AIR DERC_100214428-402943_ USE_20101014_Use_D2577

09/23/2010 ----- EBTP IMS- PROJECT RECORD --

PROJECT#: 402943

STATUS: R

RECEIVED: 06/02/2008

PROJTYPE: BUSE

DISP CODE: ISSUED DT:

SUP-DISP DATE:

10/14/2010

STAFF ASSIGNED TO PROJECT:

CHANG, XINLIAN

PROJECT NOTES:

PROJECT 405014 AND PROJECT 402943 WERE PROCESSED TOGETHER. ONE LETTER AND ONE TECHNICAL REVIEW FOR THESE TWO PROJECTS. PROJECT 405014 IS THE INTENT TO USE PROJECT; PROJECT 402943 IS THE DERC USE PROJECT.

GRPWISE DOCS: DCUA/DCUS 15651 DCTR 15652 DCCT2573 15653

PROJECT TRANSACTIONS

COMPANY DATA

COMPANY NAME: TEMPLE-INLAND TIN, Inc., d.b.a. Temple - Inland

CUSTOMER REGISTRY ID: CN602787053

PORTFOLIO DATA

NUMBER: P1854 NAME: TEMPLE INLAND - RN100214428

SITE DATA ACCOUNT: OC0019C

REG ENTITY ID: RN100214428

SITE NAME: ORANGE LINERBOARD MILL

NEAREST CITY: ORANGE COUNTY: ORANGE

LOCATION: APPROXIMATELY 10 MI N OF I-10 ON HWY 87

CONTACT DATA

TITLE: ENVIRONMENTAL MANAGER NAME: JOHN MELANCON

STREET: 1750 INLAND ROAD CITY/STATE, ZIP: ORANGE, TX, 77632-0

FAX: 409-746-7537 ext 0 PHONE: 409-746-7416 ext 0

TRANSACTION DATA

TRANSACTION TYPE: DERC_USE

DATE ENTERED: 2008-06-25 00:00:00.0

CONTAMINATE: NOX

ALLOWANCE0

DELETED DATE

TONS: 0.90

EXFECTIVE YEAR: DOLLARS: 0

CERTIFICATE NO .: D2577 COUNTY : ORANGE

TRACKING ACTIVITES

TR - ENGINEER RECEIVE 07/28/2010 TR - PROJ TECH

PROJECT:

COMPLETE:

APP/RVW RQSTD : 10/07/20/0

FA - PROJECT ISSUED:

TR - DATE SUP/MNGR REQ ADDL TR:

DISCRETE EMISSION CREDITS INTENT TO USE TECHNICAL REVIEW

Project No.:

405014, 402943

Customer Reference

CN602787053

No.:

Project Type: Company:

BDIU / BUSE

TIN, Inc., d.b.a. Temple-Inland

Regulated Entity No.:

RN100214428

Orange Linerboard Mill

City:

Orange

e Cor

County:

Orange

Project Reviewer:

Dr. Xinlian Chang

Portfolio Name:

Facility Name:

P1854 Temple Inland -

RN100214428

Project Overview

TIN, Inc., d.b.a. Temple-Inland (Temple-Inland) submitted a Form DEC-2 (Notice of Intent to Use Discrete Emission Credits) and a Form DEC-3 (Notice of Use of Discrete Emission Credits) for the purpose of compliance with 30 Texas Administrative Code (TAC) §117.110(a)(1) for the period of May 1, 2007, through April 30, 2008 (previously 30 TAC §117.206(a)(1)).

Because the prior Form DEC-2 can not be located when the Form DEC-3 is to be processed, the company was informed of the situation and they submitted a new Form DEC-2. The intent to use project, project 405014, set aside 0.9 ton of nitrogen oxides (NO_X) Discrete Emission Credits (DERCs) from DERC Certificate D-2156. The remaining NO_X DERCs of 2.3 tons was issued back to Temple-Inland on Certificate D-2573.

The same amount of 0.9 ton was used by the site. The DERCs were used for complying with 30 Texas Administrative Code (TAC) Chapter 117 for the boiler, Facility Identification Number (FIN) P-PowB, at their Orange Linerboard Mill. The boiler is subject to Emission Specification for Attainment Demonstration (ESAD) of 0.10 pound nitrogen oxides emissions per million British thermal units (lb/MMBtu) for the period May 1, 2007, through April 30, 2008. Certificate D-2156 will be cancelled.

Discrete Emission Credit / Emission Reduction Credit Use

Temple-Inland is subject to the NO_X emission limit of 30 TAC §117.110(a)(1). FIN P-PowB does not meet the ESAD emission rate of 0.10 lb/MMBtu. In order to comply with this limit, Temple-Inland employed DERC use to cover the difference. The boiler's actual emissions were determined by using annual heat input data and emission rate provided by continuous emissions monitoring system (CEMS).

Certificate to be used	D-2156
Pollutant	NO _x
Amount	
Regulation	\$117.110(a)(1)
Use period/Use Date	5/1/2007 - 4/30/2008

Credit Use Calculation Methods

0.9 ton of NO_X DERCs was set aside to support the intent to use request and 0.9 ton was actually used. So only the DERC use calculation was elaborated below.

Temple-Inland submitted an actual level of activity from May 1, 2007, through April 30, 2008, of 38,011 million British thermal units (MMBtu) for boiler P-PowB. An actual emission rate of 0.141 lbs/MMBtu based on NO_X CEMS data was given for this facility. The total emissions over the ESAD rate of 0.10 lbs/MMBtu comes to 0.78 ton, which is rounded up to 0.8 ton. An environmental contribution of 0.08 ton is added for a rounded total of 0.9 ton of DERCs. According to 30 TAC §101.376(e)(2)(A):

DISCRETE EMISSION CREDITS IN T TO USE TECHNICAL REVIEW Page 2

DERCs Used = ALA x (AER - RER) ÷ 2000 lb/ton + 10% environmental contribution.

Where:

ALA = actual level of activity

AER = actual emission rate per unit activity

RER = regulatory emission rate per unit activity

DERCs Used

38,011 MMBtu/yr × (0.141 lb/MMBtu - 0.10 lb/MMBtu) \div 2000 lb/ton = 0.78 ton

Rounded up to 0.8 ton

0.8 ton + 10% environmental contribution (0.08) = 0.88 ton rounded up to 0.9 ton.

Conclusion:

Temple-Inland has submitted all required documentation for DERCs use to be in compliance with 30 TAC §117.110(a)(1). Certificate D-2573 has been generated in order to retain the 2.3 tons that is available for future use. Certificate D-2156 will be stamped used and retired.

Account Manager Date

Team Leader/Section Manager/Backup

Form DEC-3 (Page 1) Notice of Use of Discrete Emission Credits (Title 30 Texas Administrative Code § 101.370 - § 101.379)

RECEIVED

JUN 022008 AIR QUALITY DIVISION

I. Company Identifying Information		
A. Company Name: TIN INC., dlb/a TEMPLE-INLAND		
Mailing Address: 1750 WLAND ROAP		
City: ORANGE State: TX	Zip Code: 77632	
Telephone: (409) 746 7416	Fax: (409) 7467537	
B. TCEQ Customer Number (CN): CN 602787053		
C. Site Name: ORANGE MILL		
Street Address: (if no street address, give driving directions to site)	SO INVAND ROAD	
Nearest City: ORANGE Zip Code: 77632	County: ORANGE	
D. TCEQ Regulated Entity Number (RN): RN 100214428		
E. TCEQ Account Number: (if applicable) OC- 00 19-C		
F. Primary SIC: 263	Air Permit Number: 9654 A PSD-TX-684A2	
II. Technical Contact Identifying Information		
A. Technical Contact Name: (XMrMrsMsDr.)		
Technical Contact Title: JOHN E. MELANCON		
Mailing Address: 1750 WUAND ROAD		
City: ORANGE State: TX	Zip Code: 77632	
Telephone: 409 7467416 Fax:409 7467537 E-mail: JOHA	NAFLANCON @TEMPLEINLAND.COM	
III. Mass Emission Cap and Trade Program (MECT)		
Is the DERC use for compliance with 30 TAC Chapter 101, Subchapter I	H, Division 3? 🔲 Yes 🕱 No	
Year DERC Generated: NA Year of use: NA Ratio of D	DERC to Allowance: MA to MA	
·		
Note: If DERC use is to comply with MECT then go to Section IX		
IV. Use Period	251 102 (2D) 2. (CB)	
Use Start Date: 05/1/07 Use End Dat	e: <u>051</u> 1/08 (or longer)	
V. State and Federal Requirements		
Applicable State and Federal requirements that the DERCs were used for	-	
30 TAC 117. 206(a)(1), 117.206(d)(1)(A)(V), 117.20) (f) (1) (c) h = d.	
VI. Most Stringent Emission Rate		
Describe basis for most stringent allowable emission rate: Permit	□RACTKOther: ESAD	
Notes: 30 TAC 117.206 (a)(1)		
18.110(a) June 14 2007		

Form DEC-3 (Page 2) **Notice of Use of Discrete Emission Credits** (Title 30 Texas Administrative Code § 101.370 - § 101.379)

VII. Tons	of Dercs Used					Calculation of DERCs			
Emission Point No.	FIN _	Air Contam- inant	Actual Activity (units)	Actual Emission Rate (units)	Actual Total Emissions (tons)	Regulated Activity (units)	Regulated Emission Rate (units)	Regulated Total Emissions (tons)	DERCs*** Used (tons)
2 A	P-POWB	₩0×	38,011 MMBTU/1EAR	0.141 16/MM BTU	19.005	5496 AMBIVIYEAR	0.10 lb/mbTU	0.39	0.4
2B	P-PKGB	,000	(====		-	-			
									<u>.</u> .
									·
				· <u>-</u>					
									· ·
			44			will be a second of the second	July Helic. MYCHYN.		
e genje s skiljije	100 100 100 100 100 100 100 100 100 100							Total:	0.4

** UNIT DECOMISSIONED.

** CHCULATION INCLUDES 213 FACTOR FROM 117.520 (a) (3) (A)

TCEQ 10393 (Revised 2/07) DEC-3 Form Notice of Use of Discrete

Emission Credits. This form is for use by sources subject to air quality

permit requirements and may be revised periodically.

Form DEC-3 (Page 3) Notice of Use of Discrete Emission Credits (Title 30 Texas Administrative Code § 101.370 - § 101.379)

RECEIVED
JUN 022008
AIR QUALITY
DIVISION

VIII. Protocol	VIII. Protocol					
Note: Attach the actual ca	Protocol used to calculate DERC: * Note: Attach the actual calculations that were used to determine the amounts of DERCs needed to this form * SPREADSHEET WITH CALCUATIONS ATTACHED					
IX. Total DERCs Use	d (round up to the	nearest tenth of a ton				
Tons of DERCs required (from Sect. VI.)	CO:	NO _x : 0.39	PM ₁₀ :	SO ₂ :	voc:	
Offset Ratio (if required)	co:	NO _x : 0.26	PM ₁₀ :	SO ₂ :	VOC:	
Environmental Contribution (+ 10%)	co:	NO _x : 0.1	PM ₁₀ :	SO ₂ :	voc: _ -	
Total DERCs Used	со:	NO _x : 0.4	PM ₁₀ :	SO ₂ :	voc:	
DERC Generator Regulate Certificate number of the I Note: The certificate numb XI. Purchase Dates ar	Date on which the DERCs were acquired or registered: 03/17/03					
XII. CERTIFICATION BY RESPONSIBLE OFFICIAL I, hereby certify, to the best of my knowledge and belief, that this application is correct and the use strategy claimed on this notice has met the requirements of all applicable state and federal rules and regulations. I further state that to the best of my knowledge and belief the information in this certification is not in any way in violation of 30 TAC, Subchapter H, Division 4, §101.370-101.379 or any applicable air quality rule or regulation of the Texas Commission on Environmental Quality and that intentionally or knowingly making or causing to be made false material statements or representations in this certification is a CRIMINAL OFFENSE subject to criminal penalties. I hereby also waive the Federal statute of limitations defense in regards to the generation and use of discrete emission credits. I hereby also waive the Federal statute of limitations defense in regards to the generation and use of discrete emission credits. Signature Date 5129108						
Title MILL MAN	Title MILL MANAGER					

ESAD Compliance for Beaumont - Porth Arthur Area (BPA) Discrete Emission Reduction Credit (DERC) Calculations for Form DEC-3

Sources: PFI Boiler (EPN 2A) Period: 05/01/07 to 05/01/08

PFI and Package Boiler Activity Summary

Description	Туре	Value	Units		
ESAD limit in 30 TAC 117.206(a)(1) for boilers in BPA:	Gas-fired industrial boilers	0.1	lb/MMBtu		
Inland actual Emission Rate for period 05/01/07 to 05/01/08 (*)	PFI Boiler	0.141	lb/MMBtu		
·	Package Boiler	0	lb/MMBtu		
Actual activity for period from 05/01/07 to 05/01/08 (*)	PFI Boiler	5,496	MMBtu/yr		
	Package Boiler	0	MMBtu/yr		

(*) Only when DERCs were needed

DERC Calculation Summary

		<u> </u>	V	
Description	lb	Ton	2/3 offset /	
Excess NOx - PFI	773.52	0.39	0.26	
Excess NOx - Package Boiler	0.00	0.00	0.00	
Total Excess NOx	0.26			
Total Excess NOx rounded-up			0.30	
Plus Environmental Contribution of 10%			0.33	
Rounded up			0.4	

Therefore, for May 1, 2007 through May 1, 2008, Inland requiered a total of:

0.4 tons of NOx DERC

TempleInlar.

JUN 022008

May 29, 2008

Delivery confirmation reduction Certified mail #70041350000460895288

Mr. Steven Sun
Texas Commission on Environmental Quality
Emissions Banking and Trading Program, MC 163
Building C
12100 Park 35 Circle
Austin, TX 78753

RE: Notice of Intent to Use Discrete Emission Credits (Form DEC-3)

Temple-Inland
Orange Linerboard Facility
Account # OC-0019-C

Dear Mr. Sun:

Temple-Inland operates a linerboard facility in Orange, Texas. This facility operates one boiler (Package Boiler was decomisioned) subject to the Emission Specifications for Attainment Demonstration (ESADs) [see 30 TAC 117.206(a)] for the Beaumont/Port Arthur Area which were effective May 1, 2003. As allowed by 30 TAC 117.206(f)(1)(C) and 117.570(a), Temple-Inland is complying with the ESAD limitation for this boiler by purchasing and consuming NO_x discrete emission credits (DERCs). Temple-Inland submits today the completed DEC-3, which represents an accounting of the actual NOx DERCs used in the previous 12-month compliance period, May 1, 2007-May 1, 2008.

As we indicated in our original submittal in March, 2003, we have used actual boiler operating data and NOx CEMS data to calculate the tons of NOx consumed in the past compliance period.

If you have any further questions about Temple-Inland's use of DERCs or the information provided in this letter, please feel free to call me at (409) 746-7416.

Respectfully yours,

John E. Melancon

Environmental Manager

Enclosure

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

Permit Numbers 9654A, PSD-TX-684M2, PSD-TX-833M2, and N-60M1

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Emission	Source	Air Contaminant	Emission	n Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
1A	No. 1 Recovery Furnace	PM/PM_{10}	56.00	247.00
		VOC	50.00	217.00
		NO_x	96.72	416.10
		SO_2	916.09	1372.00
		CO	1375.00	6023.00
		TRS	24.00	41.00
1B	No. 2 Recovery Furnace	PM/PM ₁₀	56.00	247.00
	·	VOC	50.00	217.00
		NO_x	96.72	416.10
		$SO_2^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{$	916.09	1372.00
		CO	1375.00	6023.00
		TRS	24.00	41.00
2	Bark Boiler	PM_{10}	37.42	163.90
_		VOC***	9.09	39.81
		NO _x ***	88.58	387.80
		SO_2^{λ}	16.21	18.73
		CO***	213.86	936.70
		TRS	2.29	10.04
		NH ₃	16.16	70.86
2A	No. 1 PFI Boiler	PM_{10}	3.00	13.00
ZA	No. I FII Bollel	VOC	10.00	44.00
		NO _x	55.53	219.70
			55.55 5.71	22.18
		SO ₂	70.00	307.00
		CO	/0.00	307.00

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

Emission	Source	Air Contaminant	Emissio	n Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
	N. 1 Discolution Tends	DM.	6.00	20.00
3	No. 1 Dissolving Tank	PM ₁₀	6.90 17.93	30.00
		VOC	2.10	50.12 9.20
		SO_2 TRS	0.60	2.50
		IKS	0.00	2.30
4	No. 2 Dissolving Tank	PM_{10}	6.90	30.00
•	2.00.2.2.2.2.2.8.2.	VOC	17.93	50.12
		SO_2	2.10	9.20
		TRS	0.60	2.50
10	No. 1 Slaker	PM ₁₀	2.00	8.60
10	ivo. I blace	VOC	0.48	1.33
11	Lime Kiln	PM_{10}	30.00	131.00
11	Line Kiii	VOC	4.78	21.03
		NO _x	42.00	182.00
		SO_2	57.95	84.33
		$\frac{SO_2}{CO}$	337.00	1,474.00
		TRS	6.41	11.21
12	NIa 2 Clalram	DM (2.00	8.60
13	No. 2 Slaker	$ ext{PM}_{10} \ ext{VOC}$	0.48	1.33
		VOC	0.46	1.55
16	Brown Stock Washer A	VOC	55.59	16.68
		TRS	0.47	0.14
17	Brown Stock Washer B	VOC	55.59	188.60
17	Diown block washer b	TRS	0.47	1.59
			····	2.00
32	Turpentine Storage Tank	VOC	<0.01	0.02
34	Importante protage I am	. 30	0.01	5.52
36	No. 5 White Liquor Tank Vent	TRS	<0.01	0.02

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

Emission	Source	Air Contaminant	Emission	Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
39	South Mud Tank	VOC	0.02	0.06
40	North Mud Tank	VOC	0.02	0.06
41	Weak Wash Storage Tank	VOC	0.22	0.96
42	Hot Water Storage Tank	VOC	0.00	0.00
43	New White Liquor Storage Tank	VOC	0.57	1.59
44	Scrubber Water Clarifier	VOC	0.09	0.24
45	No. 1 White Liquor Storage Tank	VOC	0.57	1.59
46	No. 2 White Liquor Storage Tank	VOC	0.57	1.59
47	No. 1 Green Liquor Clarifier	VOC	0.02	0.05
48	No. 1 Green Liquor Storage Tank	VOC TRS	0.96 0.01	4.02 0.03
49	No. 2 Green Liquor Storage Tank	VOC TRS	0.02 0.01	0.05 0.05
50	Green Liquor Equalization Tank	VOC	0.03	0.09
51	No. 2 Green Liquor Clarifier	VOC	1.84	8.04
63	No. 1 Weak Black Liquor Storage Tank	VOC TRS	0.38 1.30	1.34 5.60

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

Emission	Source	Air Contaminant	Emission	Rates_*
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
64	No. 2 Weak Black Liquor	VOC	0.38	1.34
	Storage Tank	TRS	1.30	5.60
65	Weak Black Liquor	VOC	0.11	0.40
	Swing Tank	TRS	1.30	5.60
66	No. 1 Heavy Black	VOC	0.32	1.38
	Liquor Storage Tank	TRS	0.13	0.58
67	No. 2 Heavy Black	VOC	0.31	1.38
	Liquor Storage Tank	TRS	0.13	0.58
68	Boilout Tank	VOC	0.31	1.34
		TRS	0.50	2.20
72	Gasoline Tank	VOC	-	0.20
73	No. 2 Fuel Oil Tank	VOC	-	0.20
74	Black Liquor Pond	TRS	-	3.20
80	Wood Yard (4)	PM_{10}	-	3.80
81	Truck Traffic Fugitives	PM_{10}	-	130.00
99	No. 3 Power Boiler	PM_{10}	3.13	13.71
		VOC	2.26	9.92
		NO _x	26.81 1.67	93.55 1.47
		SO_2 CO	37.80	165.56
			37.00	105.50
100	Chemi-Washer (4)	VOC	0.09	0.40
		TRS	< 0.01	< 0.01

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

Emission	Source	Air Contaminant	Emission	Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
101-130	No. 1 Linerboard Machine	VOC TRS	91.32 0.80	399.98 3.48
132-158	No. 2 Linerboard Machine	VOC TRS	53.21 0.47	233.06 2.03
159-166	Secondary Fiber System	VOC	0.44	1.92
192	Lime Kiln Precoat Filter	VOC TRS	0.83 0.02	3.63 0.07
193	Precoat Filter Vacuum Pump West	VOC TRS	0.33 0.02	1.46 0.08
194	Precoat Filter Vacuum Pump East	VOC TRS	0.33 0.02	1.46 0.08
205	No. 4 White Liquor Storage Tank	VOC	0.57	1.59
210	Black Liquor Storage East	VOC	0.38	1.34
211	Black Liquor Storage West	VOC	0.38	1.34
212	Black Liquor Storage Center	VOC	0.38	1.34
58**	Reject Tank	VOC TRS	0.62 0.01	2.73 0.53
235	Liquor Loading	VOC TRS	1.49 0.13	1.62 0.21
93	Primary Sludge Pond (4)	VOC TRS	0.14 0.08	0.50 0.27

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

Emission	Source	Air Contaminant	Emission	Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
<u> </u>				
94	Primary Sludge Landfill (4)	VOC	0.14	0.50
		TRS	0.08	0.27
95	Primary Clarifier (4)	VOC	0.62	2.72
		TRS	0.34	1.48
96	Strong Waste Pond (4)	VOC	32.76	5.98
	-	TRS	17.74	3.24
97	Aeration Pond (4)	VOC	5.37	15.68
	, ,	TRS	2.91	8.49
98	Holding Pond (4)	VOC	3.55	9.72
		TRS	1.92	5.26
232	Green Liquor Dregs Filter	VOC	1.84	8.04
	and Vacuum Pump (4)	TRS	0.01	0.05
NCG-FUG 1	Switching LVHC and HVLC	VOC	145.00	0.25
	NCG Venting for Bypass and	Acetone	2.40	0.02
	Preventive Maintenance (4) (5)	TRS	0.06	< 0.01
P-VBURNER	Propane Vaporizer Burner	PM_{10}	0.12	0.03
	• •	VOĈ	0.06	0.02
		NO_x	3.73	0.97
		SO_2	0.10	0.03
		CO	0.63	0.16

EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

- (1) Emission point identification either specific equipment designation or emission point number from a plot plan.
- (2) Specific point source names. For fugitive sources use area name or fugitive source name.
- (3) PM particulate matter, suspended in the atmosphere, include PM₁₀
 - PM₁₀ particulate matter equal to or less than 10 microns in diameter. Where PM is not listed, it shall be assumed that no particulate matter greater than 10 microns is emitted.
 - VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
 - NO_x total oxides of nitrogen
 - SO₂ sulfur dioxide
 - CO carbon monoxide
 - TRS total reduced sulfur
 - NH₃ ammonia
- (4) Fugitive emissions are an estimate only.
- (5) Emissions resulting from re-routing non-condensible gases between combustion sources (Lime Kiln and Bark Boiler).
- * Emission rates are based on and the facilities are limited by the following maximum operating schedule:
 - 24 Hrs/day 7 Days/week 52 Weeks/year 8,760 Hrs/year
- ** Emissions based on the following:

See Special Condition Nos. 1 and 22.

All annual emissions are based on a rolling 12-month period and a maximum annual averaged throughput of $\underline{2,340}$ tons per day of air dry pulp. All hourly emissions, unless otherwise noted, are derived from the maximum annual average throughput of 2,340 tons per day of air dry pulp or other related throughput limits represented in the permit.

*** Emission limits for these pollutants from the Bark Boiler based on a 30-day rolling average.

Dated May 1, 2007

TWVTAV	PAPERBOARD AND PACKAGING INC	0.1000 121 707	5.5.		001072000		000		101100217720		LIV_VLL	L002	. 5555	MILL	0.0
400426	TEMPLE INLAND	CN602787053	BTSF	02/09/2006	06/16/2006	С	SSUN	OC0019C	RN100214428	NOX	ERC_BUY	2114	P1854	TEMPLE INLAND - RN100214428	ORANGE
400528	TEMPLE INLAND	CN602787053	BDIU	03/21/2006	01/31/2007	С	JETHERID	OC0019C	RN100214428	NOX	DERC_INTEN	D1260	P1854	TEMPLE INLAND - RN100214428	ORANGE
400528	TEMPLE INLAND	CN602787053	BDIU	03/21/2006	01/31/2007	С	JETHERID	OC0019C	RN100214428	NOX	DERC_RET	D2156	P1854	TEMPLE INLAND - RN100214428	ORANGE
401175	TEMPLE INLAND	CN602787053	BUSE	08/09/2006	12/21/2006	С	THUDDLES	OC0019C	RN100214428	NOX	DERC_RET	D2148	P1854	TEMPLE INLAND - RN100214428	ORANGE
402005	TEMPLE INLAND	CN602787053	BUSE	08/07/2007		P	LBAINE	OC0019C	RN100214428	NOX	DERC_USE	D2256	P1854	TEMPLE INLAND - RN100214428	ORANGE
402005	TEMPLE INLAND	CN602787053	BUSE	08/07/2007		Р	LBAINE	OC0019C	RN100214428	NOX	DERC_RET	D2259	P1854	TEMPLE INLAND - RN100214428	ORANGE
402943	TEMPLE INLAND	CN602787053	BUSE	06/02/2008		Р	ТЈОНИЅОЙ	OC0019C	RN100214428	NOX	DERC_USE	0	P1854	TEMPLE INLAND - RN100214428	ORANGE
403078	TEMPLE INLAND	CN602787053	BTSF	10/29/2008	11/24/2008	С	BGREULIC	OC0019C	RN100214428	voc	ERC_SELL	2371	P1854	TEMPLE INLAND - RN100214428	ORANGE
403123	INLAND PAPERBOARD AND PACKAGING INC	CN600127484	BTSF	11/04/2008	11/04/2008	C	MTRIMBLE	OC0019C	RN100214428	voc	ERC_SELL	1699	P0366	ORANGE MILL	ORANGE
403123	TEMPLE INLAND	CN602787053	BTSF	11/04/2008	11/04/2008	С	MTRIMBLE	OC0019C	RN100214428	voc	ERC_BUY	2371	P1854	TEMPLE INLAND - RN100214428	ORANGE
403166	TEMPLE INLAND	CN602787053	BTSF	12/12/2008	01/05/2009	С	MTRIMBLE	OC0019C	RN100214428	NOX	ERC_BUY	2391	P1854	TEMPLE INLAND - RN100214428	ORANGE
403167	TEMPLE INLAND	CN602787053	BEIU	12/12/2008	07/20/2009	С	TJOHNSON	OC0019C	RN100214428	NOX	ERC_INTEN	2419	P1854	TEMPLE INLAND - RN100214428	ORANGE
403167	TEMPLE INLAND	CN602787053	BEIU	12/12/2008	07/20/2009	С	TJOHNSON	OC0019C	RN100214428	NOX	ERC_USE	2430	P1854	TEMPLE INLAND - RN100214428	ORANGE
403167	TEMPLE INLAND	CN602787053	BEIU	12/12/2008	07/20/2009	С	TJOHNSON	OC0019C	RN100214428	NOX	ERC_RET	2434	P1854	TEMPLE INLAND - RN100214428	ORANGE
403167	TEMPLE INLAND	CN602787053	BEIU	12/12/2008	07/20/2009	С	TJOHNSON	OC0019C	RN100214428	NOX	ERC_INTEN	2391	P1854	TEMPLE INLAND - RN100214428	ORANGE
403167	TEMPLE INLAND	CN602787053	BEIU	12/12/2008	07/20/2009	С	TJOHNSON	OC0019C	RN100214428	NOX	ERC_USE	2391	P1854	TEMPLE INLAND -	ORANGE

Bryan W. Shaw, Ph.D., Chairman
Buddy Garcia, Commissioner
Carlos Rubinstein, Commissioner
Mark R. Vickery, P.G., Executive Director

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

October 19, 2010

Mr. John E. Melancon Environmental Manager TIN, Inc., d.b.a. Temple-Inland 1750 Inland Road Orange, Texas 77632

Re: Notice of Intent to Use and Use of Discrete Emission Credits

Orange Linerboard Mill Orange, Orange County

Regulated Entity Number: RN100214428 Customer Reference Number: CN602787053

Portfolio Number: P1854

DERC Certificate Numbers: D-2156, D-2573

Dear Mr. Melancon:

This letter is in response to TIN, Inc., d.b.a. Temple-Inland's (Temple-Inland) Form DEC-2, Notice of Intent to Use Discrete Emission Credits, and Form DEC-3, Notice of Use of Discrete Emission Credits, for the purpose of compliance with 30 Texas Administrative Code (TAC) §117.110(a)(1) for the period of May 1, 2007 through April 30, 2008 (previously 30 TAC §117.206(a)(1)).

We have reviewed your applications and have found that the notice and the credits to be used meet the requirements of 30 TAC §§101.370 through 101.379. Please refer to the summaries and table below for details.

The Form DEC-2 states that Temple-Inland requested to use 0.9 ton of NO_X discrete emission credits (DERCs) for the purpose of complying with NO_X emission specifications under 30 TAC §117.110(a)(1) for the period of May 1, 2007 through May 1, 2008. A total of 0.9 ton of NO_X DERCs will be set aside from certificate number D-2156. Because D-2156 was not completely set aside, 2.3 tons of NO_X DERCs will be retained on D-2573. Enclosed is a copy of D-2573 issued to Temple-Inland, in the amount of 2.3 tons of NO_X DERCs. This certificate has been deposited in the Texas Commission on Environmental Quality (TCEQ) Discrete Emissions Credit Registry. The certificate may be transferred or sold to another owner for use per the requirements of Title 30 Texas Administrative Code §§101.370 through 101.379.

The Form DEC-3 states that Temple-Inland used 0.9 ton of NO_X DERCs for the purpose of compliance with 30 TAC §117.110(a)(1) for the period of May 1, 2007, through April 30, 2008. Certificate D-2156 will be stamped used and retired.

PROJECT #	RECEIVE DATE	PROJECT TYPE	USE PERIOD	TOTAL TONS REQUIRED/USED	CERTIFICATES HELD/RETAINED/USED		
405014	9/13/2010	Intent	5/1/07 -	0.9	D2156, D2573		
402943	6/2/2008	Use	4/30/08	0.9	D2156		

Thank you for your cooperation in this matter. If you have questions concerning this review or need further assistance regarding the banking program, please contact Dr. Xinlian Chang at (512) 239-4635, or write to the Texas Commission on Environmental Quality, Chief Engineer's Office, Air Quality Division (MC-206), P.O. Box 13087, Austin, Texas 78711-3087.

This action is taken under authority delegated by the Executive Director of the TCEO.

Sincerely,

David Brymer, Director Air Quality Division

Texas Commission on Environmental Quality

DB/XC/aa

cc: Air Section Manager, Region 10 - Beaumont

Project Numbers: 405014, 402943

The State of Texas

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Certificate Number:

D-2573

Number of Credits:

2.3 tons NO_X

Discrete Emission Reduction Credit Certificate

This certifies that

TIN, Inc., d.b.a. Temple-Inland

1750 Inland Road

Orange, Texas 77632

is the owner of 2.3 tons of nitrogen oxides (NO_X) discrete emission reduction credits established under the laws of the State of Texas, transferable only on the books of the Texas Commission on Environmental Quality, by the holder hereof in person or by duly authorized Attorney, upon surrender of this certificate.

The owner of this certificate is entitled to utilize the discrete emission credits evidenced herein for all purpose authorized by the laws and regulations of the State of Texas and is subject to all limitations prescribed by the laws and regulations of the State of Texas.

Discrete Emission Reduction Generation Period: January 1, 1998 - December 31, 1998					
Generator Regulated Entity No.: RN100216035	Generator Serial Numbers: 20700 - 20729				
County of Generation: Orange					

October 8, 2010

Date

For the Commission

امر اعرام

Banking and Trading Route Slip

Company:	TIN, Inc., d. b. a. Temple-Inland
Project Number:	Orange Linerboard Mill 405014 402943
Type of Letter Correspondence	DCUA DOUS DOTR DOCT
Letter Doc No:	1565 15652 15653
Certificate No:	D-2156 D-2573

	Initials:	Date
Author/Creator	XLL	9/23
Peer Review Completed	a2	1017
Author/Creator Review	xu	10/7
Review and Approval By:	Initials:	Date
WL Review: Brandon Greulich	B6-	10/
Management Review Chance Goodin	cept	10/15
Copies made		10/18
Mailed	no	10/19

Comments/Special Instructions:

Please change the "Company Name" to Osne TIN, Inc., d.b.a. Temple-Inland (Confirmed W m CR)

Please return Routing Slip and Project Paperwork to Brandon Greulich, MC-206, Ext. 4904

Only 402943 needs to be closed