

Item Barcode: 100348797

New Source Permits AIR NSR P 026

Air #:	106061534	94462	
File Type:	Permits		
Volume:	001		
Date:	1/1/2011 -		

Files appearing on this roll of microfilm/electronic image were filmed/scanned as received and per instructions from the Texas Commission on Environmental Quality's Records Management Coordinator, Kate Fitzpatrick.

Bryan W. Shaw, Ph.D., Chairman Buddy Garcia, Commissioner Carlos Rubinstein, Commissioner Mark R. Vickery, P.G., Executive Director

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

March 2, 2011

MR KHA MACH, P.E. CORPORATE AIR ENGINEER COI CHESAPEAKE OPERATING INC PO BOX 18496 OKLAHOMA CITY OK 73154-0496

Permit by Rule Registration Number: Location/City/County:

Project Description/Unit: Regulated Entity Number: Customer Reference Number: New or Existing Site: Affected Permit (if applicable): Renewal Date (if applicable):

94462

From the junction of FM 592 & FM 1046 at Allison, go 4.0 mi west on CR 20 then 2.0 mi north then 0.1 mi east and north into location, Allison, Wheeler County Lee 507H Facility PN106061534

RN106061534 CN600514004 New None None

MAR 30 2011 TCEQ CENTRAL FILE ROOM

Chesapeake Operating, Inc. has certified the emissions associated with the Lee 507H Facility under Title 30 Texas Administrative Code §§ 106.352 (effective 9/4/2000) and 106.512 (effective 6/13/2001). For rule information see:

www.tceq.texas.gov/permitting/air/nav/numerical_index.html

Planned MSS emissions have been reviewed. Periodically the Caterpillar engine may shut down for various reasons, which could result in blowdown emissions. COI has conservatively estimated the number of blowdowns to be 20 per year. Approximately 1000 cubic feet of gas could be vented to the atmosphere during a blowdown. One blowdown could occur in a one hour period. The resulting emissions are 3.89 lb/hr and 0.04 tpy of VOCs. These authorized MSS emissions are included on the emissions table. No other planned MSS emissions have been represented or reviewed. The company is also reminded that these facilities may be subject to and must comply with other state and federal air quality requirements. In addition, please be aware that the Commission is considering repeal and amendments to the permit by rule under which your facilities are registered and these changes may affect your authorization. Under the General Requirements for all Permit by Rules, § 106.2 states that particular requirements only apply "where construction is commenced on or after the effective date of the relevant permit by rule." For more information regarding the proposed rule changes, please see the following Web site:

www.tceq.texas.gov/rules/prop.html

All analytical data generated by a mobile or stationary laboratory to support the compliance with an air permit must be obtained from a NELAC (National Environmental Laboratory Accreditation Conference) accredited laboratory. For additional information regarding the laboratory accreditation program, please see the following Web site which includes the accreditation and exemption information:

www.tceq.texas.gov/compliance/compliance_support/qa/env_lab_accreditation.html

Mr. Kha Mach, P.E. March 2, 2011 Page 2

This certification is taken under the authority delegated by the Executive Director of the TCEQ. If you have questions, please contact Ms. Patricia Moden at (512) 239-2524.

Sincerely,

Anne M. Inman, P.E., Manager Rule Registrations Section Air Permits Division

VOC 22.69 tpy 0.42 tpy HAPs (included in VOC) NO_x 4.81 tpy 7.25 tpy CO 0.25 tpy PM₁₀ 0.25 tpy PM_{2.5} 0.02 tpy SO_2 MSS (included in VOC) 0.04 | tpy

Certified Site-wide Emissions:

cc: Air Section Manager, Region 1 - Amarillo

Project Number: 162450

78.57

Permit No.:	94462	Company Name:	Chesapeake Operating, Inc.	APD Reviewer:	Ms. Patricia Moden
Project No.:	162450	#2,677/9*1.17	Lee 507H Facility	PBR No(s).:	106.352, 106.512

GENERAL INFORMATION				
Regulated Entity No.:	RN106061534	Project Type:	Permit by Rule Application	
Customer Reference No.:	CN600514004	Date Received by TCEQ:	January 3, 2011	
Account No.:	None	Date Received by Reviewer:	January 24, 2011	
City/County:	Allison, Wheeler County	Physical Location:	From the junction of FM 592 & FM 1046 at Allison, go 4.0 mi west on CR 20 then 2.0 mi north then 0.1 mi east and north into location	

CONTACT INFORMATION		MAR DE LA		at ste	u
Responsible Official/ Primary Contact Name and Title:	Mr. Kha Mach, PE Corporate Air Engineer	Phone No.: Fax No.:	(405) 935-7908 (405) 849-7908	Email:	KHA.MACH@CHK.COM
Technical Contact/ Consultant Name and Title:	Ms. Rita Zebian Project Manager Air Quality	Phone No.: Fax No.:	(817) 640-6407 (817) 640-6447	Email:	RITA.ZEBIAN@BENHAM. COM

GENERAL RULES CHECK	YES	NO	COMMENTS
Is confidential information included in the application?		X	No confidential information has been submitted.
Are there affected NSR or Title V permits for the project?		x	There are no other air authorizations at this site.
Is each PBR > 25/250 tpy?		x	
Are PBR sitewide emissions > 25/250 tpy?		x	
Are there permit limits on using PBRs at the site?		x	
Is PSD or Nonattainment netting required?		x	This site is not one of the 28 PSD named sources, and emissions are below federal significance levels. The site is not located in a designated non-attainment area (Wheeler County). Therefore, neither PSD nor NA review is required.
Do NSPS, NESHAP, or MACT standards apply to this registration?	X		 The company represents that they are subject to and will comply with the following: NSPS Subpart JJJJ: ENG 1 was manufactured after July 1, 2008 MACT Subpart ZZZZ: ENG 1 is subject to MACT ZZZZ and will meet the requirements by complying with NSPS JJJJ
Does NOx Cap and Trade apply to this registration?		x	The site is not located in the Houston/Galveston non-attainment area.
Is the facility in compliance with all other applicable rules and regulations?	x		The applicant represents that they are in compliance with all applicable rules and regulations.

DESCRIBE OVERALL PROCESS AT THE SITE

Chesapeake Operating, Inc. (COI) owns and operates the Lee 507H Facility in Wheeler County under Permit by Rule 106.352 and 106.512. COI wishes to register and certify the site-wide emissions.

DESCRIBE PROJECT AND INVOLVED PROCESS The company has submitted a Form PI-7-CERT and supporting documentation to register the emissions at the site.

The company has submitted a Form F1-7-CEKT and supporting documentation to register the emissions at the site.

Natural gas, oil and produced water are produced from the wellhead at the Facility. The annual natural gas throughput is estimated to be less than 8 MMScf/day. Average oil production is estimated to be 300 bbl/day and average water production is estimated to be 2500 bbl/day.

The site has one production unit and one heater treater. The oil, gas, and water come from the wellhead to the production unit where the first stage separation occurs. The gas is sent to the sales pipeline and fluid is sent to the heater treater. The flash off the heater treater is captured via a flash gas compressor and sent to the sales line. The fluids are separated and sent to the tanks. The flash gas compressor is powered by a 145 hp Caterpillar G3306NA engine which exhausts to the atmosphere.

All oil flows through Tank 4, the stabilization tank, then through Tank 2 or Tank 3. Water flows to Tank 1. Flashing occurs at Tank 4 and at the water tank, Tank 1. The oil and water are transferred offsite via trucks.

A ProMax process simulator run was used to estimate VOC flash emissions from Tank 4 and Water Tank 1. Working and breathing losses from the tanks were estimated using Tanks 4.0. The water tank breathing and working losses and truck loading losses assume all of the water is crude oil and 1% of the calculated emissions are emitted.

Vapors from all tanks are sent to an SFI combustor where they are combusted. It is conservatively estimated that 99% of the tank emissions will be destroyed in the combustor.

Permit No.:	94462	Company Name:	Chesapeake Operating, Inc.	APD Reviewer:	Ms. Patricia Moden
Project No.:	162450	Unit Name: 🕉	Lee 507H Facility	PBR No(s).:	106.352, 106.512

Periodically the Caterpillar engine may shut down for various reasons, which could result in blowdown emissions. COI has conservatively estimated the number of blowdowns to be 20 per year. Approximately 1000 cubic feet of gas could be vented to the atmosphere during a blowdown. One blowdown could occur in a one hour period.

ç

OIL AND GAS FACILITY GENERAL INFORMATION						
💥 Natural Gas Throughput (MMSCF/day):	8	H ₂ S Content of Inlet Gas:	<24 ppm			
Oil/Condensate Throughput (bbl/day):	300	Is the gas sweet or sour?	Sweet			
Produced Water Throughput (bbl/day):	2500	Is this site operational/producing?	Yes			
PI-7 or PI-7 CERT?	CERT	Has the site been registered before?	No			

Number of each:	Compressor Engines:	1	Glycol dehydrators:	0	VRU:	0
	Separators:	1+	Amine units:	0	Other:	Combustor
	Storage Tanks:		Heater Treaters:	1	Other:	MSS
	Truck Loading:	Yes	Flares:	0	Contraction Other:	

30 TAC §106.352 RULE CHECK		
REQUIREMENTS	YES, NO, or n/a	OTHER / COMMENTS
If the site conditions the natural gas (with a glycol dehydrator, amine unit, sulfur recovery unit, etc.), it handles less than two long tons per day of sulfur compounds (1 long ton = 2240 pounds). Long tons per day sulfur compounds = $(\underline{MMSCF/dav} \text{ of inlet gas})*(\underline{MW} \text{ of inlet gas})*(\underline{H_2S} \text{ wt fraction})$ (0.84896)	Yes	Long tons per day of sulfur compounds = _<2
(1) All compressors will meet the requirements of 106.512.	Yes	·
(1) All flares will meet the requirements of 106.492.	NA	There are no flares at this site.
(2) Total emissions, including process fugitives, combustion unit stacks, separator, or other process vents, tank vents, and loading emissions from all such facilities constructed at a site under this section, will be equal to or below 25 tons per year (tpy) each of sulfur dioxide (SO_2) , all other sulfur compounds combined, or all volatile organic compounds (VOC) combined; and 250 tpy each of nitrogen oxide and carbon monoxide.	Yes	
Emissions of VOC and sulfur compounds other than SO ₂ must include gas lost by equilibrium flash as well as gas lost by conventional evaporation.		
(3) If the facility handles sour gas, it will be located at least 1/4 mile from any recreational area or residence or other structure not occupied or used solely by the owner or operator of the facility or the owner of the property upon which the facility is located.	NA	This is not a sour site.
(4) Total emissions of sulfur compounds, excluding sulfur oxides, from all vents will be equal to or below 4.0 pounds per hour (lb/hr).	NA	This is not a sour site.
(4) The height of each vent emitting sulfur compounds meets the following requirements, and is in no case less than 20 feet: (NOTE: other values may be interpolated)	NA	
$\begin{array}{c c} H_2S (lb/hr) & \underline{Minimum Vent Height (ft)} \\ 0.27 & 20 \end{array}$		
0.60 30		
1.94 50		
3.00 60		
4.00 68		
(5) If the site handles sour gas, the company will register the site by submitting Form PI-7 or PI-7-CERT before operations begin.	NA	This is not a sour site; however, the company has submitted a Form PI-7-CERT.

STORAGE TANKS							
Tank Identifier (EPN)	Capacity of Tank	Throughput (bbl/day)	Contents of Tank	Working and breathing Loss Calculation Method	Flash Loss Calculation Method	Comments	
TANK4	400 bbl	300	Crude Oil	Tanks 4.0	ProMax	Vapors from all	
TANK3	300 bbl	150	Crude Oil	Tanks 4.0	ProMax	tanks are sent to an SFI combustor	
TANK2	300 bbl	150	Crude Oil	Tanks 4.0	РгоМах	where they are	
TANK1	300 bbl	2500	Water	Tanks 4.0		combusted. It is	

Permit No.:	94462	Company Name:	Chesapeake Operating, Inc.	· · · ·	APD Reviewer:	Ms. Patricia Moden
Project No.:	162450	Unit Name:	Lee 507H Facility	and the second second	PBR No(s).:	106.352, 106.512
	· · ·				·····	· · · ·
						conservatively estimated that 99%

of the tank emissions will be destroyed in the combustor.

Tank Identifier (EPN)	Throughput (gallons/year) (pg. 1 of report)	Turnovers per year (pg. 1 of report)	Mixture/ Component (pg. 2 of report)	Basis for VP Calculations (pg. 2 of report)	Vapor MW (pg. 2 of report)	Results (lb/ycar) (last page of report)
TANK1	38325000	3041.67	Gasoline RVP 8	Option 4	68	44277.77
TANK 2& 3	2299500	182.50	Gasoline RVP 8	Option 4	68 ****	5677.23
TANK 4	4599000	273.75	Gasoline RVP 8	Option 4	68	9062.11

What is being Loaded	S	P (psia)	M (lb/lb- mole)	T (°R)	L _L (lb VOC/1000 gallons loaded)	Hourly Loading Rate (gallons/hour)	Annual Loading Rate (gallons/year)	Hourly Emissions (lb/hr)	Annual Emissions (tpy)	
Crude Oil	0.6	4.54	68	516.63	4.46	8000	4599000	35.68	8.97	
Water	0.6	4.54	68	516.63	4.46	8000	38325000	0.36	0.75	
Please explain any c	reductions in ca	lculated emis	sions:	The truck loading losses assume all of the water is crude oil and 1% of the calculated emissions are emitted						

HEATERS AND BOILERS (INCLUDING GLYCOL DEHYDRATOR REBOILERS)										
Identifier (EPN)	Rating (MMBtu/hr)	Operating Hours per year	Fuel Heat Value (Btu/SCF)	NOx emissions Factor Used						
HT1	1.0	8760	1020	100						

	Valves	Flanges	Connect ors	Open Ended lines	Pump Seals	Other	VOC content of stream (weight %)	H ₂ S content of stream (weight %)	VOC Emissions (tpy)	H ₂ S Emissions (tpy)
Gas Service Component Count	100	110	· - ·		—	65	8.73	·	0.92	-
Light Oil Component Count	10	11	·		6	5	100	'		·
······································		L						TOTAL:	2.28	
If VOC content of gas stream <1 or other laboratory gas ana			10000	te of 12/	/10/10		C ratio from 8 ysis (wt %):		FOC ratio from nalysis (wt %	

Type (thermal, catalytic, or regenerative):	Thermal			
VOC Destruction Efficiency:	99%	ter de la B	2S Destruction Efficiency:	
EPN/Identifier for sources of emissions routed to oxidizer:	Flow Rate of Each Source (SCF/hour)	Heat Content of Each Source (Btu/SCF)	H ₂ S Emissions From Each Source (lb/hr)	VOC Emissions From Each Source (lb/hr)
Tanks	2900	1020		131.86

30 TAC §106.512 RULE CHECK		
REQUIREMENTS	YES, NO, or n/a	OTHER / COMMENTS
(1) The engines or turbines have been registered with Form PI-7 or PI-7-CERT within 10 days of the start of construction.	Yes	Horsepower of engine(s) = 145
Engines and turbines rated less than 240 horsepower (hp) need not be registered, but must meet paragraphs (5) and (6) of this section, relating to fuel and protection of air quality.		
(1) Table 29 has been submitted for each proposed gas or liquid fuel-fired stationary internal	Yes	•

•

Permit No.:	94462		Company Name	Chesapeake (Operating, Inc.			AP	D Reviewer:	Ms.	Patricia Mod	en
Project No.:	16245	io 7	Unit Name: 🔅	Lee 507H Fa	cility			PB	R No(s).:	塗 106	.352, 106.512	
	-	ating engine.					NA	The en	gine is rated	less the	n 500 hn	
Any engind f this parage		d greater that	n 500-np will m	leet the requirement	nts of subparagraphs (A	4)-(C)	. NA	The en	gine is rateu		11 500 lip.	
3) Any gas (turbine r		than 500-hp wil	ll meet the require	ments of subparagraph	s (A)	NA	There a	are no turbin	es at the	site.	
nd (B) of th				1.6			Yes	Llamor	ower= 145			
				or used for tempo phs (2) and (3) ab	rary replacement purpo ove.	oses is	res	Horsep	60wei - <u>145</u>	<u>,</u>		
Temporar	y replace	ement engine	es or turbines sh		maximum of 90 days o	of _.		Tempo	orary?	<u>no .</u>		
5) The gas f	fuel will	be limited to	: sweet natural		bleum gas, fuel gas cont	taining	Yes	~1	f fuel= <u>fiel</u> content of fi		natural gas gr/100 dSCF):	
5) Compliar	nce with	National Ar	nbient Air Qual	ity Standard (NA)		Yes	Which	method was	s used (A	A, B, or C)?/	<u>A_,</u>	
roposed fac	ility has	been demor	strated.	· .						not needed.		
(6)(A) A	mbient	sampling or	dispersion mode	eling, accomplishe	ed pursuant to guidance	e obtained f	from the execu	tive dire	ector, was us	ed to de	monstrate NA	AQS:
		2							· · · ·	1220	<u> </u>	
Engir	ne Identi:	fier / EPN		y Concentration O₂/NOx	Max. <u>Annual</u> Concer of NO ₂ /NOx		NO ₂ /NOx F (from tab				Concentration X NO ₂ /NO _x	
				en3 modeling)	(Max. Hourly Conc.	X 0.08)	below)				/m³)	
		·	μ)	g/m ³)	(μg/m³)							
ENG1	· •		6	2.89	5.03		0.4			2.	01	
	· · ·				Backgroun	nd Concent	ration for Cou	nty =		2	20	
2					Backgroun	nd Concent		nty = AL =			.01	
				Is total	Backgroun below NAAQS limit fo		TOT	AL =	-	22		-
					below NAAQS limit fo	or NO2 of 1	TOT 00 μg/m ³ (yes	AL = /no)?		22 y	.01	
Unless o	otherwise			data, the following	below NAAQS limit fo g nitrogen dioxide (NO	or NO ₂ of 1 $\frac{1}{2}$ /NO _x ration	TOT 00 μg/m³ (yes ios shall be us	AL = //no)?	odeling NO ₂	22 y	.01	-
Unless o	otherwise	De	evice	data, the following NO _x Emiss	below NAAQS limit fo	or NO ₂ of 1 $\frac{1}{2}$ /NO _x rat	TOT 00 μg/m ³ (yes	AL = //no)?	odeling NO ₂	22 y	.01	
Unless o	otherwise	De IC Engine		data, the following NO _x Emiss Less than 2.0	below NAAQS limit fo g nitrogen dioxide (NO	or NO ₂ of 1	TOT 00 μg/m ³ (yes ios shall be us: NO ₂ /NO _x Rat	AL = //no)?	odeling NO ₂	22 y	.01	- - -
Unless o	otherwise	De IC Engine IC Engine		data, the following NO _x Emiss Less than 2.0 2.0 thru 10.0	below NAAQS limit fo g nitrogen dioxide (NO ion Rate (g/hp-hr)	or NO ₂ of 1 2)/NO _x rati 0.4 0.15 +	TOT 00 μg/m³ (yes ios shall be us	AL = //no)?	odeling NO ₂	22 y	.01	-
Unless o	therwise	De IC Engine IC Engine IC Engine		data, the following NO _x Emiss Less than 2.0	below NAAQS limit fo g nitrogen dioxide (NO ion Rate (g/hp-hr)	or NO ₂ of 1 2)/NO _x rati 0.4 0.15 + 0.2	TOT 00 μg/m ³ (yes ios shall be us: NO ₂ /NO _x Rat	AL = //no)?	odeling NO ₂	22 y	.01	
Unless o	therwise	De IC Engine IC Engine IC Engine Turbines		data, the following NO _x Emiss Less than 2.0 2.0 thru 10.0 Greater than 10.0	below NAAQS limit fo g nitrogen dioxide (NO ion Rate (g/hp-hr)	or NO ₂ of 1 2)/NO _x rati 0.4 0.15 +	TOT 00 μg/m ³ (yes ios shall be us: NO ₂ /NO _x Rat	AL = //no)?	odeling NO ₂	22 y	.01	
Unless o	therwise	De IC Engine IC Engine IC Engine Turbines		data, the following NO _x Emiss Less than 2.0 2.0 thru 10.0 Greater than 10.0	below NAAQS limit fo g nitrogen dioxide (NO ion Rate (g/hp-hr)	or NO ₂ of 1 2)/NO _x ration 0.4 0.15 + 0.2 0.25 0.85	TOT 00 μg/m ³ (yes ios shall be us: NO ₂ /NO _x Rat	AL = /no)?		22 y	.01	
		De IC Engine IC Engine IC Engine IC Engine	with catalytic c	data, the following NO _x Emiss Less than 2.0 2.0 thru 10.0 Greater than 10.0	below NAAQS limit fo g nitrogen dioxide (NO ion Rate (g/hp-hr)	or NO ₂ of 1 2)/NO _x ration 0.4 0.15 + 0.2 0.25 0.85	TOT 00 µg/m ³ (yes ios shall be us NO ₂ /NO _x Rat - (0.5/Q)	AL = /no)? ed for m io ate (g/h)		22 y	.01 es	
7) The engi	ne or tur	De IC Engine IC Engine IC Engine Turbines IC Engine	with catalytic c	data, the following NO _x Emiss Less than 2.0 2.0 thru 10.0 Greater than 10.0 onverter erate electricity.	below NAAQS limit fo g nitrogen dioxide (NO ion Rate (g/hp-hr)	or NO ₂ of 1 2)/NO _x ration 0.4 0.15 + 0.2 0.25 0.85	TOT 00 µg/m ³ (yes ios shall be us NO ₂ /NO _x Rat - (0.5/Q)	AL = /no)? ed for m io ate (g/h)	 	22 y	.01 es	· · · · · · · · · · · · · · · · · · ·
7) The engin 7) If NO to (A) Th	ne or tur the abov e engine	De IC Engine IC Engine Turbines IC Engine bine will not re question, of so or turbines	with catalytic c t be used to gene do any of the fol s are used to pro	data, the following NO _x Emiss Less than 2.0 2.0 thru 10.0 Greater than 10.0 onverter erate electricity. llowing apply? vide power for the	below NAAQS limit fo g nitrogen dioxide (NO ion Rate (g/hp-hr)	or NO ₂ of 1 2)/NO _x rati 0.4 0.4 0.2 0.25 0.85 Q = N	TOT 00 µg/m ³ (yes ios shall be us NO ₂ /NO _x Rat - (0.5/Q) 10x emission r Yes	AL = /no)? ed for m io ate (g/h)	 	22 y	.01 es	
7) The engin 7) If NO to (A) Th register	ne or tur the abov e engine red unde	De IC Engine IC Engine Turbines IC Engine bine will not re question, as or turbines or turbines	with catalytic c t be used to gene do any of the fol s are used to pro nality Standard F	data, the following NO _x Emiss Less than 2.0 2.0 thru 10.0 Greater than 10.0 onverter erate electricity. llowing apply? vide power for the Permit for Concret	below NAAQS limit fo g nitrogen dioxide (NO ion Rate (g/hp-hr) e operation of facilities ie Batch Plants;	or NO ₂ of 1 2)/NO _x rati 0.4 0.2 0.25 0.85 Q = N	TOT 00 µg/m ³ (yes ios shall be us NO ₂ /NO _x Rat - (0.5/Q) 10x emission r Yes	AL = /no)? ed for m io ate (g/h)	 	22 y	.01 es	
7) The engin 7) If NO to (A) Th register (B) Th	ne or tur the abov e engine red unde e engine	De IC Engine IC Engine Turbines IC Engine bine will not re question, of so or turbines or turbines or turbines	with catalytic c t be used to gene do any of the fol s are used to pro iality Standard F s satisfy the cond	data, the following NO _x Emiss Less than 2.0 2.0 thru 10.0 Greater than 10.0 onverter erate electricity. llowing apply? wide power for the Permit for Concret ditions for facilitie	below NAAQS limit fo g nitrogen dioxide (NO ion Rate (g/hp-hr) e operation of facilities te Batch Plants; es permitted by rule und	or NO ₂ of 1 2)/NO _x rati 0.4 0.2 0.25 0.85 Q = N	TOT 00 µg/m ³ (yes ios shall be us NO ₂ /NO _x Rat - (0.5/Q) 10x emission r Yes	AL = /no)? ed for m io ate (g/h)	 	22 y	.01 es	
7) The engin 7) If NO to (A) Th register (B) The Subcha (C) The	ne or tur the abov e engine red unde e engine apter E o e engine	De IC Engine IC Engine Turbines IC Engine bine will not re question, a so or turbines or turbines or turbines of this title (rr s or turbines	with catalytic c with catalytic c t be used to gene do any of the fol s are used to pro ality Standard F s satisfy the conce elating to Aggre	data, the following NO _x Emiss Less than 2.0 2.0 thru 10.0 Greater than 10.0 onverter erate electricity. Nowing apply? wide power for the Permit for Concret ditions for facilitie gate and Pavemen	below NAAQS limit fo g nitrogen dioxide (NO ion Rate (g/hp-hr) e operation of facilities te Batch Plants; es permitted by rule und	or NO ₂ of 1 $(2)/NO_x$ ration 0.4 0.15 + 0.2 0.25 0.85 Q = N der	TOT 00 µg/m ³ (yes ios shall be us NO ₂ /NO _x Rat - (0.5/Q) 10x emission r Yes	AL = /no)? ed for m io ate (g/h)	 	22 y	.01 es	
7) The engin 7) If NO to (A) Th register (B) Th Subcha (C) The for irrig	ne or tur the abov e engine red unde e engine apter E o e engine gating cr	De IC Engine IC Engine Turbines IC Engine bine will not re question, of so or turbines or the Air Qu s or turbines of this title (re s or turbines ops.	with catalytic c with catalytic c t be used to gene do any of the fol s are used to pro iality Standard F s satisfy the conce elating to Aggree are used exclus	data, the following NO _x Emiss Less than 2.0 2.0 thru 10.0 Greater than 10.0 onverter erate electricity. llowing apply? wide power for the Permit for Concret ditions for facilitie gate and Pavemer sively to provide p	below NAAQS limit fo g nitrogen dioxide (NO ion Rate (g/hp-hr) e operation of facilities te Batch Plants; es permitted by rule und nt); power to electric pumps	or NO ₂ of 1 2)/NO _x ration 0.4 0.15 + 0.2 0.25 0.85 $Q = \lambda$ der s used	TOT 00 µg/m ³ (yes ios shall be us NO ₂ /NO _x Rat - (0.5/Q) 10x emission r Yes	AL = /no)? ed for m io ate (g/h)	 	22 y	.01 es	
7) The engin 7) If NO to (A) Th register (B) The Subcha (C) The for irrig (D) Th	ne or tur the abov e engine red unde e engine apter E o e engine gating cr he engine	De IC Engine IC Engine Turbines IC Engine Turbines IC Engine bine will not re question, as or turbines or turbines of this title (r s or turbines ops. e is for on si	with catalytic c with catalytic c t be used to gene do any of the fol s are used to pro ality Standard F a satisfy the concellating to Aggree are used excluse te use only and	data, the following NO _x Emiss Less than 2.0 2.0 thru 10.0 Greater than 10.0 onverter erate electricity. Nowing apply? wide power for the Permit for Concret ditions for facilitie gate and Pavemen sively to provide p it is located where	below NAAQS limit fo g nitrogen dioxide (NO ion Rate (g/hp-hr) e operation of facilities te Batch Plants; es permitted by rule und nt);	or NO ₂ of 1 2)/NO _x ration 0.4 0.15 + 0.2 0.25 0.85 $Q = \lambda$ der s used	TOT 00 µg/m ³ (yes ios shall be us NO ₂ /NO _x Rat - (0.5/Q) 10x emission r Yes	AL = /no)? ed for m io ate (g/h)	 	22 y	.01 es	
7) The engin 7) If NO to (A) Th register (B) The Subcha (C) The for irrig (D) Th availab	ne or tur the abov e engine red unde e engine apter E o e engine gating cr he engine le or wh	De IC Engine IC Engine Turbines IC Engine bine will not re question, or s or turbines or turbines of this title (re s or turbines of this title (re s or turbines ops. e is for on si ere it is not of	with catalytic c with catalytic c t be used to gene do any of the fol s are used to pro iality Standard P is satisfy the conce elating to Aggree are used excluse te use only and economically fe	data, the following NO _x Emiss Less than 2.0 2.0 thru 10.0 Greater than 10.0 onverter erate electricity. Ilowing apply? wide power for the Permit for Concret ditions for facilitie gate and Pavemen sively to provide p it is located where asible to connect t	below NAAQS limit fo g nitrogen dioxide (NO ion Rate (g/hp-hr) e operation of facilities te Batch Plants; es permitted by rule und nt); power to electric pumps e the electric grid is not	or NO ₂ of 1 2)/NO _x ration 0.4 0.15 + 0.2 0.25 0.85 $Q = \lambda$ der s used	TOT 00 µg/m ³ (yes ios shall be us NO ₂ /NO _x Rat - (0.5/Q) 10x emission r Yes	AL = /no)? ed for m io ate (g/h)	 	22 y	.01 es	
7) The engin 7) If NO to (A) Th register (B) Th Subcha (C) Th for irrin (D) Th availab	ne or tur the abov e engine red unde e engine gating cr he engine ole or wh GAS F	IC Engine IC Engine IC Engine Turbines IC Engine bine will not re question, a so or turbines or the Air Qu s or turbines of this title (r s or turbines ops. e is for on si ere it is not IRED COM	with catalytic c with catalytic c t be used to gene do any of the fol s are used to pro ality Standard F s satisfy the conce elating to Aggre are used exclusion te use only and economically fee	data, the following NO _x Emiss Less than 2.0 2.0 thru 10.0 Greater than 10.0 onverter erate electricity. Ilowing apply? wide power for the Permit for Concret ditions for facilitie gate and Pavemer sively to provide p it is located where asible to connect to NGINE	below NAAQS limit for g nitrogen dioxide (NO) ion Rate (g/hp-hr) e operation of facilities te Batch Plants; es permitted by rule und nt); power to electric pumps e the electric grid is not to the electric grid.	or NO ₂ of 1 2)/NO _x ration 0.4 0.15 + 0.2 0.25 0.85 Q = N der s used readily	TOT 00 µg/m ³ (yes ios shall be us NO ₂ /NO _x Rat - (0.5/Q) /Ox emission r Yes NA	AL = (no)? ed for main io rate (g/hg No elected No elected	p-hr) ctricity will l	22 y	.01 es ated.	
7) The engin 7) If NO to (A) Th register (B) The Subcha (C) The for irrig (D) Th availab	ne or tur the abov e engine red unde e engine gating cr he engine ole or wh GAS FI ntifier	IC Engine IC Engine IC Engine Turbines IC Engine bine will not re question, a so or turbines or the Air Qu s or turbines of this title (r s or turbines ops. e is for on si ere it is not IRED COM	with catalytic c with catalytic c t be used to gene do any of the fol s are used to pro iality Standard P is satisfy the conce elating to Aggree are used excluse te use only and economically fe	data, the following NO _x Emiss Less than 2.0 2.0 thru 10.0 Greater than 10.0 onverter erate electricity. Ilowing apply? wide power for the Permit for Concret ditions for facilitie gate and Pavemer sively to provide p it is located where asible to connect to NGINE	below NAAQS limit fo g nitrogen dioxide (NO ion Rate (g/hp-hr) e operation of facilities the Batch Plants; se permitted by rule und nt); bower to electric pumps the electric grid is not to the electric grid.	or NO ₂ of 1 2)/NO _x ration 0.4 0.15 + 0.2 0.25 0.85 $Q = \lambda$ der s used	TOT 00 µg/m ³ (yes ios shall be uso NO ₂ /NO _x Rat - (0.5/Q) //Ox emission r Yes NA NA	AL = /no)? ed for m io ate (g/h)	p-hr) ctricity will l trol Em ency Fact	22 y	.01 es	Emissi (tpy

Horsepower: NMNEHC CAT G3306NA 145 Manuf. 0.33 Catalyst 1.0 0.32 1.40 Data NOx 10.90 2.0 0.64 2.79 **Fuel Consumption** 7775 Manuf. (Btu/hp-hr): Data 13.10 4.0 1.28 5.59 СО 2 or 4 stroke, 4, rich Manuf. Ŷ Rich or Lean Burn: Data PM₁₀ Hours of Operation per year: 0.019 AP-42 0.02 0.10 8760

Permit No.:	94462	Company Na	me: C	hesapeake Operatin	g, Inc.			APD Reviewer:	Ms. Patricia M	Ms. Patricia Moden		
Project No.:	16245	0 Unit Name:	XX L	ee 507H Facility		PBR No(s).:	12					
		Vendor Data Sheet Included? (required if ≥ 500-hp)	NA	SO ₂	AP-42			0.00	05 <0.01	<0.01		
• • •	x	Date of Manufacture or Reconstruction:	7/30/10) <u>CH2O</u>	Manuf. Data	0.29		0.2	9 0.10	0.42		
Does NSPS, Subpart JJJJ apply? Yes			Why or why n If yes, how wi	Why or why not? If yes, how will requirements be met?			NSPS Subpart JJJJ: ENG 1 was manufactured after July 1, 2008					
Does MACT, Subpart ZZZZ apply?			Yes	Why or why n If yes, how wi			MACT Subpart ZZZZ: ENG 1 is subject to MACT ZZZZ and will meet the requirements by complying with NSPS JJJJ					

COMMUNIC	ATION LOG		
Date	Time 200	Name/Company	Subject of Communication
February 22, 2011	11:27 AM	Ms. Rita Zebian/The Benham Companies, LLC	Hi, Rita,
2011			I am currently working on seven PBR applications for Chesapeake (listed below) which need additional information. Also, please provide an approximate start of construction date for all sites.
			PGE Browne 2H: 1. Formaldehyde emissions have not been included on Table 1a or the Emission Summary table. Please update accordingly; 2. Please provide the gas heating value (Btu/SCF), the tip velocity (ft/sec), heat
			release value (Btu/hr), and flow rate (scf/hr) for the flare. Lohberger 401H Pad / West T 1H / Lee 507H:
			 Formaldehyde emissions have not been included on Table 1a or the Emission Summary table. Please update accordingly; What type of vapor combustor is used (i.e. thermal, catalytic, etc.)?
			Fox Creek Unit B 1H Pad / Pena Creek III 1H / Traylor North 2H: 1. Please provide the gas heating value (Btu/SCF), the tip velocity (ft/sec), heat release value (Btu/hr), and flow rate (scf/hr) for the flare.
•			Please get back to me with the above requested information no later than noon on Monday, February 28, 2011. Let me know if you have any questions.
			Regards, Patricia
February 22,	2:38 PM	Ms. Rita Zebian/The Benham Companies, LLC	Patricia,
2011			My contact at Chesapeake is out of the office today and tomorrow so I won't have specific information for you until Thursday or Friday. I received a similar email today from Jameica Hanney who is working on Chesapeake PBRs also. I sent her the following question on formaldehyde and would appreciate your feedback also.
	• • •		On your formaldehyde questions, in the past we did list formaldehyde separately on our summary but one of your permit reviewers told us we needed to add the formaldehyde to the VOC and report the total. We stopped showing the formaldehyde separately because we did not want it double counted. Has the agency's position changed on this? If we list the formaldehyde separately then I
	· · ·		assume we would not include it in the VOC number also. Is this correct?
			Thanks, Rita

Permit No.:	94462	Company Name:	Chesapeake Operating, Inc.		Ms. Patricia Moden						
Project No.:	162450	Unit Name:	Lee 507H Facility		PBR No(s).:	106.352, 106.512					
February 23,	8:01 AM	Ms. Rita Zebian/I	he Benham Companies, LLC	Rita,							
2011				In the past, there has been confi included the formaldehyde com counted. In this case, based on y is part of the total engine VOC emissions, though, it is helpful avoid being double counted, a f is already included in the VOC	ponent which is why your calculations, it i emission rate. For co to have the formalde potnote can be added	y it may have been double is clear that the formaldehyde onsideration of HAP whyde listed separately. To d to indicate that formaldehyd					
			-	inform the reviewer that formal best for you or the company, so considered.	dehyde has not be in	cluded. Whichever way work					
				Please let me know if you have	any questions.						
February 28, 2011	11:54 AM	Ms. Rita Zebian/I	he Benham Companies, LLC	Patricia Patricia, Attached are revised tables for t formaldehyde emissions. Also,							
				responses to your other questions. Please call or email if you need anything else. Thanks, Rita							
March 1, 2011	2:10 PM	Ms. Rita Zebian/I Mr. Marc Olivier/	he Benham Companies, LLC Permit Reviewer	by the company for coveral in house registration requests							
• • • • •				Dear Ms. Rita Zebian, I am working on the technical re Chesapeake Operating, Inc. and registrations. While going throu review, I noticed that the cover only the annual site-wide emissi	am aware that there ugh the registration p letter for each regist	e are other pending backages as part of the initial ration states "COI is certifyin					
				There recently has been some or certification when submitting a that <u>all</u> representations in the ce the facilities and sources will op emissions, which may be derive determined based on the type of activity, throughput, production operational limitations less than	PI-7-CERT or APD- rtification of emissio erate. Therefore, the d based on hourly en- factivity, the frequer composition, and er	-CERT, so I wanted to clarify ons are conditions upon whic the basis of the annual mission rates that are ney and duration of an mission controls, or other					
				Once I have completed the techn other information that is needed signature.							
			prior to February 27, 2011, whi	Sincerely, Marc Olivier							

EPN / Description	Screen 3 mo	odel distance	Maximum Hourly	Concentration of NOx (from screen 3 model)
ENG1	53 m		62.89	
•	Background Concentration	on of Region / County =	70	
		Total =	132.90	
Is the total limit below	the hourly NAAQS Limit	of 188 ug/m3 (yes/no)?	yes	
Notes:				

ESTIMATED EMISSIONS	institution;		lû ye	ette de la compacte d	1913h - 1.	56-2458	427440		nin die	ix equi-		edada:	0016.1963	1911 - 3 124	2.227 al
	Specific VOC or Other Pollutants	ST VOC		NOx 😒		CO 280		PM10		PM 25		SO2		🖀 нсно* 🦂	
		lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy
ENG1/CAT G3304NA		0.42	1.82	0.64	2.79	1.28	5.59	0.02	0.10	0.02	0.10	<0.01	<0.01	0.10	0.42
MSS/Engine Blowdown		3.89	0.04												
FUG/Sitewide Fugitives		0.52	2.28												
TANK1/Water Storage		<0.01	0.03												

Permit No.:	94462	Company Name:	Chesapeake Operating, Inc.	APD Reviewer:	Ms. Patricia Moden
Project No.:	162450	Unit Name:	Lee 507H Facility	PBR No(s).:	106.352, 106.512

MAXIMUM OPERATING SCHEDULE:		Hours/D	ay		Days	/Week		N III	/eeks/Ye	ar	1	Hours/Year	8760
TOTAL EMISSIONS (TPY):		22.69	•	4.81		7.25		0.25		0.25		0.02	0.42
PWLOAD/Water Loading	0.36	0.75											· .
CLOAD/Condensate Loading	35.68	8.97											
PU/Production Unit	0.01	0.04	0.10	0.44	0.08	0.35	0.01	0.04	0.01	0.04	<0.01	<0.01	
HT/Heater Treater	<0.01	0.02	0.07	0.31	0.06	0.26	<0.01	0.02	<0.01	0.02	<0.01	<0.01	
COMB/Combustor	1.34	5.87	0.29	1.27	0.24	1.05	0.02	0.09	0.02	0.09	<0.01	0.01	L
TANK4/Condensate Storage	0.65	2.85				1							
TANK3/Condensate Storage	0.01	0.01											
TANK2/Condensate Storage	<0.01	0.01				l							

*Formaldehyde emissions have been included in the total VOC emissions.

SITE REVIEW / DISTANCE LIMIT	Yes	No	Description/Outcome	Date	Reviewed by
Site Review Required?		x	Site review is not required for this registration.	February 25, 2011	Ms. Patricia Moden
PBR Distance Limits Met?	х		The applicant represents that they are at least 200 feet from the nearest property line and at least 1320 feet from the nearest off-property receptor.	February 25, 2011	Ms. Patricia Moden

	TECHNICAL REVIEWER	PEER REVIEWER	FINAL REVIEWER
SIGNATURE:	Alderin		See Hard Copy.
PRINTED NAME:	Ms. Patricia Moden		Ms. Anne M. Inman, P.E., Manager
DATE:	March 2, 2011		March 2, 2011

BASIS OF PROJECT POINTS	POINTS
Base Points:	2.0
Project Complexity Description and Points: Additional Rule Tables (12) Communication	0.5 3.0
	1.0
Technical Reviewer Project Points Assessment:	6.5
Final Reviewer Project Points Confirmation:	

03/02/2011	NSR IMS - PROJE	CT RECORD	
PROJECT#: 162450 RECEIVED: 01/03/2011 RENEWAL:	PERMIT#: 94462 PROJTYPE: INITIAL	STATUS: PENDING AUTHTYPE: PBR	DISP CODE: ISSUED DT: 7 2 11
PROJECT ADMIN NAME PROJECT TECH NAME:			Ce.5 Anul
Assigned Team: RULE	REG SECTION		And
STAFF ASSIGNED TO F HUNSBERGER , JOANN MODEN , PATRICIA		-	REVIEW
ISSUED TO: CHESAPEA COMPANY NAME: Ches			
REGULATED ENTITY/S REGULATED ENTITY N PERMIT NAME: LEE 507	UMBER: RN106061534	ACCOUNT:	
REGULATED ENTITY LO 20 THEN 2.0 MI N THEN REGION 01 - AMARILLO	0.1 MI E AND N INTO LO	DCATION	1046 AT ALLISON GO 4.0 MI W ON CR OUNTY: WHEELER
CONTACT DATA		•	
CONTACT NAME: MR K JOB TITLE: CORPORAT	HA MACH 'E AIR ENGINEER COI	CONTACT ROLE: RESP ORGANIZATION: CHES	ONSIBLE OFFICIAL APEAKE OPERATING INC
	BOX 18496 , OKLAHOM	IA CITY, OK, 73154-0496	
PHONE: (405) 935-7908 FAX: (405) 849-7908 Ext		¥	
EMAIL:KHA.MACH@CH			
CONTACT NAME: MS F	RITA ZEBIAN	CONTACT ROLE: TECHN	NICAL CONTACT
JOB TITLE: PROJECT N QUALITY	IANAGER AIR	ORGANIZATION: THE BE	ENHAM COMPANIES LLC AN SAIC
MAILING ADDRESS: 12 PHONE: (817) 640-6407 FAX: (817) 640-6447 Ex	' Ext: 0	E 510 , ARLINGTON, TX, 76	5011-4939
EMAIL:RITA.ZEBIAN@		-	

http://prsprd1.tceq.state.tx.us/ida/index.cfm?fuseaction=nsrproject.project_report&proj_id=... 3/2/2011

TCEQ IDA - Production

FEE: Reference Fee Receipt Numb 1406600	per Amount Fee Receipt Da 450.00	te Fee Payn CHECK	nent Type	
TRACKING ELEMENTS:				
TE Name		Start Date	Complete Date	
APIRT RECEIVED PROJECT (DA	• · · · · · · · · · · · · · · · · · · ·	01/03/2011		· · ·
APIRT TRANSFERRED PROJEC		01/04/2011		
PROJECT RECEIVED BY ENGIN		01/24/2011		
ENGINEER INITIAL REVIEW COL	MPLETED (DATE)	02/18/2011	00/00/0044	
DEFICIENCY CYCLE PEER / MANAGER REVIEW PER		02/22/2011 03/02/2011	02/28/2011 03/02/2011	
UNIT TYPES:				
Project Unit Type:				
	,			
PROJECT RULES:				
PROJECT RULES: Unit Desc	Rule Desc	Request Type	On Application	Approve
	Rule Desc 106.352 2000-SEP-04 TO 2011-FEB-27 -			••
Unit Desc OIL AND GAS PRODUCTION	106.352 2000-SEP-04 TO	Туре	Application	APPROVE
Unit Desc OIL AND GAS PRODUCTION FACILITIES	106.352 2000-SEP-04 TO 2011-FEB-27 -	Type ADD	Application Y	APPROVE
Unit Desc OIL AND GAS PRODUCTION FACILITIES ENGINES AND TURBINES PERMIT RULES:	106.352 2000-SEP-04 TO 2011-FEB-27 -	Type ADD	Application Y	Approve APPROVE APPROVE
Unit Desc OIL AND GAS PRODUCTION FACILITIES ENGINES AND TURBINES PERMIT RULES:	106.352 2000-SEP-04 TO 2011-FEB-27 - 106.512 -	Type ADD	Application Y	APPROVI
Unit Desc OIL AND GAS PRODUCTION FACILITIES ENGINES AND TURBINES PERMIT RULES: Unit Desc Rule Desc Star	106.352 2000-SEP-04 TO 2011-FEB-27 - 106.512 -	Type ADD	Application Y	APPROV

From:	"Zebian, Rita M." <rita.m.zebian@saic.com></rita.m.zebian@saic.com>
То:	"Patricia Moden" <patricia.moden@tceq.texas.gov></patricia.moden@tceq.texas.gov>
CC:	"Kha Mach" <kha.mach@chk.com></kha.mach@chk.com>
Date:	2/28/2011 11:54 AM
Subject:	RE: PBR Applications for Chesapeake Operating, Inc.
Attachments:	PGEBrowne2HRevTables.pdf; Lohberger401HTablesR1.pdf; WestT1HTablesR1.pdf; L
	ee507HTablesR1.pdf: 02.28.11TCEQResponsePM.pdf

Patricia,

Attached are revised tables for the Chesapeake sites listed below that show the formaldehyde emissions. Also, a summary table is attached that provides responses to your other questions. Please call or email if you need anything else. Thanks,

Rita

Rita Zebian

Project Manager, Air Quality | Water, Environment & Transportation SAIC Energy, Environment & Infrastructure, LLC (SEE&I) office: 817.640.6407 | fax: 817.640.6447 www.saic.com/EEandl

----Original Message----From: Patricia Moden [mailto:Patricia.Moden@tceq.texas.gov] Sent: Wednesday, February 23, 2011 8:02 AM To: Zebian, Rita M. Cc: Jameica Hanney Subject: RE: PBR Applications for Chesapeake Operating, Inc.

Rita,

In the past, there has been confusion as to whether engine VOC emissions included the formaldehyde component which is why it may have been double counted. In this case, based on your calculations, it is clear that the formaldehyde is part of the total engine VOC emission rate. For consideration of HAP emissions, though, it is helpful to have the formaldehyde listed separately. To avoid being double counted, a footnote can be added to indicate that formaldehyde is already included in the VOC totals. Or, conversely, a footnote can be added to inform the reviewer that formaldehyde has not be included. Whichever way works best for you or the company, so long as it is clear that formaldehyde has been considered.

Please let me know if you have any questions.

Patricia

>>> "Zebian, Rita M." <Rita.Zebian@benham.com> 2/22/2011 2:38 PM >>> Patricia,

My contact at Chesapeake is out of the office today and tomorrow so I won't have specific information for you until Thursday or Friday. I received a similar email today from Jameica Hanney who is working on Chesapeake PBRs also. I sent her the following question on formaldehyde and would appreciate your feedback also.

On your formaldehyde questions, in the past we did list formaldehyde separately on our summary but one of your permit reviewers told us we needed to add the formaldehyde to the VOC and report the total. We stopped showing the formaldehyde separately because we did not want it double counted. Has the agency's position changed on this? If we list the formaldehyde separately then I assume we would not include it in the VOC number also. Is this correct?

Thanks, Rita

Rita Zebian Project Manager, Air Quality | Water, Environment & Transportation SAIC Energy, Environment & Infrastructure, LLC (SEE&I) office: 817.640.6407 | fax: 817.640.6447 www.saic.com/EEandl

----Original Message-----From: Patricia Moden [mailto:Patricia.Moden@tceq.texas.gov] Sent: Tuesday, February 22, 2011 11:28 AM

To: Zebian, Rita M.

Subject: PBR Applications for Chesapeake Operating, Inc.

Hi, Rita,

I am currently working on seven PBR applications for Chesapeake (listed below) which need additional information. Also, please provide an approximate start of construction date for all sites.

PGE Browne 2H:

1. Formaldehyde emissions have not been included on Table 1a or the Emission Summary table. Please update accordingly; 2. Please provide the gas heating value (Btu/SCF), the tip velocity (ft/sec), heat release value (Btu/hr), and flow rate (scf/hr) for the flare.

Lohberger 401H Pad / West T 1H / Lee 507H:

1. Formaldehyde emissions have not been included on Table 1a or the Emission Summary table. Please update accordingly; 2. What type of vapor combustor is used (i.e. thermal, catalytic, etc.)?

Fox Creek Unit B 1H Pad / Pena Creek III 1H / Traylor North 2H: 1. Please provide the gas heating value (Btu/SCF), the tip velocity (ft/sec), heat release value (Btu/hr), and flow rate (scf/hr) for the flare.

Please get back to me with the above requested information no later than noon on Monday, February 28, 2011. Let me know if you have any questions.

Regards, Patricia

From:	Patricia Moden
To:	Zebian, Rita M.
CC:	Hanney, Jameica
Date:	2/23/2011 8:01 AM
Subject:	RE: PBR Applications for Chesapeake Operating, Inc.

Rita,

In the past, there has been confusion as to whether engine VOC emissions included the formaldehyde component which is why it may have been double counted. In this case, based on your calculations, it is clear that the formaldehyde is part of the total engine VOC emission rate. For consideration of HAP emissions, though, it is helpful to have the formaldehyde listed separately. To avoid being double counted, a footnote can be added to indicate that formaldehyde is already included in the VOC totals. Or, conversely, a footnote can be added to inform the reviewer that formaldehyde has not be included. Whichever way works best for you or the company, so long as it is clear that formaldehyde has been considered.

Please let me know if you have any questions.

Patricia

>>> "Zebian, Rita M." <<u>Rita.Zebian@benham.com</u>> 2/22/2011 2:38 PM >>> Patricia,

My contact at Chesapeake is out of the office today and tomorrow so I won't have specific information for you until Thursday or Friday. I received a similar email today from Jameica Hanney who is working on Chesapeake PBRs also. I sent her the following question on formaldehyde and would appreciate your feedback also.

On your formaldehyde questions, in the past we did list formaldehyde separately on our summary but one of your permit reviewers told us we needed to add the formaldehyde to the VOC and report the total. We stopped showing the formaldehyde separately because we did not want it double counted. Has the agency's position changed on this? If we list the formaldehyde separately then I assume we would not include it in the VOC number also. Is this correct?

Thanks, Rita

Rita Zebian

Project Manager, Air Quality | Water, Environment & Transportation SAIC Energy, Environment & Infrastructure, LLC (SEE&I) office: 817.640.6407 | fax: 817.640.6447 www.saic.com/EEandI

-----Original Message---From: Patricia Moden [mailto:Patricia.Moden@tceq.texas.gov] Sent: Tuesday, February 22, 2011 11:28 AM To: Zebian, Rita M. Subject: PBR Applications for Chesapeake Operating, Inc.

Hi, Rita,

I am currently working on seven PBR applications for Chesapeake (listed below) which need additional information. Also, please provide an approximate start of construction date for all sites.

PGE Browne 2H:

1. Formaldehyde emissions have not been included on Table 1a or the Emission Summary table. Please update accordingly; 2. Please provide the gas heating value (Btu/SCF), the tip velocity (ft/sec), heat release value (Btu/hr), and flow rate (scf/hr) for the flare.

Lohberger 401H Pad / West T 1H / Lee 507H:

1. Formaldehyde emissions have not been included on Table 1a or the Emission Summary table. Please update accordingly; 2. What type of vapor combustor is used (i.e. thermal, catalytic, etc.)?

Fox Creek Unit B 1H Pad / Pena Creek III 1H / Traylor North 2H:

1. Please provide the gas heating value (Btu/SCF), the tip velocity (ft/sec), heat release value (Btu/hr), and flow rate (scf/hr) for the flare.

Please get back to me with the above requested information no later than noon on Monday, February 28, 2011. Let me know if you have any questions.

Regards, Patricia

Page 1

From: To: Date: Subject: "Zebian, Rita M." <Rita.Zebian@benham.com> "Patricia Moden" <Patricia.Moden@tceq.texas.gov> 2/22/2011 2:38 PM RE: PBR Applications for Chesapeake Operating, Inc.

Patricia,

My contact at Chesapeake is out of the office today and tomorrow so I won't have specific information for you until Thursday or Friday. I received a similar email today from Jameica Hanney who is working on Chesapeake PBRs also. I sent her the following question on formaldehyde and would appreciate your feedback also.

On your formaldehyde questions, in the past we did list formaldehyde separately on our summary but one of your permit reviewers told us we needed to add the formaldehyde to the VOC and report the total. We stopped showing the formaldehyde separately because we did not want it double counted. Has the agency's position changed on this? If we list the formaldehyde separately then I assume we would not include it in the VOC number also. Is this correct?

Thanks, Rita

Rita Zebian

Project Manager, Air Quality | Water, Environment & Transportation SAIC Energy, Environment & Infrastructure, LLC (SEE&I) office: 817.640.6407 | fax: 817.640.6447 www.saic.com/EEandl

-----Original Message-----

From: Patricia Moden [mailto:Patricia.Moden@tceq.texas.gov] Sent: Tuesday, February 22, 2011 11:28 AM To: Zebian, Rita M. Subject: PBR Applications for Chesapeake Operating, Inc.

Hi, Rita,

I am currently working on seven PBR applications for Chesapeake (listed below) which need additional information. Also, please provide an approximate start of construction date for all sites.

PGE Browne 2H:

1. Formaldehyde emissions have not been included on Table 1a or the Emission Summary table. Please update accordingly; 2. Please provide the gas heating value (Btu/SCF), the tip velocity (ft/sec), heat release value (Btu/hr), and flow rate (scf/hr) for the flare.

Lohberger 401H Pad / West T 1H / Lee 507H:

1. Formaldehyde emissions have not been included on Table 1a or the Emission Summary table. Please update accordingly;

2. What type of vapor combustor is used (i.e. thermal, catalytic, etc.)?

Fox Creek Unit B 1H Pad / Pena Creek III 1H / Traylor North 2H:

1. Please provide the gas heating value (Btu/SCF), the tip velocity (ft/sec), heat release value (Btu/hr), and flow rate (scf/hr) for the flare.

Please get back to me with the above requested information no later than noon on Monday, February 28, 2011. Let me know if you have any questions.

Regards, Patricia

From:	Patricia Moden
То:	rita.zebian@benham.com
Date:	2/22/2011 11:27 AM
Subject:	PBR Applications for Chesapeake Operating, Inc.

Hi, Rita,

I am currently working on seven PBR applications for Chesapeake (listed below) which need additional information. Also, please provide an approximate start of construction date for all sites.

PGE Browne 2H:

1. Formaldehyde emissions have not been included on Table 1a or the Emission Summary table. Please update accordingly; 2. Please provide the gas heating value (Btu/SCF), the tip velocity (ft/sec), heat release value (Btu/hr), and flow rate (scf/hr) for the flare.

Lohberger 401H Pad / West T 1H / Lee 507H:

1. Formaldehyde emissions have not been included on Table 1a or the Emission Summary table. Please update accordingly; 2. What type of vapor combustor is used (i.e. thermal, catalytic, etc.)?

Fox Creek Unit B 1H Pad / Pena Creek III 1H / Traylor North 2H:

1. Please provide the gas heating value (Btu/SCF), the tip velocity (ft/sec), heat release value (Btu/hr), and flow rate (scf/hr) for the flare.

Please get back to me with the above requested information no later than noon on Monday, February 28, 2011. Let me know if you have any questions.

Regards, Patricia

				1	1	
01/04/2011N	ISR IMS - PROJECT	RECORD				
PROJECT#: 162450 RECEIVED: 01/03/2011 RENEWAL:	PERMIT#: 94462 PROJTYPE: INITIAL	STATUS: PENDING AUTHTYPE: PBR		SP CODE: SUED DT:		
PROJECT ADMIN NAME: L PROJECT TECH NAME: LE			1			
Assigned Team: RULE RE	G SECTION					
STAFF ASSIGNED TO PRO HUNSBERGER , JOANNA TEAM LEADER , RR	DJECT: - REVIEWR1_2 - REVIEW ENG					•
CUSTOMER INFORMATION ISSUED TO: CHESAPEAKE COMPANY NAME: Chesape CUSTOMER REFERENCE	OPERATING INC eake Operating, Inc.	DATA)				• • •
REGULATED ENTITY/SITE REGULATED ENTITY NUM PERMIT NAME: LEE 507H I	BER: RN106061534		: ACCOUNT:		an An Anna An	
REGULATED ENTITY LOC/ 2.0 MI N THEN 0.1 MI E AN REGION 01 - AMARILLO			46 AT ALLISON GO	D 4.0 MI W ON CR 2	0 THEN	
CONTACT DATA					•	,
CONTACT NAME: MR KHA JOB TITLE: CORPORATE A MAILING ADDRESS: PO BC PHONE: (405) 935-7908 Ext FAX: (405) 849-7908 Ext: 0 EMAIL:KHA.MACH@CHK.C	NIR ENGINEER COI C DX 18496 , OKLAHOMA C :: 0	CONTACT ROLE: RESPO ORGANIZATION: CHESAF ITY, OK, 73154-0496		3 INC		
CONTACT NAME: MS RITA JOB TITLE: PROJECT MAN MAILING ADDRESS: 1200 B PHONE: (817) 640-6407 Exi FAX: (817) 640-6447 Ext: 0 EMAIL:RITA.ZEBIAN@BEN	IAGER AIR QUALITY E COPELAND RD STE 510 : 0	CONTACT ROLE: TECHN ORGANIZATION: THE BE 0 , ARLINGTON, TX, 7601	ENHAM COMPANIE	ES LLC AN SAIC CO	MPANY	
FEE: Reference Fee Receip 1406600	t Number Amount 450.00	•	e Payment Type ECK			
TRACKING ELEMENTS: TE Name APIRT RECEIVED PROJE APIRT TRANSFERRED PL DEFICIENCY CYCLE ENGINEER INITIAL REVIE PEER / MANAGER REVIE PROJECT RECEIVED BY	ROJECT TO TECHNICAL EW COMPLETED (DATE) W PERIOD	Start I 01/03/ STAFF (DATE) 01/04/3	2011	Date	V 2 N C	22-69 1-81 7.25
PROJECT RULES: Unit Desc OIL AND GAS PRODUCTI ENGINES AND TURBINES PERMIT RULES: Unit Desc Rule Desc		52 - ADD 12 - ADD	On Application Y Y	Approve APPROVE APPROVE	P S F	. 25 . 02 . 42

•

·

.

J

nc.

From:Marc OlivierTo:Hanney, Jameica; Moden, PatriciaDate:3/1/2011 2:16 PMSubject:Fwd: Certified PBR registrations for Chesapeake Operating, Inc.

Below is the e-mail I sent to Chesapeake regarding certifications. I addressed the issue generically so that the company understands what is included in the certification of any pending and future projects. Therefore, you do not need to send separate e-mails to Chesapeake or hold your pending projects. You can print this e-mail and place it in each of the project folders.

>>>

From: Marc Olivier To:<u>rita.zebian@benham.com</u> CC:<u>kha.mach@chk.com</u> Date: 3/1/2011 2:10 PM Subject: Certified PBR registrations for Chesapeake Operating, Inc. Dear Ms. Rita Zebian,

I am working on the technical review of six certified PBR registrations for Chesapeake Operating, Inc. and am aware that there are other pending registrations. While going through the registration packages as part of the initial review, I noticed that the cover letter for each registration states "COI is certifying only the annual site-wide emissions in this submittal."

There recently has been some confusion with what information is included in the certification when submitting a PI-7-CERT or APD-CERT, so I wanted to clarify that <u>all</u> representations in the certification of emissions are conditions upon which the facilities and sources will operate. Therefore, the basis of the annual emissions, which may be derived based on hourly emission rates that are determined based on the type of activity, the frequency and duration of an activity, throughput, production composition, and emission controls, or other operational limitations less than the potential to emit are also certified.

Once I have completed the technical review, I will let you know if there is any other information that is needed before sending the projects for final review and signature.

Sincerely,

Marc Olivier

Texas Commission on Environmental Quality Air Permits Division, Rule Registrations Section Marc.Qlivier@tceq.texas.gov (512) 239-1294 (512) 239-5698 (fax)