TCEQ IDA - Production

AIR DERC_100558600-404154 USE_20101008_Use D2559

09/08/2010 ----- EBTP IMS- PROJECT RECORD

PROJECT#: 404154

RECEIVED: 01/21/2010

STATUS: P PROJTYPE BUSE DISP CODE: ISSUED DT:

SUP-DISP DATE:

STAFF ASSIGNED TO PROJECT:

ASTON, ALYSSA

PROJECT NOTES:

GROUPWISE DOCUMENT NUMBERS: DCUS 15570, CUTR 15571, DCCT 15572 AND 15573.

PROJECT TRANSACTIONS

COMPANY DATA

COMPANY NAME: SLAY TRANSPORTATION COMPANY INC

CUSTOMER REGISTRY ID: CN600269427

PORTFOLIO DATA

NUMBER: P1886 NAME: SLAY TRANSPORTATION - RN100558600

SITE DATA ACCOUNT:

REG ENTITY ID: RN100558600

SITE NAME: SLAY TRANSPORTATION

COUNTY: HARRIS LOCATION: DEFAULT DESC TXT **NEAREST CITY: HOUSTON**

CONTACT DATA

NAME: CAROL COLE

TITLE: DIRECTOR OF QUALITY COMPLIANCE

STREET: 16643 JACINTOPORT BLVD CITY/STATE, ZIP: HOUSTON, TX, 77015-6542

FAX: 281-860-0479 ext 0 PHONE: 281-452-9000 ext 0

TRANSACTION DATA

TRANSACTION TYPE: DERC_USE

DATE ENTERED: 2010-01-26 00:00:00.0

TONS: 0.20

DELETED DATE:

EFFECTIVE YEAR:

CONTAMINATE: NOX

DOLLARS: 0

ALLOWANCE0

CERTIFICATE NO.: D2559 COUNTY : HARRIS

TRANSACTION DATA

TRANSACTION TYPE: DERC RET

DATE ENTERED: 2010-01-26 00:00:00.0

DELETED DATE:

EFFECTIVE YEAR:

CONTAMINATE: NOX

TONS: 0.70

DOLLARS: 0

ALLOWANCE

CERTIFICATE NO.: D2558 COUNTY: HARRIS

COMPANY DATA

COMPANY NAME: SLAY TRANSPORTATION COMPANY INC

CUSTOMER REGISTRY ID: CN600269427

PORTFOLIO DATA

MILINADED, DAGOG NIANAE, OLAV TOANICOODTATION

NUMBER. P 1000 NAME. SLAT TRANSPURTATION - KN 10000000

SITE DATA

ACCOUNT:

REG ENTITY ID: RN100558600

· SITE NAME: SLAY TRANSPORTATION

COUNTY: HARRIS **NEAREST CITY: HOUSTON**

LOCATION: DEFAULT DESC TXT

CONTACT DATA

TRANSACTION DATA

TRANSACTION TYPE: DERC USE

DATE ENTERED: 2010-09-07 00:00:00.0

CONTAMINATE: NOX

ALLOWANCE 0

TRANSACTION DATA

TRANSACTION TYPE: DERC_RET

DATE ENTERED: 2010-09-07 00:00:00.0

CONTAMINATE: NOX

ALLOWANCE

DELETED DATE: **EFFECTIVE YEAR:**

TONS: 0 DOLLARS: 0

CERTIFICATE NO.: 0 COUNTY: HARRIS

DELETED DATE:

TONS: 0.10 DOLLARS: 0

CERTIFICATE NO.: D2560 COUNTY: HARRIS

EFFECTIVE YEAR:

TRACKING ACTIVITES

TR - ENGINEER RECEIVE 01/26/2010 TR - PROJ TECH

COMPLETE: PROJECT:

09/08/2010 TR - SUP/MANGR APP/RVW RQSTD: 9/16/2010

FA - PROJECT ISSUED:

TR - DATE SUP/MNGR

REQ ADDL TR:

USE OF DISCRETE EMISSION CREDITS TECHNICAL REVIEW

Project No.:

404154

Customer Reference No.:

CN600269427

Project Type:

BUSE

Regulated Entity No.:

RN100558600

Company:

Slay Transportation Company, Inc.

Facility Name:

Slay Transportation

City:

Houston

County:

Harris

Project Reviewer:

Ms. Alyssa Aston

Portfolio Name:

P1886 Slay Transportation Company – RN100558600

Project Overview

Slay Transportation Company, Inc. submitted a Notice of Use of Discrete Emission Credits (Form DEC-3), received January 21, 2010, for their Houston Site, RN100558600. Slay Transportation used 0.088 ton of NO_x DERCs (rounded to 0.1 ton) for meeting the emission specification stipulated in Title 30 Texas Administrative Code (TAC) §117.2010(c)(1)(A) of 0.036 lb NO_x/MMBtu of heat input. The 10% environmental contribution is 0.01 ton which is rounded to 0.1 ton. The sum of the NO_x DERCs required and 10% environmental contribution is 0.2 ton. The certificates set aside for the intent to use (project 403137) were D-2217 (0.90 ton) and D-2220 (0.10 ton). The total amount set aside was 1.0 ton. The amount required for the DERCs use project is 0.2 ton. Therefore, D-2559 was created for the DERC use of 0.2 ton; D-2558 was created for the DERC retained of 0.7 ton; and D-2560 was created to release the 0.1 ton set aside but unused of D-2220. Copies of D-2558 and D-2560 will be forwarded to Slay Transportation Company, Inc., and the credits will be deposited into the TCEQ Discrete Emission Credits registry for the benefit of Slay Transportation Company, Inc.

The facilities that require these DERCs are 2 natural gas-fired boilers. The emission factors were determined by stack testing completed in 2005. The fuel usage rates were determined from meter readings.

Discrete Emission Credit / Emission Reduction Credit Use

Slay Transportation Company, Inc. used DERCs to meet regulatory requirements in 30 TAC §117.2010(c)(1)(A) for 2 natural gas-fired boilers, Boiler 1 and Boiler 2, at their Harris County site, RN100558600.

Certificate(s) to be used	D-2217
Pollutant	
Amount	
Regulation	
Use period/Use Date	January 1, 2009 - December 31, 2009

Re-review of Credits

Re-review of credits is not required for DERC use actions. DERCs are retrospectively generated and their creditability is verified by comparison to rule in effect at the time of generation, not use.

Credit Use Calculation Methods

Discuss calculation method for use

The fuel usage rates were converted to heat input for the boilers by multiplying the fuel flow rate expressed in cubic feet per year by the fuel heat value of 1,020 Btu per cubic foot and by 1 MMBtu per 1 x 10⁶ Btu.

The formula to be used is $(ELA \times (EER-RER))/2000 = discrete emission credits needed where ELA = level of activity (expressed in MMBtu/year), EER = emission rate per unit of activity, and RER = regulatory emission rate per unit of activity.$

Boiler 1

Fuel Usage = 4,455,780.0 cubic feet/year

Heat Input = $(4,455,780.0 \text{ cubic feet/year})(1,020 \text{ Btu/cubic foot})(1 \text{ MMBtu/ } 10^6 \text{ Btu}) = 4,544.90 \text{ MMBtu/year}$

Emission Rate per Unit of Activity (determined by stack testing) = 0.058 lb/MMBtu

Discrete Emission Credits Needed = [(4,544.90 MMBtu/year)(0.058 - 0.036) lb/MMBtu] / (2,000 lbs/ton) = 0.0500 tpy

Boiler 2

Fuel Usage = 3,211,950.0 cubic feet/year

Heat Input = $(3,211,950.0 \text{ cubic feet/year})(1,020 \text{ Btu/cubic foot})(1 \text{ MMBtu/} 10^6 \text{ Btu}) = 3,276.19 \text{ MMBtu/year}$

Emission Rate per Unit of Activity (determined by stack testing) = 0.059 lb/MMBtu

Discrete Emission Credits Needed = [(3,276.19 MMBtu/year)(0.059 - 0.036) lb/MMBtu] / (2,000 lbs/ton) = 0.0377 tpv

Sum of Discrete Emission Credits Needed for Boilers 1 and 2 = 0.088 tpy rounded to 0.1 tpy

10% Environmental Contribution = (0.10)(0.1 tpy) = 0.01 tpy rounded to 0.1 tpy

Sum of Discrete Emission Credits Needed and Environmental Contribution = 0.2 tpy

Note: Refer to Part IX of the instructions for Form DEC-3 for explanation of rounding convention.

Conclusion:

Slay Transportation Company, Inc. used 0.2 ton of NO_X DERCs to comply with their regulated emission rate. D-2559 was created for the DERC use of 0.2 ton and D-2558 was created for the DERC retained of 0.7 ton from D-2217. D-2560 was created to release the 0.1 ton set aside but unused of D-2220. Certificates D-2217 and D-2220 (intent to use) and D-2559 (actual use) have been retired and are no longer available.

Project Reviewer

Date

Team Leader/Section Manager/Backup

Date

The State of Texas

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Certificate Number:

D-2220

Number of Credits:

0.9 tons NOX

Discrete Emission Reduction Credit Certificate

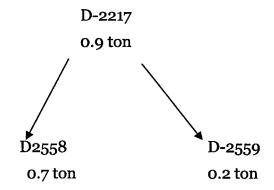
TRANSFERRED

TO CERTIFICATE NO(S): <u>D2439</u> D2560 DATE: <u>L0/8/2010</u>

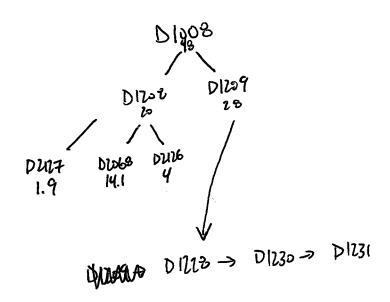
This certifies that

Slay Transportation Company, Inc. 16643 Jacintoport Blvd Houston, TX 77015

is the owner of 0.9 tons of nitrogen oxides (NOx) discrete emission reduction credits established under the laws of the State of Texas, transferable only on the books of the Texas Commission on Environmental Quality, by the holder hereof in person or by duly authorized Attorney, upon surrender of this certificate.


The owner of this certificate is entitled to utilize the discrete emission credits evidenced herein for all purpose authorized by the laws and regulations of the State of Texas and is subject to all limitations prescribed by the laws and regulations of the State of Texas.

Discrete Emission Reduction Generation Period: January 1, 1993	3 - December 31, 1994
Generator Regulated Entity No.: RN100558600	Generator Certificate: D-1008
County of Generation: Brazoria	


October 18, 2007	
. .	

Date

For the Commission

Detail Data for Certificate Num D2220

Certificate No.	: D2220 P	arent Certifi	cate:	D1231	County Name:	BRAZORIA
End date:	11/09/2009	en Period St	tart Date:	01/01/19	93 Gen Period End	Date: 12/31/1994
Mobile:	T	ons Qty:		0.90	Polutant Code:	NOX

Children Detail Data for Certificate Num D2220

Certificate Num	Cont Code	Avail Tons	Active/Inactive	Original Cert Num	Parent Cert Num	Portfolio
<u>D2560</u>	NOX	0.10	Active	D1231	D2220	SLAY TRANSPORTATION - RN100558600
D2558	NOX	0.70	Active	D1231	D2220	SLAY TRANSPORTATION - RN100558600
<u>D2439</u>	NOX	0.80	Active	D1231	D2220	SLAY TRANSPORTATION - RN100558600

Portfolio Listing

	Portfolio Num	Portfolio Name	Company Name	Summary	Fins List	Transactions List
1	P1886	SLAY	SLAY	<u>View</u>	<u>Fins</u>	Xactions List
		TRANSPORTATION	TRANSPORTATION	Summary	<u>List</u>	
		- RN100558600	COMPANY INC	-		

-RN100558600 COMPANYING

Corrected - parent is DZZ17 GG

Detail Data for Certificate Num D1231

Parent Certificate: County Name: Certificate No.: D1231 BRAZORIA

12/20/2007 Gen Period Start Date: 12/31/1994 Gen Period End Date: End date:

6.00 Polutant Code: NOX Mobile: Tons Qty:

Children Detail Data for Certificate Num D1231

Certificate Num	Cont Code	Avail Tons	Active/Inactive	Original Cert Num	Parent Cert Num	Portfolio
<u>D2217</u>	NOX	0.90	Active	D1231	D1231	SLAY TRANSPORTATION - RN100558600
<u>D2219</u>	NOX	0.10	Inactive	D1231	D1231	SLAY TRANSPORTATION -
<u>D2220</u>	NOX	0.90	Inactive	D1231	D1231	RN100558600 SLAY TRANSPORTATION
<u>D2162</u>	NOX	5.00	Inactive	D1231	D1231	RN100558600 SLAY TRANSPORTATION -
<u>D2216</u>	NOX	0.10	Inactive	D1231	D1231	RN100558600 SLAY TRANSPORTATION - RN100558600

Portfolio Listing

Portfolio Portfolio Name **Fins Transactions Company Name** Summary List List Num SLAY Fins Xactions List View P1886 <u>SLAY</u>

TRANSPORTATION TRANSPORTATION Summary List

COMPANY INC - RN100558600

Form DEC-3 (Page 1) otice of Use of Discrete Emission C ts (Title 30 Texas Administrative Code § 101.370 - § 101.379)

I. Company Identifying Inform	nation								
A. Company Name: Slay Transp	portation Co, Inc. 40	04154							
Mailing Address: 16643 Jacin	ıto Port Blvd.								
City: : Houston	State: Texas	Zip Code: 77015-6542							
Telephone: 281-452-9000 x-6	Telephone: 281-452-9000 x-632 Fax: 281-860-0479								
B. TCEQ Customer Number (CN): CN600269427								
C. Site Name: Slay Transportat	tion Co, Inc.								
Street Address (If no street add	dress, give driving directions to site	e) 16643 Jacinto Port Blvd.							
Nearest City: Houston	Zip Code: 77015-6542	County: Harris							
D. TCEQ Regulated Entity Numb	per (RN): RN100558600								
E. TCEQ Air Account Number: (if applicable) HG-9096-G								
F. Primary SIC: 4231		Air Permit Number: 27848							
II. Technical Contact Identifyir	ng Information								
A. Technical Contact Name: (_	MrMrs X MsDr	:.) : Carol Cole							
Technical Contact Title: Dire	ector of Quality, Compliance & T	raining							
Mailing Address: 16643 Jaci	nto Port Blvd.								
City: Houston	State: Te	Xas Zip Code: 77015-6542							
Telephone: 281-452-9000 x-6	632 Fax: : 281-860-0479	E-mail: ccole@slay.com							
III. Mass Emission Cap and Tra	ide Program (MECT)								
Is the DERC use for compliance w	vith 30 TAC Chapter 101, Subchapt	ter H, Division 3? ☐ Yes ■ No							
Year DERC Generated:	Year of use: Ra	tio of DERC to Allowance: to							
 Note: If DERC use is to comply wi	ith MECT then go to Section IX								
IV. Use Period									
Use Start Date: 01/01/09		Use End Date: 12/31/09							
V. State and Federal Requireme	ents								
	irements that the DERCs will be us	ed for compliance:							
30 TAC 117.2010(c)(1)(A)									
VI. Most Stringent Emission Rat	te								
Describe basis for most stringent a		RECEIVED							
☐ Permit Notes:	RACT <u>0.036 lb/MMBtu</u>	☐ Other: JAN 2 1 2010							
		AIR QUALITY							
		DIVISION							

Form DEC-3 (Page 2) Notice of Use of Discrete Emission Credits (Title 30 Texas Administrative Code § 101.370 - § 101.379)

				Calcul	lation of DERCs			
FIN	Air Contaminant	Actual Emissions Rate (units)	Actual Emissions Rate (units)	Actual Total Emissions (tons)	Regulated Activity (units)	Regulated Emissions Rate (units)	Regulated Total Emissions (tons)	DERC Used (tons)
94-1	NOx	4,544.9 MMBtu/yr	0.058 lb/MMBtu	0.132	4,544.9 MMBtu/yr	0.036 lb/MMBtu	0.082	0.050
94-2	NOx	3,276.2 MMBtu/yr	0.059 lb/MMBtu	0.097	3,276.2 MMBtu/yr	0.036 lb/MMBtu	0.059	0.038
N	<u> </u>			<u> </u>				
	94-1	FIN Contaminant 94-1 NOx	FIN Contaminant Rate (units) 94-1 NOx 4,544.9 MMBtu/yr	FIN Contaminant Rate (units) Emissions Rate (units) 94-1 NOx 4,544.9 MMBtu/yr 0.058 lb/MMBtu	FIN Contaminant Rate (units) Rate (units) Emissions Rate (units) Emissions (tons) 94-1 NOx 4,544.9 MMBtu/yr 0.058 lb/MMBtu 0.132	FIN Contaminant Rate (units) Emissions Rate (units) Emissions (units) (units) 94-1 NOx 4,544.9 MMBtu/yr 0.058 lb/MMBtu 0.132 4,544.9 MMBtu/yr	FIN Contaminant Contaminant Rate (units) Rate (units) Emissions Rate (units) Emissions Rate (units) Emissions Rate (units) Emissions (tons) Outline (units) Emissions (units) Emissions Rate (units) Emissions (units) Outline (units) Actual Regulated Activity (units) Emissions Rate (units) Outline (units) Emissions Rate (units) Outline (units) Outl	FIN Contaminant Contaminant Rate (units) Rate (units) Contaminant Rate (units) Regulated Activity (units) Emissions Rate (units) Emissions (tons) Contaminant Rate (units) Emissions Rate (units) Emissions (tons) Contaminant Regulated Activity (units) Emissions Rate (units) Emissions (units) Contaminant Regulated Activity (units) Emissions Rate (units) Emissions (tons) Contaminant Regulated Activity (units) Emissions (units) Contaminant Regulated Activity (units) Contaminant Regulated Activity (units) Contaminant Regulated Activity (units)

TCEQ 10391 (Revised 2/07) Form DEC-1 and Instructions This form is for use by facilities subject to air quality permit requirements and may be revised periodically. 2410203.DEC-3.doc

Page ____ of ____

Form DEC-3 (Page 3) Notice of Use of Discrete Emission Credits (Title 30 Texas Administrative Code § 101.370 - § 101.379)

VIII. Protocol		VIII. Protocol							
Protocol used to calculate D Note: Attach the actual calc		e used to determin	re the amounts of	f DERCs needed to thi.	s form				
IX. Total DERCS Requi	· · · · · · · · · · · · · · · · · · ·	<u>-</u>	rest tenth of a to	on)					
Tons of DERCs required (from Sect. VI.)	CO:	NO _x : 0,088	PM ₁₀ :	SO ₂ :	VOC:				
Offset Ratio (if required)	CO:	NO _x : <u>N/A</u>	PM ₁₀ :	SO ₂ :	VOC:				
Environmental Contribution (+ 10%)	CO:	NO _x :_0.008	PM ₁₀ :	SO ₂ :	VOC:				
Total DERCs Used	CO:	NO _x : 0.096	PM ₁₀ :	SO ₂ :	VOC:				
X. DERC Information Name of the DERC Generator: N/A DERC Generator Regulated Entity Number: N/A Certificate number of the DERCs acquired or to be acquired: (Currently held by Slay) Note: The certificate number is assigned by the TCEQ XI. Purchase Date and Price Date on which the DERCs were acquired or will be acquired: / N/A Price or expected price of the DERCs: \$ N/A per ton (Required)									
XII. Certification by Res									
I, <u>Carol Cole</u> , hereby certify, to the best of my knowledge and belief, that this application is correct and the use strategy claimed on this notice has met the requirements of all applicable state and federal rules and regulations. I further state that to the best of my knowledge and belief the information in this certification is not in any way in violation of 30 TAC, Subchapter H, Division 4, §101.370-101.379 or any applicable air quality rule or regulation of the Texas Commission on Environmental Quality and that intentionally or knowingly making or causing to be made false material statements or representations in this certification is a CRIMINAL OFFENSE subject to criminal penalties. I hereby also waive the Federal statute of limitations defense in regards to the generation and use of discrete emission credits. Signature Carol Cole. Signature Date Signature Date Director of Quality, Compliance & Training									

Mail application to:

Texas Commission on Environmental Quality
Emission Banking and Trading Program MC 206
PO BOX 13087
AUSTIN, TX 78711-3087

RECEIVED

JAN 2 1 2010
AIR QUALITY
DIVISION
2410203.DEC-3.doc

Page ___ of ___

TCEQ 10391 (Revised 2/07) Form DEC-1 and Instructions This form is for use by facilities subject to air quality permit requirements and may be revised periodically.

SLAY TRANSPORTATION COMPANY, INC. SUMMARY OF GAS UASAGE FOR 2009 COMPLIANCE PERIOD

Complance Period - January 01, 2009 thru December 31, 2009

	Meter I	Reading	Total		NOx Fa	ctors	Actual Annual
Emission	January	December	Fuel	Usage	AER	RER	NOx Emissions
Sources	Total (cf)	Total (cf)	(cu.ft/yr)	_{ທλ} Μ BTU/yr	lb/MMBtu	lb/MMBtu	ton/yr
Boiler 1	13,077,830	17,533,610	4,455,780.0		0.058	0.036	0.0500
Boiler 2	11,689,150	14,901,100	3,211,950.0⅓	√ 3,276.19	V 0.059	0.036	0.0377
						Total:	0.088

Note: Fuel Usage calculated from recorded meter readings

Fuel heat value = 1020 Btu/cf

2009 DERC Use Calculations:

DERCs Used = ALA X (AER-RER)/ 2000 lb//ton + 10% environ. contribution

Where:

ALA = actual level of activity

AER = actual emission rate per unit activity

RER = regulatory emission rate per unit of activity

DERCs Used:	0.088 tons
Environmental Contribution (10 % of DERCs Used) =	0.009 tons
Total DERCs Used =	0.096 or 0.1 tons
Total DERCs Held =	5.60 tons
(Certificate Held By Slay)	
2009 DEC-2 NOI =	0.91
DEC-2 Variance =	0.8
Total DERCs Remaining =	5.5 tons

0.1

Air Quality Test Report

Demonstration of Compliance for NO_x and CO

Slay Transportation Company, Inc. Boiler 1

Permit No. 27848

EPN #: 94-1, Account No: HG9096G

Prepared for:

Mr. Ray Jeannott, Manager of Compliance

Slay Transportation Company, Inc.

16643 Jacinto Port Blvd Houston, Texas 77015 (281) 452-9000 ext. 632

Prepared by:

Golden Specialty Consulting, Ltd.

(281) 476-9898

Date Tested:
Date Prepared:

May 12, 2005 May 19, 2005

Scott-B. Swiggard

JAN 2 1 2010

AIR QUALITY DIVISION

I=XI=GUJHVAE/SUUVIVVAEYY

ĺ

On May 12, 2005, Golden Specialty Consulting, Ltd. (GOLDEN) was contracted by Slay Transportation Company, Inc. to perform air testing at their facility located in Houston, Texas. GOLDEN was contracted to perform a compliance emissions testing for the purposes of reporting the emissions on the Boiler 1. The constituents tested for were NO_x, CO, and O₂. This test was conducted in accordance with all appropriate U.S. EPA Methodologies as well as applicable Texas Commission on Environmental Quality (TCEQ) regulations, Permit number 27848.

The boiler is subject to the NOx control requirements of 30 TAC 117.475 (b) and was tested to establish the level of NOx emission in accordance with the procedures specified in 30 TAC 117.479 (e). However, Slay Transportation has opted to comply with the NOx emission specification in 30 TAC 117.475 (c) by obtaining Discrete Emission Reduction Credits (DERCs) as allowed by 30 TAC 117.570 (a). The DECRs will be used to cover the margin of NOx emissions in excess of the specification. Therefore the test results are not intended to demonstrate compliance with the regulatory specification, but to establish a NOx emission factor to be used to quantify actual NOx emissions from fuel usage for the purpose of annual compliance reporting under 30 TAC30 TAC 101, subchapter H, division 4.

A total of three runs were performed for compliance demonstrations. Emission compliance measurements were performed concurrently with the RATA program. Sampling for NO_x , O_2 , and CO was performed in accordance with EPA Methods 7E, 3A, and 10 respectively. During the compliance test, Boiler 1 was operated at 100% of it's 4.2 mBTU rated capacity.

	Run Number	1	2	3	Average	Compliance
Date	Test Date	5/12/2005	5/12/2005	5/12/2005		Compliance
Start	Run Start Time	11:00	12:28	14:07		
_	Run Finish Time	12:16	13:53	15:07		
Θ	Net Run Time, minutes	60	60	60	60	
%O₂	Oxygen, %	6.05	6.35	6.17	6.19	
	F Factor	8,170	8,170	8,170	8170	
NO _{x ppm}	Nitrogen Oxides Concentration, ppmd	39.87	39.61	40.2	39.9	· · · · · · · · · · · · · · · · · · ·
NU _{x Ib/mmBTU}	Nitrogen Oxides Concentration, Ib/mmBTU	0.055	0.059	0.059	0.058	0.036
CO _{ppm}	Carbon Monoxide Concentration, ppmd	< 2.00	< 2.00	< 2.00	<2.00	
CO ppm@3% 02	Carbon Monoxide Concentration, ppm @ 3% O2	< 2.41	< 2.46	< 2.43	< 2.43	400 ppm @ 3% O ₂
CO Ib/mmBTU	Carbon Monoxide Concentration, lb/mmBTU	< 0.002	< 0.002	< 0.002	< 0.002	Plum (B) 330 O5

Table 1-1. Summary of Boiler 1 Compliance Testing

RECEIVED

JAN 2 1 2010

AIR QUALITY
DIVISION

Air Quality Test Report

Demonstration of Compliance for NO_x and CO

Slay Transportation Company, Inc. Boiler 2

Permit No. 27848

EPN #: 94-1, Account No: HG9096G

Prepared for:

Mr. Ray Jeannott, Manager of Compliance

Slay Transportation Company, Inc.

16643 Jacinto Port Blvd Houston, Texas 77015 (281) 452-9000 ext. 632

Prepared by:

Golden Specialty Consulting, Ltd.

(281) 476-9898

Date Tested:

May 12, 2005

Date Prepared:

May 19, 2005

Scott B. Swiggard

RECEIVED

JAN 2 7 2010

AIR QUALITY DIVISION

BXEGUTIME SUMMARY

On May 12, 2005, Golden Specialty Consulting, Ltd. (GOLDEN) was contracted by Slay Transportation Company, Inc. to perform air testing at their facility located in Houston, Texas. GOLDEN was contracted to perform a compliance emissions testing for the purposes of reporting the emissions on the Boiler 2. The constituents tested for were NO_x, CO, and O₂. This test was conducted in accordance with all appropriate U.S. EPA Methodologies as well as applicable Texas Commission on Environmental Quality (TCEQ) regulations, Permit number 27848.

The boiler is subject to the NOx control requirements of 30 TAC 117.475 (b) and was tested to establish the level of NOx emission in accordance with the procedures specified in 30 TAC 117.479 (e). However, Slay Transportation has opted to comply with the NOx emission specification in 30 TAC 117.475 (c) by obtaining Discrete Emission Reduction Credits (DERCs) as allowed by 30 TAC 117.570 (a). The DECRs will be used to cover the margin of NOx emissions in excess of the specification. Therefore the test results are not intended to demonstrate compliance with the regulatory specification, but to establish a NOx emission factor to be used to quantify actual NOx emissions from fuel usage for the purpose of annual compliance reporting under 30 TAC30 TAC 101, subchapter H, division 4.

A total of three runs were performed for compliance demonstrations. Emission compliance measurements were performed concurrently with the RATA program. Sampling for NO_x , O_2 , and CO was performed in accordance with EPA Methods 7E, 3A, and 10 respectively. During the compliance test, Boiler 2 was operated at 100% of it's 4.2 mBTU rated capacity.

	Run Number	1	2	3	Average	Compliance
Date Start	Test Date	5/12/2005	5/12/2005	5/12/2005		Compliance
DIGIT	Run Start Time Run Finish Time	11:00	12:10	13:18		
Θ	Net Run Time, minutes	12:00	13:10	14:18	!	
%O ₂	Oxygen, %	60	60	60	60	
76 ~ 2	F Factor	4.97	5.23	5.24	5.144	
NO		8,170	8,170	8,170	8170	
NO _{x ppm}	Nitrogen Oxides Concentration, ppmd	44.12	43.42	43.5	43.7)
NO _{x Ib/mnBTU}	Nitrogen Oxides Concentration, lb/mmBTU	0.056	0.060	0.060	0.059	0.036
CO _{ppm}	Carbon Monoxide Concentration, ppmd	< 2.00	< 2.00	< 2.00	₹2.00	
CO ppm@3% 02	Carbon Monoxide Concentration, ppm @ 3% O2	< 2.25	< 2.28	< 2.29	< 2.27	400 ppm@3% O,
CO ID/ININBTU	Carbon Monoxide Concentration, lb/mmBTU	< 0.002	< 0.002	< 0.002	< 0.002	-100 pp.11@576 Cg

Table 1-1. Summary of Boiler 2 Compliance Testing

PECEIVED

JAN 2 1 2010

AIR QUALITY

DIVISION

January 19, 2010

Texas Commission on Environmental Quality Emission Banking and Trading Program MC-163 12100 Park 35 Circle Austin, TX 78753 LONE STAR OVERNIGHT AIRBILL NUMBER 43650711

Reference:

Notice of Use of Discrete Emission Reduction Credits (Form DEC-3)

Slay Transportation Company, Inc., Houston, Texas

CN600269427: RN100558600

Dear Sir or Madam:

On behalf of Slay Transportation Company, Inc., please find the enclosed Notice of Use of Discrete Emission Credits (Form DEC-3) for the above-referenced facility, covering the compliance period beginning January 1, 2009 and ending December 31, 2009. A Notice of Intent to Use Discrete Emission Reduction Credits (Form DEC-2) was previously submitted specifying an anticipated total DERC requirement of 0.9-ton for the compliance period.

The enclosed Form DEC-3 meets the notification requirements of 30 TAC 101.376(e) and includes the actual emissions of Nitrogen Oxides (NO_x) during the use period, the actual amount of DERCs used, and the required environmental contribution.

In addition to Form DEC-3, stack test results and calculations of the amount of DERCs used are also enclosed.

If there are any questions, or a need for additional information, please contact me at (281) 446-7070.

Sincerely,

Philip B. Evans

Director, Technical Services

Win B. Ellans

PBE/bs 27974:2410203.ltr.doc

Enclosures

cc: C. Cole

RECEIVED
JAN 2 7 2010
AIR QUALITY
DIVISION

Bryan W. Shaw, Ph.D., Chairman Buddy Garcia, Commissioner Carlos Rubinstein, Commissioner Mark R. Vickery, P.G., Executive Director

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

October 11, 2010

Ms. Carol Cole Director Quality, Compliance, and Training Slay Transportation Company, Inc. 16643 Jacintoport Blvd. Houston, Texas 77015-6542

Re: Use of Discrete Emission Credits

Slay Transportation Houston, Harris County

Regulated Entity Number: RN100558600 Customer Reference Number: CN600269427

Dear Ms. Cole:

This letter is in response to Slay Transportation Company, Inc.'s Form DEC-3 (Notice of Use of Discrete Emission Credits), received January 21, 2010, regarding the use of 0.2 ton of nitrogen oxides (NO_X) discrete emission credit for the purpose of compliance with Title 30 Texas Administrative Code (TAC) Chapter 117 for the period of January 1, 2009, through December 31, 2009.

Upon review of the use of this credit, we agree that the use of 0.2 ton of NO_X discrete emission credit meets the requirements of 30 TAC §117.2010(c)(1)(A).

Enclosed is a copy of Discrete Emission Reduction Credit (DERC) Certificate Number D-2558, issued to Slay Transportation Company, Inc., for the remainder of 0.7 ton of certified NO_x discrete emission credit from Certificate Number D-2217 and Certificate Number D-2560 issued to Slay Transportation Company, Inc., for the remainder of 0.1 ton of certified NO_x discrete emission credit from Certificate Number D-2220. Certificates D-2558 and D-2560 have been deposited into the Texas Commission on Environmental Quality (TCEQ) Discrete Emission Credits Registry. These certificates may be transferred or sold to another owner per the requirements of 30 TAC §§101.370 through 101.379. Certificate Numbers D-2217 and D-2220 (intent to use) and D-2559 (actual use) have been retired and are no longer available.

Thank you for your cooperation in this matter. If you have questions concerning this transaction or need further assistance regarding the banking program, please contact Ms. Alyssa Aston at (512) 239-0861 or write to the Texas Commission on Environmental Quality, Chief Engineer's Office, Air Quality Division (MC-206), P.O. Box 13087, Austin, Texas 78711-3087.

Ms. Carol Cole Page 2 October 11, 2010

This action is taken under authority delegated by the Executive Director of the TCEQ.

Sincerely,

David Brymer, Director Air Quality Division

Texas Commission on Environmental Quality

DB/AA/db

cc: Air Section Managers, Region 12 - Houston

Mr. Arturo Blanco, Bureau Chief of Air Quality Control, Health and Human Services Department, City of Houston

Mr. Michael Schaffer, Director, Environmental Public Health Division, Harris County Public Health and Environmental Services

The State of Texas

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Certificate Number:

D-2558

Number of Credits:

 $0.7 \text{ ton } NO_X$

Discrete Emission Reduction Credit Certificate

This certifies that

Slay Transportation Company, Inc.

16643 Jacintoport Blvd.

Houston, Texas 77015

is the owner of 0.7 ton of nitrogen oxides (NO_X) discrete emission reduction credits established under the laws of the State of Texas, transferable only on the books of the Texas Commission on Environmental Quality, by the holder hereof in person or by duly authorized Attorney, upon surrender of this certificate.

The owner of this certificate is entitled to utilize the discrete emission credits evidenced herein for all purpose authorized by the laws and regulations of the State of Texas and is subject to all limitations prescribed by the laws and regulations of the State of Texas.

Discrete Emission Reduction Generation Period: January 1, 1993 - December 31, 1994

Generator Regulated Entity No.: RN100558600

County of Generation: Brazoria Generator Certificate: D-1008

October 11, 2010

For the Commission

The State of Texas

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Certificate Number:

D-2560

Number of Credits:

 0.1 ton NO_{X}

Discrete Emission Reduction Credit Certificate

This certifies that

Slay Transportation Company, Inc.
16643 Jacintoport Blvd.

Houston, Texas 77015

is the owner of 0.1 ton of nitrogen oxides (NO_X) discrete emission reduction credits established under the laws of the State of Texas, transferable only on the books of the Texas Commission on Environmental Quality, by the holder hereof in person or by duly authorized Attorney, upon surrender of this certificate.

The owner of this certificate is entitled to utilize the discrete emission credits evidenced herein for all purpose authorized by the laws and regulations of the State of Texas and is subject to all limitations prescribed by the laws and regulations of the State of Texas.

Discrete Emission Reduction Generation Period: January 1, 1993 - December 31, 1994

Generator Regulated Entity No.: RN100558600

County of Generation: Brazoria Generator Certificate: D-1008

October 11, 2010

For the Commission

dedithe

CUTR

Banking and Trading Route Slip

Dous

Company:

Type of Letter Correspondence:

Project Number:

Letter Doc No:	1557	\mathcal{O} (3	2 //	
Certificate No:	1557	7 3 1	5573	
		Initials:	Date	
Author/Creator		22	9/9	
Peer Review Con	DB	1/15		
Author/Creator R	aq	9/14		
Review and App	Initials:	Date		
WL Review: Brandon Greulich	1	66	10/	
Management Rev Chance Goodin	riew	BG- For Chance	6/3	
Copies made		m	10/	
Mailed		10	111	
Comments/Special	Instructions	s:		
FINS Ne fixed S reflects Child of Please return Rout	ting Slip are	to be it it iss a r. Curi	s a cente	, ce }/
o Brandon Greulio	ch MC-206	Ext 4904	_	
it show	f Da	320. 3828	as	