (market)       Item (market)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | yo<br>g/hp-hr<br>0.7<br>AP-42<br>g/hp-hr<br>an Operation<br>her (Specify<br>prmation the<br>bly)<br>e 30 Chapte<br>or general ra-<br>tent and hea | C ppmv Other (sp C ppmv n f r 117 - L ating spec ting valu    | g/hp-hr<br>ecify):<br>Formald<br>g/hp-hr<br>Parameter A<br>strates cont<br>ist County:<br>cification date.<br>For gased                  | Ienyde         Jehyde         Jehyde         ppmv         Adjustmer         adjustmer         ata.         pous fuels,         able | provide mo                                                                               | 110<br>ppmv<br>(10<br>ppmv<br>(10<br>ppmv<br>(10<br>ppmv<br>(10<br>ppmv<br>(10<br>ppmv<br>(10<br>ppmv)<br>(10<br>ppmv<br>(10<br>ppmv)<br>(10<br>ppmv<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppmv)<br>(10<br>ppm |

**Print Form** 

**Reset Form** 

# Texas Commission on Environmental Quality Table 29 Reciprocating Engines

| I. Eng                                                                                                                                                                                                                       | gine Data                                                                                                                                                                                                    | ì                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                                              |                                                                                                                                                            |                                                                                                                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Manufact                                                                                                                                                                                                                     | urer:                                                                                                                                                                                                        |                                                                                                                                                                                                            | Model N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Serial No.                                                                                                                                        |                                                                              |                                                                                                                                                            | Manufac                                                                                                                            | ture Date:                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| PSI                                                                                                                                                                                                                          |                                                                                                                                                                                                              |                                                                                                                                                                                                            | Doosan '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.1L                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                                              |                                                                                                                                                            |                                                                                                                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Rebuilds                                                                                                                                                                                                                     | Date:                                                                                                                                                                                                        |                                                                                                                                                                                                            | No. of C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ylinders:                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Compress                                                                                                                                          | ion Ratio                                                                    | on Ratio: EPN:                                                                                                                                             |                                                                                                                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                              |                                                                                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.5                                                                                                                                              |                                                                              |                                                                                                                                                            | GEN-2                                                                                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Applicati                                                                                                                                                                                                                    | on:                                                                                                                                                                                                          | Gas Compr                                                                                                                                                                                                  | ression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | × Electric                                                                                                                                                      | Generati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on Re:                                                                                                                                            | frigeratio                                                                   | n 🗌 En                                                                                                                                                     | hergency/                                                                                                                          | Stand by                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| × 4 Stro                                                                                                                                                                                                                     | ke Cycle                                                                                                                                                                                                     | 2 Stro                                                                                                                                                                                                     | ke Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Carb                                                                                                                                                            | oureted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 🗌 Spark Ig                                                                                                                                        | gnited                                                                       | Dual Fue                                                                                                                                                   | el 🗌 Fi                                                                                                                            | uel Injected                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Diesel                                                                                                                                                                                                                       | 🗌 🗌 Na                                                                                                                                                                                                       | turally Asp                                                                                                                                                                                                | irated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Blower                                                                                                                                                          | /Pump So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cavenged                                                                                                                                          | Turbo                                                                        | Charged a                                                                                                                                                  | nd I.C.                                                                                                                            | 🗌 Turbo C                              | Charged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Intercooled I.C. Water Temperature Lean Burn Kich Burn                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                                              |                                                                                                                                                            |                                                                                                                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Ignition/                                                                                                                                                                                                                    | njection                                                                                                                                                                                                     | <b>Timing:</b>                                                                                                                                                                                             | Fixed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                 | Vari                                                                         | able:                                                                                                                                                      |                                                                                                                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Manufact                                                                                                                                                                                                                     | ure Horse                                                                                                                                                                                                    | epower Rati                                                                                                                                                                                                | ing: 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Proposed                                                                                                                                          | Horsepo                                                                      | wer Rating                                                                                                                                                 | : 254                                                                                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                              |                                                                                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D                                                                                                                                                               | ischarge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Parameter                                                                                                                                         | S                                                                            |                                                                                                                                                            | 1                                                                                                                                  |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Stack                                                                                                                                                                                                                        | Height (                                                                                                                                                                                                     | Feet)                                                                                                                                                                                                      | Stack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Diameter (                                                                                                                                                      | (Feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Stack T                                                                                                                                           | 'emperat                                                                     | ure (°F)                                                                                                                                                   | Exit                                                                                                                               | Velocity (                             | FPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                              |                                                                                                                                                                                                              |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                                              |                                                                                                                                                            |                                                                                                                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| II. Fue                                                                                                                                                                                                                      | el Data                                                                                                                                                                                                      |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1611.0                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ~ 5                                                                                                                                               |                                                                              |                                                                                                                                                            |                                                                                                                                    | <u> </u>                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Type of F                                                                                                                                                                                                                    | uel: X                                                                                                                                                                                                       | Field Gas                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | andfill Gas                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{1}{1}$ $\frac{1}{1}$                                                                                                                       | Natural                                                                      | Gas L                                                                                                                                                      | Digester C                                                                                                                         | as Dies                                | sel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Fuel Cons                                                                                                                                                                                                                    | sumption                                                                                                                                                                                                     | (BTU/bhp-                                                                                                                                                                                                  | hr):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                 | eat ing V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | alue: 1020                                                                                                                                        |                                                                              | Lowe                                                                                                                                                       | er Heating                                                                                                                         | g Value: 10                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Sulfur Co                                                                                                                                                                                                                    | ntent (gra                                                                                                                                                                                                   | $\frac{100 \text{ scl}}{100 \text{ scl}}$                                                                                                                                                                  | t - weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (%): 1.572                                                                                                                                                      | r grains/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TUUSCT                                                                                                                                            |                                                                              |                                                                                                                                                            |                                                                                                                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| III. Em                                                                                                                                                                                                                      | ission Fa                                                                                                                                                                                                    | ictors (Bef                                                                                                                                                                                                | ore Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rol)                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   | <u> </u>                                                                     |                                                                                                                                                            |                                                                                                                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                              | NOxCOSO2VOCFormaldehydePM10                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   |                                                                              |                                                                                                                                                            |                                                                                                                                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                              | X                                                                                                                                                                                                            |                                                                                                                                                                                                            | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                 | <b>D</b> <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                   | C                                                                            | Formal                                                                                                                                                     | lenyde                                                                                                                             |                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| g/hp-hr                                                                                                                                                                                                                      | x<br>ppmv                                                                                                                                                                                                    | g/hp-hr                                                                                                                                                                                                    | ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g/hp-hr                                                                                                                                                         | ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | yO<br>g/hp-hr                                                                                                                                     | C<br>ppmv                                                                    | g/hp-hr                                                                                                                                                    | ppmv                                                                                                                               | g/hp-hr                                | ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| g/hp-hr<br>1.00                                                                                                                                                                                                              | ppmv                                                                                                                                                                                                         | g/hp-hr<br>2.00                                                                                                                                                                                            | ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g/hp-hr                                                                                                                                                         | ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>g/hp-hr</b><br>0.7                                                                                                                             | C<br>ppmv                                                                    | Format<br>g/hp-hr                                                                                                                                          | ppmv                                                                                                                               | g/hp-hr                                | ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| g/hp-hr<br>1.00<br>Source of                                                                                                                                                                                                 | x<br>ppmv<br>Emission                                                                                                                                                                                        | g/hp-hr<br>2.00<br>n Factors:                                                                                                                                                                              | ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g/hp-hr                                                                                                                                                         | <b>ppmv</b><br>ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>g/hp-hr</b><br>0.7<br>AP-42                                                                                                                    | <b>ppmv</b><br>Other (sp                                                     | g/hp-hr<br>ecify):                                                                                                                                         | ppmv                                                                                                                               | g/hp-hr                                | ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| g/hp-hr<br>1.00<br>Source of<br>IV. Em                                                                                                                                                                                       | TX<br>ppmv<br>Emission<br>ission Fa                                                                                                                                                                          | g/hp-hr<br>2.00<br>n Factors:<br>nctors (Pos                                                                                                                                                               | ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g/hp-hr<br>ufacturer Da<br>l)                                                                                                                                   | ppmv<br>ata A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>g/hp-hr</b><br>0.7<br>AP-42                                                                                                                    | C<br>ppmv<br>Other (sp                                                       | g/hp-hr<br>ecify):                                                                                                                                         | ppmv                                                                                                                               | g/hp-hr                                | ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| g/hp-hr<br>1.00<br>Source of<br>IV. Em<br>NO                                                                                                                                                                                 | x<br>ppmv<br>Emission<br>ission Fa                                                                                                                                                                           | g/hp-hr<br>2.00<br>n Factors:<br>nctors (Pos<br>C(<br>g/hn-hr                                                                                                                                              | ppmv     ppmv     X     Manu     t     Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/hp-hr<br>ufacturer Da<br>l)<br>g/hp-hr                                                                                                                        | ppmv     ata   A     A     A     A     A     A     A     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B     B      B     B <td>yo<br/>g/hp-hr<br/>0.7<br/>AP-42<br/>VO<br/>g/hp-hr</td> <td>C<br/>ppmv<br/>Other (sp<br/>C</td> <td>g/hp-hr<br/>ecify):<br/>Formald</td> <td>ppmv<br/>lehyde</td> <td>g/hp-hr<br/>PM<br/>g/hn-hr</td> <td>10<br/>ppmv<br/>10<br/>10<br/>npmv</td>                                                                                                                                                                                                                                                                                                                                                                                | yo<br>g/hp-hr<br>0.7<br>AP-42<br>VO<br>g/hp-hr                                                                                                    | C<br>ppmv<br>Other (sp<br>C                                                  | g/hp-hr<br>ecify):<br>Formald                                                                                                                              | ppmv<br>lehyde                                                                                                                     | g/hp-hr<br>PM<br>g/hn-hr               | 10<br>ppmv<br>10<br>10<br>npmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| g/hp-hr<br>1.00<br>Source of<br>IV. Em<br>NO<br>g/hp-hr                                                                                                                                                                      | x<br>ppmv<br>Emission<br>ission Fa<br>x<br>ppmv                                                                                                                                                              | g/hp-hr<br>2.00<br>n Factors:<br>nctors (Pos<br>CC<br>g/hp-hr                                                                                                                                              | ppmv       ppmv       X       Manu       t       Contro       ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g/hp-hr<br>ufacturer Da<br>l)<br>g/hp-hr                                                                                                                        | ppmv     ata   A     ppmv     ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | v0<br>g/hp-hr<br>0.7<br>P-42<br>V0<br>g/hp-hr                                                                                                     | C ppmv<br>Other (sp<br>C ppmv                                                | g/hp-hr<br>ecify):<br>Formald<br>g/hp-hr                                                                                                                   | ppmv<br>lehyde<br>ppmv                                                                                                             | g/hp-hr<br>PM<br>g/hp-hr               | 10<br>ppmv<br>10<br>10<br>ppmv<br>ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| g/hp-hr<br>1.00<br>Source of<br>IV. Em<br>NO<br>g/hp-hr                                                                                                                                                                      | x<br>ppmv<br>Emission<br>ission Fa<br>x<br>ppmv<br>f Emissio                                                                                                                                                 | g/hp-hr<br>2.00<br>n Factors:<br>nctors (Pos<br>CC<br>g/hp-hr                                                                                                                                              | ppmv<br>X Manu<br>t Contro<br>ppmv<br>□ NSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g/hp-hr<br>ufacturer Da<br>l)<br>g/hp-hr<br>CR Catalyst                                                                                                         | $\begin{array}{c c} ppmv \\ \hline ppmv \\ \hline \\ ata \\ \hline \\ p_2 \\ \hline \\ ppmv \\ t \\ \hline \\ Le \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g/hp-hr<br>0.7<br>AP-42<br>vO<br>g/hp-hr<br>an Operatio                                                                                           | C ppmv Other (sp C ppmv n I                                                  | g/hp-hr<br>ecify):<br>Formald<br>g/hp-hr                                                                                                                   | ppmv<br>dehyde<br>ppmv                                                                                                             | g/hp-hr<br>PM<br>g/hp-hr               | 10<br>ppmv<br>10<br>10<br>10<br>ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| g/hp-hr<br>1.00<br>Source of<br>IV. Em<br>NO<br>g/hp-hr<br>Method o                                                                                                                                                          | x<br>ppmv<br>Emission<br>ission Fa<br>x<br>ppmv<br>f Emissic<br>ied Charg                                                                                                                                    | g/hp-hr<br>2.00<br>n Factors:<br>nctors (Pos<br>CC<br>g/hp-hr<br>on Control:<br>ze                                                                                                                         | ppmv<br>X Manu<br>t Contro<br>ppmv<br>□ NSC<br>□ JLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | g/hp-hr<br>ufacturer Da<br>l)<br>g/hp-hr<br>CR Catalyst                                                                                                         | 2<br>ppmv<br>ata ☐ A 2 2 ppmv t ☐ Le Otil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | yo<br>g/hp-hr<br>0.7<br>AP-42<br>yo<br>g/hp-hr<br>an Operatio<br>her (Specify                                                                     | C ppmv<br>Other (sp<br>C ppmv<br>n h F<br>):                                 | <b>g/hp-hr</b><br>ecify):<br>Formald<br>g/hp-hr                                                                                                            | lehyde<br>ppmv<br>lehyde<br>ppmv                                                                                                   | g/hp-hr<br>PM<br>g/hp-hr               | 10<br>ppmv<br>10<br>10<br>10<br>ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| g/hp-hr       1.00       Source of       IV. Em       NO       g/hp-hr       Method o       Stratif       Note: Mu                                                                                                           | x<br>ppmv<br>Emission<br>ission Fa<br>x<br>ppmv<br>f Emissic<br>ied Charg                                                                                                                                    | g/hp-hr<br>2.00<br>n Factors:<br>nctors (Pos<br>CC<br>g/hp-hr<br>on Control:<br>ge<br>t a copy of o                                                                                                        | ppmv<br>X Manu<br>t Contro<br>ppmv<br>□ NSC<br>□ JLC<br>any manu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g/hp-hr<br>ufacturer D<br>l)<br>g/hp-hr<br>CR Catalyst<br>CC Catalyst                                                                                           | 2       ppmv       ata     A       D2       ppmv       t     Le       Oth       ontrol info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | yo<br>g/hp-hr<br>0.7<br>AP-42<br>vO<br>g/hp-hr<br>an Operatio<br>her (Specify<br>prmation that                                                    | C ppmv Other (sp C ppmv n ): at demons                                       | g/hp-hr<br>ecify):<br>Formald<br>g/hp-hr<br>Parameter A                                                                                                    | lehyde<br>ppmv<br>lehyde<br>ppmv<br>Adjustmer                                                                                      | PM<br>g/hp-hr<br>g/hp-hr<br>at         | 10<br>ppmv<br>10<br>ppmv<br>ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| g/hp-hr<br>1.00<br>Source of<br>IV. Em<br>NO<br>g/hp-hr<br>Method o<br>☐ Stratif<br>Note: Mu<br>Is Formal                                                                                                                    | x<br>ppmv<br>Emission<br>ission Fa<br>x<br>ppmv<br>f Emission<br>ied Charg<br>ust submin<br>dehyde in                                                                                                        | g/hp-hr<br>2.00<br>n Factors:<br>nctors (Pos<br>CC<br>g/hp-hr<br>on Control:<br>ge<br>t a copy of a<br>ncluded in t                                                                                        | <pre>ppmv ppmv X Manu t Contro ppmv ppmv NSC JLC any manu he VOCs</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | g/hp-hr<br>ufacturer Da<br>l)<br>g/hp-hr<br>CR Catalyst<br>CC Catalyst<br>ufacturer co                                                                          | 2           ppmv           ata         A           02         Ppmv           t         Le           Otto         Otto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | yo<br>g/hp-hr<br>0.7<br>AP-42<br>g/hp-hr<br>an Operatio<br>her (Specify<br>prmation that                                                          | C ppmv Other (sp C ppmv n ): at demon:                                       | g/hp-hr<br>ecify):<br>Formald<br>g/hp-hr<br>Parameter A                                                                                                    | dehyde<br>ppmv<br>dehyde<br>ppmv<br>adjustmer                                                                                      | PM<br>g/hp-hr<br>g/hp-hr<br>at         | 10<br>ppmv<br>10<br>ppmv<br>ppmv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| g/hp-hr<br>1.00<br>Source of<br>IV. Em<br>NO<br>g/hp-hr<br>Method o<br>☐ Stratif<br>Note: Mu<br>Is Formala<br>V. F                                                                                                           | x<br>ppmv<br>Emission<br>ission Fa<br>x<br>ppmv<br>f Emissic<br>ied Charş<br>ust submit<br>dehyde in<br>ederal an                                                                                            | g/hp-hr<br>2.00<br>n Factors:<br>nctors (Pos<br>CC<br>g/hp-hr<br>on Control:<br>ge<br>t a copy of a<br>ncluded in t<br>nd State St                                                                         | ppmv x Manut t Control ppmv □ NSC I JLC any manut he VOCs andards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g/hp-hr<br>ufacturer Da<br>l)<br>g/hp-hr<br>CR Catalyst<br>CC Catalyst<br>tfacturer co<br>s?<br>(Check all                                                      | 2         ppmv         ata       A         02       ppmv         t       Le         Otto       Otto         pontrol info       that app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | yo<br>g/hp-hr<br>0.7<br>AP-42<br>g/hp-hr<br>an Operatio<br>her (Specify<br>prmation that                                                          | C ppmv Other (sp C ppmv n ):                                                 | <b>g/hp-hr</b><br>ecify):<br>Formald<br>g/hp-hr<br>Parameter A                                                                                             | lehyde<br>ppmv<br>lehyde<br>ppmv<br>Adjustmer                                                                                      | PM<br>g/hp-hr<br>g/hp-hr<br>at         | no n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| g/hp-hr         1.00         Source of         IV. Em         NO         g/hp-hr         Method o         Stratif         Note: Mu         Is Formal         V. F         X NSPS                                             | x<br>ppmv<br>Emission<br>ission Fa<br>x<br>ppmv<br>f Emissic<br>ied Charg<br>ust submi<br>dehyde in<br>ederal an<br>JJJJ                                                                                     | g/hp-hr<br>2.00<br>n Factors:<br>nctors (Pos<br>CC<br>g/hp-hr<br>on Control:<br>ge<br>t a copy of a<br>ncluded in t<br>nd State St<br>MACT ZZ                                                              | ppmv         ☑ Manu         Image: Control                                                                                                                                             | g/hp-hr<br>ufacturer Da<br>I)<br>g/hp-hr<br>CR Catalyst<br>CC Catalyst<br>tfacturer co<br>S?<br>(Check all<br>NSPS IIII                                         | 2   ppmv   ata   ata   A   A   A   A   A   A   B   A   B   A   B   A   B   B   C   C   B   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C <td>yo<br/>g/hp-hr<br/>0.7<br/>AP-42<br/>g/hp-hr<br/>an Operatio<br/>her (Specify<br/>prmation that<br/>bly)<br/>e 30 Chapte</td> <td>C ppmv Other (sp C ppmv n f): at demon: er 117 - L</td> <td><b>Formald</b><br/>g/hp-hr<br/>ecify):<br/>Formald<br/>g/hp-hr<br/>Parameter A<br/>strates cont</td> <td>lehyde<br/>ppmv<br/>dehyde<br/>ppmv<br/>adjustmer</td> <td>PM<br/>g/hp-hr<br/>g/hp-hr<br/>at</td> <td>10<br/>ppmv<br/>10<br/>10<br/>ppmv<br/>No</td>                                                                                                                                                                                                                                                                        | yo<br>g/hp-hr<br>0.7<br>AP-42<br>g/hp-hr<br>an Operatio<br>her (Specify<br>prmation that<br>bly)<br>e 30 Chapte                                   | C ppmv Other (sp C ppmv n f): at demon: er 117 - L                           | <b>Formald</b><br>g/hp-hr<br>ecify):<br>Formald<br>g/hp-hr<br>Parameter A<br>strates cont                                                                  | lehyde<br>ppmv<br>dehyde<br>ppmv<br>adjustmer                                                                                      | PM<br>g/hp-hr<br>g/hp-hr<br>at         | 10<br>ppmv<br>10<br>10<br>ppmv<br>No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| g/hp-hr         1.00         Source of         IV. Em         NO         g/hp-hr         Method o         Stratif         Note: Mu         Is Formal         V. F         ⊠ NSPS         VI. A                               | x<br>ppmv<br>Emission<br>ission Fa<br>x<br>ppmv<br>f Emissic<br>ied Charg<br>ust submin<br>dehyde in<br>ederal an<br>JJJJ ×<br>dditiona                                                                      | g/hp-hr<br>2.00<br>in Factors:<br>inctors (Pos<br>CC<br>g/hp-hr<br>on Control:<br>ge<br>t a copy of a<br>included in t<br>ind State St<br>MACT ZZ                                                          | ppmv         ☑ ppmv         ☑ Contro         )         ppmv         ☑ NSC         ☑ JLC         any manu         he VOCs         andards         ZZZ         ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g/hp-hr<br>ufacturer Da<br>l)<br>g/hp-hr<br>CR Catalyst<br>CC Catalyst<br>ufacturer co<br>s?<br>(Check all<br>NSPS IIII                                         | 2         ppmv         ata       A         02       ppmv         b       C         c       C         c       C         c       C         c       C         c       C         c       C         c       C         c       C         c       C         c       C         c       C         c       T         c       T         c       T         c       T         c       T         c       T         c       T         c       T         c       T         c       T         c       T         c       T         c       T         c       T         c       T         c       T         c       T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | yo<br>g/hp-hr<br>0.7<br>AP-42<br>g/hp-hr<br>an Operation<br>her (Specify<br>prmation that<br>bly)<br>e 30 Chapte                                  | C ppmv Other (sp C ppmv n f t demons t t t f t f t f t f t f t f t f t f t   | <pre>Formatic<br/>g/hp-hr<br/>ecify):<br/>Formatic<br/>g/hp-hr<br/>Parameter A<br/>strates cont<br/>ist County:</pre>                                      | lehyde<br>ppmv<br>dehyde<br>ppmv<br>adjustmer                                                                                      | PM<br>g/hp-hr<br>g/hp-hr<br>at         | 10<br>ppmv<br>10<br>10<br>ppmv<br>No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| g/hp-hr         1.00         Source of         IV. Em         NO         g/hp-hr         Method o         Stratif         Note: Mu         Is Formal         V. F         NSPS         VI. A         1. Subm                 | x<br>ppmv<br>Emission<br>ission Fa<br>x<br>ppmv<br>f Emissic<br>ied Charş<br>dehyde in<br>ederal an<br>JJJJ X<br>dditiona<br>it a copy                                                                       | g/hp-hr<br>2.00<br>n Factors:<br>nctors (Pos<br>CC<br>g/hp-hr<br>on Control:<br>ge<br>t a copy of a<br>ncluded in t<br>nd State St<br>MACT ZZ<br>l Informat<br>of the engin                                | ppmv<br>X Manu<br>t Contro<br>ppmv<br>D NSC<br>D JLC<br>any manu<br>he VOCs<br>andards<br>ZZZ □<br>ion<br>ne manuf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g/hp-hr<br>ufacturer Da<br>l)<br>g/hp-hr<br>CR Catalyst<br>CC Catalyst<br>tfacturer co<br>s?<br>(Check all<br>NSPS IIII                                         | 2   ppmv   ata   ata   A   A   A   A   B   A   B   A   B   A   B   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C <td>yo<br/>g/hp-hr<br/>0.7<br/>AP-42<br/>g/hp-hr<br/>an Operation<br/>her (Specify<br/>prmation that<br/>bly)<br/>e 30 Chapte</td> <td>C ppmv Other (sp C ppmv n ):</td> <td><pre>Formation g/hp-hr ecify): Formation g/hp-hr Parameter A strates cont ist County: cification data</pre></td> <td>lehyde<br/>ppmv<br/>dehyde<br/>ppmv<br/>Adjustmer<br/>rol efficie</td> <td>PM<br/>g/hp-hr<br/>g/hp-hr<br/>at</td> <td>110<br/>ppmv<br/>10<br/>10<br/>10<br/>ppmv<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</td>                                                                                                                                                                     | yo<br>g/hp-hr<br>0.7<br>AP-42<br>g/hp-hr<br>an Operation<br>her (Specify<br>prmation that<br>bly)<br>e 30 Chapte                                  | C ppmv Other (sp C ppmv n ):                                                 | <pre>Formation g/hp-hr ecify): Formation g/hp-hr Parameter A strates cont ist County: cification data</pre>                                                | lehyde<br>ppmv<br>dehyde<br>ppmv<br>Adjustmer<br>rol efficie                                                                       | PM<br>g/hp-hr<br>g/hp-hr<br>at         | 110<br>ppmv<br>10<br>10<br>10<br>ppmv<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| g/hp-hr         1.00         Source of         IV. Em         NO         g/hp-hr         Method o         Stratif         Note: Mu         Is Formal         V. F         NSPS         VI. A         1. Subm         2. Subm | x<br>ppmv<br>Emission<br>ission Fa<br>x<br>ppmv<br>f Emission<br>ied Charg<br>ust submin<br>dehyde in<br>ederal an<br>JJJJ X<br>dditiona<br>it a copy<br>it a typic                                          | g/hp-hr<br>2.00<br>in Factors:<br>inctors (Pos<br>CC<br>g/hp-hr<br>on Control:<br>ge<br>t a copy of a<br>included in t<br>ind State St<br>MACT ZZ<br>I Informat<br>of the enginal<br>al fuel gas a         | ppmv         ☑ ppmv         Image: Control         ppmv         Image: Display fraction         Image: Display fraction | g/hp-hr<br>ufacturer Da<br>l)<br>g/hp-hr<br>CR Catalyst<br>CC Catalyst<br><i>tfacturer co</i><br>s?<br>(Check all<br>NSPS IIII<br>Sacturer's si<br>including su | 2   ppmv   ata   ata   A   A   A   A   A   A   B   A   B   A   B   A   B   B   C   C   B   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C   C <td>yo<br/>g/hp-hr<br/>0.7<br/>AP-42<br/>g/hp-hr<br/>an Operation<br/>her (Specify<br/>prmation that<br/>by)<br/>e 30 Chapte<br/>or general ra-<br/>tent and hea</td> <td>C ppmv Other (sp C ppmv n f t demon: t t f t f t f f f f f f f f f f f f f</td> <td><b>Formald</b><br/>g/hp-hr<br/>ecify):<br/>Formald<br/>g/hp-hr<br/>Parameter A<br/>Parameter A<br/>strates cont<br/>ist County:<br/>cification data<br/>e. For gased</td> <td>Ienyde       ppmv       Iehyde       ppmv       adjustmen       rol efficie       ata.       ous fuels,</td> <td>PM<br/>g/hp-hr<br/>g/hp-hr<br/>at<br/>mcy.</td> <td>110<br/>ppmv<br/>10<br/>10<br/>10<br/>ppmv<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</td> | yo<br>g/hp-hr<br>0.7<br>AP-42<br>g/hp-hr<br>an Operation<br>her (Specify<br>prmation that<br>by)<br>e 30 Chapte<br>or general ra-<br>tent and hea | C ppmv Other (sp C ppmv n f t demon: t t f t f t f f f f f f f f f f f f f   | <b>Formald</b><br>g/hp-hr<br>ecify):<br>Formald<br>g/hp-hr<br>Parameter A<br>Parameter A<br>strates cont<br>ist County:<br>cification data<br>e. For gased | Ienyde       ppmv       Iehyde       ppmv       adjustmen       rol efficie       ata.       ous fuels,                            | PM<br>g/hp-hr<br>g/hp-hr<br>at<br>mcy. | 110<br>ppmv<br>10<br>10<br>10<br>ppmv<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| g/hp-hr       1.00       Source of       IV. Em       NO       g/hp-hr       Method o       Stratif       Note: Mu       Is Formal       V. F       NSPS       VI. A       1. Subm       2. Subm       percer       3. Subm  | x<br>ppmv<br>Emission<br>ission Fa<br>ission Fa<br>x<br>ppmv<br>f Emission<br>ied Charg<br>ist submin<br>dehyde in<br>ederal an<br>JJJJ ×<br>dditiona<br>it a copy<br>it a typic<br>nt of cons<br>it descriv | g/hp-hr<br>2.00<br>n Factors:<br>nctors (Pos<br>cCC<br>g/hp-hr<br>on Control:<br>ge<br>t a copy of a<br>ncluded in t<br>nd State St<br>MACT ZZ<br>I Informat<br>of the engi<br>al fuel gas a<br>stituents. | ppmv         ☑ ppmv         ☑ Manu         t Contro         )         ppmv         ☑ NSC         ☑ JLC         any manu         he VOCs         andards         ZZZ         ion         ne manuf         analysis,         fuel ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g/hp-hr<br>ufacturer Da<br>l)<br>g/hp-hr<br>CR Catalyst<br>CR Catalyst<br><i>tfacturer co</i><br>s?<br>(Check all<br>NSPS IIII<br>cacturer's si<br>including su | 2         ppmv         ata       A         ata       A         02       ppmv         b       C         c       D         c       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D         d       D                                                                                                                                                                                                                                                                                                                                                                                                                | yo<br>g/hp-hr<br>0.7<br>AP-42<br>g/hp-hr<br>an Operation<br>her (Specify<br>prmation that<br>by)<br>e 30 Chapte<br>or general ra-<br>tent and hea | C ppmv Other (sp C ppmv C ppmv n f r 117 - L ating spec ting value oformatio | <pre>Formation g/hp-hr ecify): Formation g/hp-hr Parameter A strates cont ist County: cification data e. For gased n is acceptation</pre>                  | Ienyde         ppmv         Iehyde         ppmv         Adjustmer         adjustmer         ata.         puss fuels,         able. | provide mo                             | Image: state |  |

**Print Form** 

**Reset Form** 

30 TAC §106.512 – Stationary Engines and Turbines NAAQS Compliance Demonstration

30 TAC §106.512 (6)( C)(i)(ii) requires that the total emissions of NOx (nitrogen oxide plus  $NO_2$ ) from all existing and proposed facilities on the property do not exceed the most restrictive of the following:

# (i) 250 tpy;

(ii) the value (0.3125 D) tpy, where D equals the shortest distance in feet from any existing or proposed stack to the nearest property line.

For Munson #1201 SWD Facility, the facility (EPNs GEN-1 and GEN-2) complies due to:

- NOx emissions totaling 4.91 tpy
- D= 100 feet→ (.3125D)= (.3125(16))= 5 tpy



where, 4.91 tpy ≤ 5 tpy

Permit by Rule Registration Munson #1201 Salt Water Disposal Facility

# APPENDIX C AREA MAP



|                           | AREA MAP                     |               |  |  |  |
|---------------------------|------------------------------|---------------|--|--|--|
| Munson #1201 SWD Facility |                              |               |  |  |  |
|                           | Sequitur Permian, LLC – TEXA | IS            |  |  |  |
| Prepared by:              | RAMBOLL ENVIRON              | February 2018 |  |  |  |

Permit by Rule Registration Munson #1201 Salt Water Disposal Facility

# APPENDIX D MANUFACTURER SPECIFICATIONS

|                                                                          | Rev:    | A                 |         | 11          | .1L         |      |
|--------------------------------------------------------------------------|---------|-------------------|---------|-------------|-------------|------|
|                                                                          | Ur      | nits              |         | 11.         | .1L         |      |
| ENGINES                                                                  | Std     | Metric            | 15      | 00          | 18          | 00   |
| General Engine Data                                                      |         |                   |         |             |             |      |
| Туре                                                                     | N       | I/A               |         | In-Line     | 4 cycle     |      |
| Number of cylinders                                                      | N       | I/A               |         |             | 6           |      |
| Aspiration                                                               | Ν       | I/A               | Τι      | irbo Charg  | e Air Coole | ed   |
| Bore                                                                     | in      | mm                | 4.84    | 123         | 4.84        | 123  |
| Stroke                                                                   | in      | mm                | 6.1     | 155         | 6.1         | 155  |
| Displacement                                                             | in^3    | L                 | 673     | 11.1        | 673         | 11.1 |
| Compression Ratio                                                        | N/A     |                   |         | 1(          | ).5         |      |
| Mean Piston Speed                                                        | ft/min  | m/s               | 1525    | 7.75        | 1830        | 9.3  |
| Gross Standby Power Rating <sup>1,2,3</sup> Per ISO 3046 at the Flywheel |         |                   |         |             |             |      |
| NG                                                                       | Hp      | kW                | 268     | 200         | 302         | 225  |
| LP                                                                       | Hp      | kW                | 180     | 134         | 208         | 155  |
| MEP (@ rated Load on NG)                                                 | psi     | bar               | 210     | 14          | 197         | 14   |
| MEP (@ rated Load on LP)                                                 | psi     | bar               | 141     | 10          | 136         | 9    |
| Gross Prime Power Rating <sup>1,2,3</sup> Per ISO 3046 at the Flywheel   |         |                   |         |             |             |      |
| NG                                                                       | Нр      | kW                | 241     | 180         | 272         | 203  |
| LP                                                                       | Нр      | kW                | N/A     | N/A         | N/A         | N/A  |
| MEP (@ rated Load on NG)                                                 | psi     | bar               | 189     | 13          | 177         | 12   |
| MEP (@ rated Load on LP)                                                 | psi     | bar               | N/A     | N/A         | N/A         | N/A  |
| RPM Range (Min-Max)                                                      | R       | PM                |         | 1500        | -2000       |      |
| Rotation Viewed from Flywheel                                            | N       | I/A               |         | Counter (   | Clockwise   |      |
| Firing Order                                                             | N       | I/A               |         | 1-5-3       | -6-2-4      |      |
| Dry Weight                                                               |         |                   |         |             |             |      |
| Fan to Flywheel                                                          | lb      | kg                | 2600    | 1179        | 2600        | 1179 |
| Rad to Flywheel                                                          | lb      | kg                | 3125    | 1417        | 3125        | 1417 |
| Wet Weight                                                               |         |                   |         |             |             |      |
| Fan to Flywheel                                                          | lb      | kg                | 2695    | 1206        | 2695        | 2627 |
| Rad to Flywheel                                                          | lb      | kg                | 3377    | 1530        | 3377        | 1530 |
| CG                                                                       |         |                   |         |             |             |      |
| Distance from FW housing                                                 | in      | mm                | 24      | 605         | 24          | 605  |
| Distance above center of crankshaft                                      | in      | mm                | 6       | 160         | 6           | 160  |
| Engine Mounting                                                          |         |                   |         |             |             |      |
| Maximum Allowable Bending Moment at Rear of Block                        | lb ft   | Nm                |         |             |             |      |
| Moment of Inertia About Roll Axis                                        | lb ft^2 | kg m^2            |         |             |             |      |
| Flywheel housing                                                         | N       | I/A               |         | SAE         | No.1        |      |
| Flywheel                                                                 | N       | I/A               |         | No          | . 14        |      |
| Number of Flywheel Teeth                                                 | N       | I/A               |         | 1           | 52          |      |
| Exhaust System                                                           |         |                   |         |             |             |      |
| Type                                                                     |         |                   | V       | Vater Cool  | ed Manifold |      |
| Maximum allowable Back pressure                                          | in HG   | kPa               | 3       | 10.2        | 3           | 10.2 |
| Standard Catalyst Back pressure                                          | in HG   | кРа               | 1.5     | 5.1         | 1.5         | 5.1  |
| Exhaust Outlet Pipe Size                                                 |         |                   | 1000    |             | 1000        |      |
| Invaximum Turbine Inlet Temperature                                      | F       | C katter          | 1382    | /50         | 1382        | /50  |
| Exhuast Flow at Rated Power                                              | ID/nr   | Kg/nr             | 1654    | 750         | 1869        | 848  |
| Exhuast Flow at Rated Power @1350F                                       | crm     | m^3/min           | 1261.13 | 35.7        | 1425        | 40.3 |
| Maximum allowable Inteles Air Destriction with Air Cleaner               |         |                   |         |             |             |      |
|                                                                          | in LIOC | kD-               | F       | 1.04        | F           | 1.04 |
|                                                                          | inH2O   | кра               | 0<br>15 | 1.24        | 5           | 1.24 |
| Compution Air required                                                   | INH2U   | Kra<br>ka/br      | 1501    | 3.74<br>709 | 1764        | 3.74 |
| Compustion Air required                                                  |         | ng/III<br>m∆3/min | 306     | 100         | 1/04        | 12   |
|                                                                          |         | HT: 3/11101       | 230     | 11          | ++0         | 10   |

|                                                                      | Rev:       | A               |        | 11.        | .1L        |                 |
|----------------------------------------------------------------------|------------|-----------------|--------|------------|------------|-----------------|
| ENGINES                                                              | 10         | Motrio          | 45     | 11.        | 10         | 00              |
|                                                                      | 510        | Metric          | 15     | 00         | 18         | 00              |
|                                                                      |            |                 |        |            |            |                 |
|                                                                      | <i>F</i>   | ٨H              |        | 18         | 50         |                 |
|                                                                      |            | ~ ~             |        |            |            |                 |
| Engine only                                                          | <u> </u>   |                 |        | 90         | 00         |                 |
| Engine with Drive train                                              | 0          |                 |        | 90         | 00         |                 |
| Maximum Allowable Resistance of Starting Circuit                     | Un         | nms             | 0.4    | 0.0        | 02         | 7               |
| Starting Motor Power                                                 | пр         | KVV             | 9.4    | 1          | 9.4        | 1               |
| Battery Charging Alternator                                          | N/         | lta             |        | 0          | 4          |                 |
| Vollage                                                              | V(         | DIIS            |        | Z          | 5          |                 |
| Culleni                                                              | AI         | nps             |        | 0.500      | · 100/     |                 |
| Spark Plug p/p                                                       | 0          | 1115            |        | 0.590      | ± 10%      |                 |
| Spark Flug gan                                                       | inches     | mm              | 015" ( | -Ω/± ΩΩ8") | 38mm (_0/. | + 2mm)          |
| Cooling System                                                       | incries    |                 | .010 ( | 0,+.000 ). | 50mm (-0/- | +. <u>2</u> mmj |
| Coolant Capacity                                                     |            |                 |        |            |            |                 |
| Engine only                                                          | dal        |                 | 5.5    | 25.0       | 5.5        | 25.0            |
| Engine with Radiator                                                 | gal        | L               | 23     | 105        | 23         | 105             |
| Engine Coolant Flow                                                  | gal/min    | L/min           | 69     | 260        | 82         | 310             |
| Water Pump Speed                                                     | RI         | PM              | 18     | 62         | 22         | 35              |
| Heat rejected to Cooling water at rated Load                         | btu/min    | kcal/sec        | 9285   | 39         | 11071      | 46.5            |
| Maximum Intake Air Temperature (IAT)                                 | F          | С               | 155    | 68         | 155        | 68              |
| ECU IAT Warning                                                      | F          | С               | 140    | 60         | 140        | 60              |
| ECU IAT Shutdown                                                     | F          | С               | 155    | 69         | 155        | 69              |
| Maximum Coolant Friction Head External to the engine                 | psi        | bar             | 5.8    | 0.4        | 5.8        | 0.4             |
| Maximum Air Restriction Across a Radiator                            | inH2O      | mmH2O           | 0.5    | 12.8       | 0.5        | 12.8            |
| Standard Thermostat Range                                            |            |                 |        |            |            |                 |
| Cracking Temperature                                                 | F          | С               | 160    | 71         | 160        | 71              |
| Full Open Temperature                                                | F          | С               | 185    | 85         | 185        | 85              |
| Maximum Allowable Pressure Cap                                       | psi        | bar             | 14.7   | 1          | 14.7       | 1               |
| Ambient Clearance Open Genset (water) (Air-to-Boil)                  |            |                 |        |            |            |                 |
| Specified                                                            | F          | С               | 142    | 61         | 142        | 61              |
| Acutal                                                               | F          | С               |        |            | 150        | 66              |
| Ambient Clearance (Oil)                                              |            |                 |        | n          |            | 1               |
| Specified                                                            | F          | С               | 142    | 61         | 142        | 61              |
| Acutal                                                               | F          | С               |        |            | 139        | 59              |
| CAC Rise over Ambient (Charge)                                       |            |                 |        | r          |            |                 |
| Specified                                                            | F          | C               | 15     | 9          | 15         | 9               |
| Acutal                                                               | F          | C               |        |            | 4          | 2               |
| Maximum Allowable Top Tank Temperature                               | F          | C               | 230    | 110        | 230        | 110             |
| ECU Warning                                                          | - F        | C               | 220    | 104        | 220        | 104             |
| ECU Shutdown                                                         | F          |                 | 230    | 110        | 230        | 110             |
| Fan Power                                                            | HP         | KVV             | 5      | 4.0        | 9          | 6.7             |
| Fan Diameter, including blades                                       | in         | mm              | 38     | 965        | 38         | 965             |
| Cooling For Air Flow @ 1" Statio H20. Processing and 1255 @ redictor |            | rivi<br>mA2/min | 15 420 | 407        | 18 000     | E10             |
| Charge Air Cooler                                                    | CFIVI      | nr s/mn         | 15,429 | 437        | 10,000     | 510             |
| Compressor Outlet Tomperature                                        |            | C               | 225    | 11/        | 255        | 105             |
| Compressor Clow Pate                                                 | Г<br>lb/br | ka/hr           | 200    | 750        | 200        | 120<br>848      |
| Heat Rejection per CAC                                               | btu/min    | k\//            | TRD    | 730        | 1/60       | 25.7            |
|                                                                      | 5.0/11111  | 11.4.4          | ייסיי  |            | 1700       | 20.1            |

|                                                                 | Rev:                | A      |                  | 11                      | .1L                     | 1                      |
|-----------------------------------------------------------------|---------------------|--------|------------------|-------------------------|-------------------------|------------------------|
|                                                                 | Ur                  | nits   |                  | 11.                     | .1L                     |                        |
| ENGINES                                                         | Std                 | Metric | 1500             |                         | 1800                    |                        |
| Lubrication System                                              |                     |        |                  |                         |                         |                        |
| Oil Specification                                               |                     |        | SAE 15<br>(.255% | W-40 Low<br>6 by wt), A | Ash Gas e<br>PI CD/CF ( | ngine oil<br>or higher |
|                                                                 |                     |        |                  |                         |                         |                        |
| Idle                                                            | Dei                 | Por    | 11               | 0.0                     | 11                      | 0.0                    |
| Win<br>Max                                                      | PSI                 | Bar    | 20.2             | 0.8                     | 20.2                    | 0.8                    |
| Rated Speed                                                     | F 51                | Dai    | 20.5             | 1.4                     | 20.5                    | 1.4                    |
| Min                                                             | Psi                 | Bar    | 20.3             | 14                      | 20.3                    | 14                     |
| Max                                                             | Psi                 | Bar    | 70               | 4.8                     | 70                      | 4.8                    |
| Maximum Allowable Oil Temperature                               | F                   | C      | 250              | 121                     | 250                     | 121                    |
| Engine Oil Capacity                                             |                     |        |                  |                         |                         |                        |
| Min                                                             | Qts                 | L      | 20               | 19                      | 20                      | 19                     |
| Мах                                                             | Qts                 | L      | 26.5             | 25                      | 26.5                    | 25                     |
| Oil Filter Capacity                                             | Qts                 | L      | 3.75             | 3.5                     | 3.75                    | 3.5                    |
| ECU Oil Pressure Warning <sup>5</sup>                           | psi                 |        |                  | 3                       | 50                      |                        |
| ECU Oil Pressure Shut Down <sup>5</sup>                         | psi                 |        |                  | 2                       | 25                      |                        |
| Fuel System                                                     |                     |        |                  |                         |                         |                        |
| Fuel Consumption <sup>6</sup>                                   |                     |        |                  |                         |                         |                        |
| NG                                                              | Ft <sup>3</sup> /hr | kg/hr  | 1890             | 43                      | 2115                    | 48                     |
| LP                                                              | Ft <sup>3</sup> /hr | kg/hr  | 593              | 32                      | 704                     | 38                     |
| Maximum EPR Rated Pressure                                      | psi                 | kPa    | 1.0              | 6.9                     | 1.0                     | 6.9                    |
| Maximum Running pressure to Electronic Pressure Regulator (EPR) | inH2O               | kPa    | 11.0             | 2.7                     | 11.0                    | 2.7                    |
| Minimum Running pressure to EPR                                 | inH2O               | kPa    | 7.0              | 1.7                     | 7.0                     | 1.7                    |
| Minimum Gas Supply Pipe Size                                    |                     |        |                  | 2"                      | NPT                     |                        |
|                                                                 |                     |        |                  |                         |                         |                        |
| Maximum EPR Rated Pressure                                      | psi                 | kPa    | 1.0              | 6.9                     | 1.0                     | 6.9                    |
| Maximum Running Pressure to EPR                                 | inH2O               | kPa    | 11.0             | 2.7                     | 11.0                    | 2.7                    |
| Minimum Running Pressure to EPR                                 | inH2O               | kPa    | 7.0              | 1.7                     | 7.0                     | 1.7                    |
| Minimum LPG Supply Pipe Size <sup>4</sup>                       |                     |        |                  | 2"                      | VPT                     |                        |

The preceeding pipe sizes are only suggestions and piping sizes may vary with temperature,

pressure, distance from supply and application of local codes. Gas must be available at adequate volume and pressure for engine at the EPR.

<sup>1</sup>Standby and overload ratings based on ISO3046.

<sup>2</sup> All ratings are gross flywheel horsepower corrected to 77°F at an altitude of 328feet with no

cooling fan or alternator losses using heating value for NG of 1015 BTU/SCF.

<sup>3</sup> Production tolerances in engines and installed components can account for power variations of +/- 5%. Altitude, temperature and excessive exhaust and intake restrictions should be applied to <sup>4</sup> The preceeding pipe sizes are only suggestions and piping sizes may vary with temperature,

pressure, distance from supply and application of local codes. Gas must be available at adequate volume and pressure for engine at the EPR.

<sup>5</sup> >1400RPM

<sup>6</sup> See NGE Technical Spec. 56300002 - Fuel Specification

| STATES - DUBDA                                                                                                                                                                                                                                                                                                        | UNITED STATES ENVIRONMENTAL PROTECTION AGENCY<br>2014 MODEL YEAR<br>CERTIFICATE OF CONFORMITY<br>WITH THE CLEAN AIR ACT OF 1990 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | OFFICE OF TRANSPORTATION<br>AND AIR QUALITY<br>ANN ARBOR, MICHIGAN 48105 |                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------|----------------------------------------------------|
| Certificate Issued To: Power Solutions International, Inc.<br>(U.S. Manufacturer or Importer)<br>Certificate Number: EPSIB11.1NGP-016                                                                                                                                                                                 |                                                                                                                                 | Effective Date:<br>10/30/2013Image: Complexity of the sector |     | r, Division Director<br>nce Division                                     | Issue Date:<br>10/30/2013<br>Revision Date:<br>N/A |
| Manufacturer: Power Solution<br>Engine Family: EPSIB11.1N<br>Certificate Number: EPSIB1<br>Certification Type: Mobile at<br>Fuel : Natural Gas (CNG/LNG<br>LPG/Propane<br>Emission Standards : HC + 1<br>CO (g/kW-hr) : 4.4<br>NMHC + NOX (g/kW-<br>VOC (g/Hp-hr) : 0.7<br>CO (g/Hp-hr) : 2<br>Emergency Use Only : N | ons International, Inc.<br>GP<br>11.1NGP-016<br>nd Stationary<br>G)<br>NOx (g/kW-hr): 2.7<br>-hr): 2.7NOx (g/Hp-hr): 1          | SHITEDSTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 753 |                                                                          |                                                    |

Pursuant to Section 213 of the Clean Air Act (42 U.S.C. section 7547) and 40 CFR Part 1048, 40 CFR Part 60, 1065, 1068, and 60 (stationary only and combined stationary and mobile) and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following nonroad engines, by engine family, more fully described in the documentation required by 40 CFR Part 1048, 40 CFR Part 60 and produced in the stated model year.

This certificate of conformity covers only those new nonroad spark-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 1048, 40 CFR Part 60 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 1048, 40

It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068.20 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 1048, 40 CFR Part 60. It is also a term of this certificate that this certificate may be revoked or suspended or rendered void *ab initio* for other reasons specified in 40 CFR Part 60.

This certificate does not cover large nonroad engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.